三维壳聚糖骨折内固定材料增强改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可生物降解的三维壳聚糖骨折内固定材料可避免其他种类骨折内固定装置的二次手术、应力遮挡、非菌性炎症反应等缺点。为了满足三维壳聚糖棒材在骨折临床使用中的要求,本论文采用多种方法增强改性壳聚糖棒材并研究了增强改性的机理。高强度的壳聚糖接骨棒、接骨钉将是一种新型的、具有自主知识产权的生物医用材料,对减轻骨折病人痛苦、节省医疗费用具有重要意义。
     (1)利用甲壳素和壳聚糖脱乙酰度的差异导致两者在稀酸水溶液中溶解性能的不同,制备了具有层状叠加结构的甲壳素纤维/壳聚糖三维复合棒材,当复合棒材受载荷作用时,应力由壳聚糖基体传递给纤维增强体,从而实现增强改性的目的。滤纸纤维表面粗糙,增强了纤维与壳聚糖基体之间的机械铆合力,并且两者发生了界面化学反应,生成了希夫碱,有效地增加了复合材料的界面结合力,从而提高了复合棒材的力学性能。采用聚对胺苯乙炔包覆多壁碳纳米管,使多壁碳纳米管均匀分散在壳聚糖基体中,可有效承担载荷。另外,给多壁碳纳米管穿上一层水溶性、磁性“外套”,在磁场的诱导下实现了多壁碳纳米管在壳聚糖基体中均匀分散、平行有序排列。
     (2)以海藻酸钠、羧化壳聚糖聚阴离子电解质改性三维壳聚糖棒材,壳聚糖分子链上的氨基、乙酰胺基与聚阴离子电解质的羧酸盐官能团之间存在很强的静电相互作用,使材料变得更加紧密,从而改善了复合棒材的力学性能。
     (3)通过仿生设计制得了高强度的多聚磷酸钠/壳聚糖三维复合棒材,棒材的仿木年轮层状叠加结构属于Liesegang Ring现象;棒材的仿竹空心结构可以通过控制壳聚糖溶液在碱液中的凝固时间来实现;多聚磷酸钠与壳聚糖之间存在强的静电相互作用以及氢键作用,使得壳聚糖基体变得更加紧密。层状叠加结构、仿竹中空结构以及复合棒材中的静电相互作用三者共同作用,大幅度提高了棒材的力学性能。
     (4) Co60-γ-rays辐射引起了壳聚糖分子的断链反应,降低了壳聚糖的分子量,使得壳聚糖分子链间的缠结作用减弱,链段运动能力增强,有利于壳聚糖分子的结晶重排,提高壳聚糖的结晶度,从而提高壳聚糖棒材的强度。微波辐射产生热效应,使壳聚糖棒材发生热交联反应,形成体型网络状结构,提高了壳聚糖棒材的力学强度。
     (5)戊二醛交联改性壳聚糖棒材及羟基磷灰石/壳聚糖三维复合板材,使壳聚糖基体形成体型网络状交联结构,棒材的层状叠加结构变得更加紧密,纳米羟基磷灰石颗粒尺寸减小。壳聚糖棒材受应力作用后产生的裂纹在一层内扩展,当遇到另外一层时发生钝化,或发生偏转,改变扩展方向,沿着层与层之间撕裂,吸收能量。交联壳聚糖棒材的层状叠加结构变得更加紧密,因而应力沿层间撕裂需要消耗更多的能量。戊二醛交联壳聚糖的体型网络状结构以及层状结构的裂纹扩展机制是棒材力学性能提高的原因。
     通过本课题的研究使三维壳聚糖棒材的力学性能得到了很大的提高,从增强改性的效果来看,多聚磷酸钠/壳聚糖仿生中空棒材、微波辐射改性的壳聚糖棒材以及戊二醛交联改性的壳聚糖棒材力学性能较好,此三种方法使棒材的弯曲强度达到180 MPa左右,约为纯壳聚糖棒材弯曲强度的两倍,可望用于临床骨折内固定。
Three dimensional chitosan rod is one kind of biocompatible and biodegradablematerial, which could be used for internal fixation of bone fracture and could avoidsome defects of metallic material and PLA screws, such as second operation toremove the implant, stress-shielding phenomenon, aseptic inflammation caused byacid degradation products, and so on. To meet the demand for the clinical bonefracture internal fixation, several strategies have been used for reinforcing chitosanrods, and the reinforcement mechanisms also have been studied in this research.
     (1) Chitosan could be dissolved in acetic acid aqueous solution, but chitin fibercould not be dissolved, due to the different deacetylation degree, so chitin fiber couldbe suspended equably in the viscous chitosan solution. Chitin fiber/chitosan 3-Dcomposite rods with layer by layer structure were prepared by in-situ precipitation.Chitosan was continuous phase which could transfer stress, whereas chitin fibers asreinforcement element were randomly dispersed in chitosan matrix and could endureoutside stress so as to improve the mechanical properties of composite rods.
     The surface of filter paper fiber was accidented and the fiber reacted withchitosan to form small amount of Schiff-base, which could enhance the mechanicalcombining stress of the interface between fiber and matrix, so filter paper fiber couldreinforce chitosan rod effectively.
     Poly(4-aminophenylacetylene) macromolecular chains were thickly wrappedonto the outer surface of MWNTs byπ-πelectronic interaction and donor-acceptor(D-A) complexation, so water soluble MWNTs were uniformly dispersed in chitosanmatrix and could bear outside stress effectively. Alignment of MWNTs in chitosanmatrix has also been studied. MWNTs were coated byFe_3O_4/poly(4-aminophenylacetylene), so they became water soluble and could beoriented by magnetic field. TEM results indicated that MWNTs were uniformlydispersed and parallel aligned in chitosan matrix.
     (2) Sodium aiginate and N-carboxyl propionyl chitosan sodium were used for reinforcing chitosan rods. FTIR spectra confirmed that amino groups and acetamidogroups on chitosan have stronger electrostatic attraction with carboxylate salt groups.So layer-by-layer structure of composite rods became much tighter compared withpure chitosan rod, and mechanical properties improved.
     (3) Sodium polyphosphate/chitosan composite rods with bionic hollow structureand layer structure have been constructed successfully. Bionic structure formingmechanism has been explored, the layer structure could be explained by LiesegangRing and the hollow structure could be controlled by precipitation time. FTIR spectraconfirmed that there are electrostatic attractions between sodium polyphosphate andchitosan. So the improved mechanical properties of composite rods could beattributed to strong electrostatic attraction, layer structure similar to wood's annualring and hollow structure similar to bamboo.
     (4) Co60-γ-rays induces chitosan chain scission reaction, resulting in shortermolecular chains which are beneficial for segmental mobility due to lowerintermolecular attraction forces and less chain entanglement, so a higher level ofcrystallinity after irradiation could be observed. Enhanced crystallinity improves themechanical properties of rods, so Co60-γ-rays irradiation is an effective way toimprove the mechanical properties of 3-D biodegradable chitosan rods.
     Chitosan rods were self-crosslinked to form network structure throughcrosslinking reaction between amino groups caused by thermal effect of microwaveirradiation. The improvement of mechanical properties of chitosan rods treated bymicrowave could be attributed to thermal crosslinking reaction.
     (5) Chitosan rods and hydroxyapatite/chitosan nanocomposite rods werereinforced through covalently crosslinking to form network structure byglutaraldehyde. The size of hydroxyapatite particles became smaller after crosslinkingof chitosan matrix. Layer-by-layer structure became much tighter after crosslinkingand cracks in one layer turnned around when they reached another layer to absorbenergy, so the mechanical properties of 3-D chitosan rods enhanced.
     Mechanical properties of chitosan rods have been improved remarkably in thisresearch. Bending strength of bionic hollow sodium polyphosphate/chitosan composite rods, microwave treated rods and glutaraldehyde crosslinked rods arrivedat~180 MPa, which were approximately twice stronger than pure chitosan rods.Reinforced chitosan rods should be a novel internal fixation device for bone fracture.
引文
[1] 赵定麟.骨科学新理论与新技术[M].上海:上海科技教育出版社,1999.
    [2] 周秉文,潘达德.简明骨科学[M].北京:人民卫生出版社,1999.
    [3] 张远鹰.实用创伤骨科学:骨折与脱位及其治疗[M].长春:长春出版社,1998.
    [4] 陶明涛,于香安.治疗“骨不连”的复合释药系统研究现状与进展[J].中国药房,2007,18(20):1586-1587.
    [5] 周善民.中医伤科学[M].南京:江苏科学技术出版社,1990.
    [6] 王爱国,王志彬,金鸿宾,谷福顺.夹板固定带的研究进展[J].中国骨伤,2008,21(12):946-948.
    [7] 李先樑.地震伤员小夹板固定治疗[J].实用医院临床杂志,2009,6(1):13-15.
    [8] 吴雪莲.骨牵引患者临床护理体会及措施[J].常州实用医学,2008,24(3):190-191.
    [9] 王正梅,樊曙先,谢学俭,高桂芝.骨折内固定器材料的研究进展[J].南通大学学报:医学版,2005,25(3):229-230,232.
    [10] M. van der Elst, A.R.A. Dijkema, C.P.A.T. Klein, P. Patka, H. J.Th.M. Haarman. Tissue reaction on PLLA versus stainless steel interlocking screws for fracture fixation: an animal study [J]. Biomaterials, 1995(16): 103-106.
    [11] Agrawal CM, Athanasiou KA. Technique to control pH in vicinity of biodegrading PLA-PGA implants [J]. Journal of Biomedical Materials Research, 1997, 38(2): 105-114.
    [12] Katti KS, Katti DR, Dash R. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering [J]. Biomedical materials, 2008,3(3), Article Number: 034122.
    [13] Chen LY, Du YM, Wu HQ, Xiao L. Relationship between molecular structure and moisture-retention ability of carboxymethyl chitin and chitosan [J]. Journal of applied polymer science, 2002, 83(6): 1233-1241.
    [14] Agullo E, Rodriguez MS, Ramos V, Albertengo L. Present and Future Role of Chitin and Chitosan in Food [J]. Macromolecular bioscience, 2003, 3(10): 521-530.
    [15] Kurita K. Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans [J]. Marine biotechnology, 2006, 8(3): 203-226.
    [16] Suzuki D, Takahashi M, Abe M, Sarukawa J, Tamura H, Tokura S, Kurahashi Y,Nagano A. Comparison of various mixtures of beta-chitin and chitosan as a scaffold for three-dimensional culture of rabbit chondrocytes [J]. Journal of materials science-materials in medicine, 2008, 19(3): 1307-1315.
    [17] Krajewska B. Membrane-based processes performed with use of chitin/chitosan materials [J]. Separation and Purification Technology, 2005,41(3): 305-312.
    [18] Wang Y, Wei WZ, Liu XY, Zeng XD. Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique [J].Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2009,29(1): 50-54.
    [19] Kong LJ, Gao Y, Lu GY, Gong YD, Zhao NM, Zhang XF. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering[J]. European Polymer Journal, 42(12): 3171-3179.
    [20] Van de Velde K, Kiekens P. Structure analysis and degree of substitution of chitin,chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state C-13 NMR [J].Carbohydrate Polymers, 2004, 58(4): 409-416.
    [21] Khor E, Lim LY. Implantable applications of chitin and chitosan [J]. Biomaterials,2003,24(13): 2339-2349.
    [22] Jayakumar R, Selvamurugan N, Nair SV, Tokura S, Tamura H. Preparative methods of phosphorylated chitin and chitosan—An overview [J]. International Journal of Biological Macromolecules, 2008, 43(3): 221-225.
    [23] Wu T, Zivanovic S. Determination of the degree of acetylation (DA) of chitin and chitosan by an improved first derivative UV method [J]. Carbohydrate Polymers,2008, 73(2): 248-253.
    [24] Rinaudo M. Chitin and chitosan: Properties and applications [J]. Progress in polymer science, 2006, 31(7): 603-632.
    [25] Mir VG, Heinamaki J, Antikainen O, Revoredo OB, Colarte AI, Nieto OM,Yliruusi J. Direct compression properties of chitin and chitosan [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(3): 964-968.
    [26] Kuo YC, Ku IN. Cartilage Regeneration by Novel Polyethylene Oxide/Chitin/Chitosan Scaffolds [J]. Biomacromolecules, 2008, 9(10): 2662-2669.
    [27] Baek SH, Kim B, Suh KD. Chitosan particle/multiwall carbon nanotube composites by electrostatic interactions [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2008,316(1-3): 292-296.
    [28] Shi CM, Zhu Y, Ran XZ, Wang M, Su YP, Cheng TM. Therapeutic potential of chitosan and its derivatives in regenerative medicine. Journal of Surgical Research,2006, 133(2): 185-192.
    [29] Suh JKF, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000, 21 (24):2589-2598.
    [30] Yi HM, Wu LQ, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, Payne GF.Biofabrication with chitosan. Biomacromolecules, 2005, 6 (6): 2881-2894.
    [31] Sailaja GS, Ramesh P, Varma HK. Swelling Behavior of Hydroxyapatite-Filled Chitosan-Poly(acrylic acid) Polyelectrolyte Complexes [J]. Journal of applied polymer science, 100(6): 4716-4722.
    [32] Rao KSVK, Chung I, Ha CS. Synthesis and characterization of poly(acrylamidoglycolic acid) grafted onto chitosan and its polyelectrolyte complexes with hydroxyapatite[J]. Reactive & Functional Polymers, 2008, 68(5): 943-953.
    [33] Wu HC, Wang TW, Sun JS, Wang WH, Lin FH. A novel biomagnetic nanoparticle based on hydroxyapatite [J]. Nanotechnology, 2007, 18(16), Article Number: 165601.
    [34] Manafi SA, Yazdani B, Rahimiopour MR, Sadrnezhaad SK, Amin MH, Razavi M. Synthesis of nano-hydroxyapatite under a sonochemical/hydrothermal condition[J].Biomedical materials, 2008, 3(2), Article Number: 025002.
    [35] Zhu XL, Eibl O, Berthold C, Scheideler L, Geis-Gerstrofer J. Structural characterization of nanocrystalline hydroxyapatite and adhesion of pre-osteoblast cells[J]. Nanotechnology, 2006, 17(11): 2711-2721.
    [36] Li JJ, Chen YP, Yin YJ, Yao FL, Yao KD. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ [J]. Biomaterials, 2007, 28(5): 781-790.
    [37] Ye F, Guo HF, Zhang HJ. Biomimetic synthesis of oriented hydroxyapatite mediated by nonionic surfactants[J]. Nanotechnology, 2008, 19(24), Article Number:245605.
    [38] Muthutantri AI, Huang J, Edirisinghe MJ, Bretcanu O, Boccaccini AR. Dipping and electrospraying for the preparation of hydroxyapatite foams for bone tissue engineering[J]. Biomedical materials, 2008, 3(2), Article Number: 025009.
    [39] Sung YM, Shin YK, Ryu JJ. Preparation of hydroxyapatite/zirconia bioceramic nanocomposites for orthopaedic and dental prosthesis applications [J].Nanotechnology, 2007,18(6), Article Number: 065602.
    [40] Xie JZ, Hein S, Wang K, Liao K, Goh KL. Influence of hydroxyapatite crystallization temperature and concentration on stress transfer in wet-spun nanohydroxyapatitechitosan composite fibres[J]. Biomedicl materials, 2008, 3(2),Article Number: 025014.
    [41] Wang L, Li CZ. Preparation and physicochemical properties of a novel hydroxyapatite/chitosan - silk Wbroin composite [J]. Carbohydrate Polymers, 2007,68(4): 740-745.
    [42] Di Martino A, Sittinger M, Risbud MV. A versatile biopolymer for orthopaedic tissue-engineering [J]. Biomaterials, 2005, 26 (30): 5983-5990.
    [43] Kim SB, Kim YJ, Yoon TR, Park SA, Cho IH, Kim EJ, Kim IA, Shin JW. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement [J]. Biomaterials,2004,25 (26): 5715-5723.
    [44] Zhu Y, Wang XH, Cui FZ, Feng QL, De Groot K. In vitro cytocompatibility and osteoinduction of phosphorylated chitosan with osteoblasts [J]. Journal of Bioactive and Compatible Polymers, 2003, 18 (5): 375-390.
    [45] Leroux L, Hatim Z, Freche M, Lacout JL. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement [J].Bone, 1999, 25 (2): 31-34.
    [46] Kumar MNVR. A review of chitin and chitosan applications [J]. Reactive and Functional Polymers, 2000, 46 (1)1-27.
    [47] Zhang Jianxiang, Tang Jian, Xu Bin, Cai Keqing, Ma weidong, Fang Yue'e, Shi Tianyi, Wei Jun. Chitosan Pin Fixation of Rabbit Proximal Tibia Osteotomy [J]. Journal of Biomedical Engineering, 1998, 15(2): 179-182.
    [48] Hu QL, Qian XZ, Li BQ, Shen JC. Studies on chitosan rods prepared by in situ precipitation method [J]. Chemical Journal of Chinese Universities-Chinese, 2003, 24(3): 528-531.
    [49] Li BQ, Hu QL, Qian XZ, Fang ZP, Shen JC. Bioabsorbable chitosan/hydroxyapatite composite rod prepared by in-situ precipitation for internal fixation of bone fracture [J]. Acta polymerica sinica, 2002(6): 828-833.
    [50] Chen FP, Hu QL, Chen L, Li BQ, Shen JC. Preparation of magnetic iron oxide/hydroxyapatite/cbtirosan rods by in situ precipitation [J]. Acta polymerica sinica, 2006(6): 756-760.
    [51] Cui W, Hu QL, Wu J, Li BQ, Shen JC. Preparation and Characterization of Magnetite/Hydroxyapatite/Chitosan Nanocomposite by In Situ Compositing Method [J]. Journal of applied polymer science, 2008, 109(4): 2081-2088.
    [52] Hu QL, Li BQ, Wang M, Shen JC. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization:a potential material as internal fixation of bone fracture[J]. Biomaterials, 2004, 25: 779-785.
    [53] Yang A, Wu RJ. Mechanical properties and interfacial interaction of a novel bioabsorbable chitin fiber reinforced poly(ε-caprolactone) composite [J]. Journal of materials science letters, 2001, 20(11): 977-979.
    [54] 王征科,吴海若,胡巧玲,沈家骢.梯度渗透法组装仿木年轮结构壳聚糖棒材[J].浙江大学学报:工学版,2006,40(11):1869-1872.
    [55] 张留成.高分子材料导论[M].北京:化学工业出版社,1999.
    [56] 周祝林,姚辉,孙佩琼,张小苹.树脂基纤维复合材料界面理论评述[J].玻璃钢,2006(1):27-31.
    [57] 全国合成纤维科技信息中心.聚丙烯腈(PAN)基碳纤维的发展和应用[J].合成纤维.2004,33(5):1-4.
    [58] 褚衡,王春娥,李纯清.碳纤维增强改性PVC拉伸强度的研究[J].塑料工业,2008,36(B06):100-102.
    [59] 孙伟,宋国君,杨淑静,杨超,谷正,李春华.双螺杆反应挤出制备碳纤维增强尼龙6复合材料的研究[J].科学技术与工程,2008(3):620-623.
    [60] 曾丽平,郭申,曹丽云,黄剑锋.碳纤维改性HA/PMMA生物复合材料力学性能的研究[J].塑料科技,2009,37(1):52-55.
    [61] 杜慧玲,齐锦刚,庞洪涛,万怡灶,王玉林.表面处理对碳纤维增强聚乳酸材料界面性能的影响[J].材料保护,2003,36(2):16-18.
    [62] 周福刚,王勤.碳纤维增强聚乳酸(C/PLA)复合材料的力学性能(Ⅰ)[J].材料工程,2000(5):16-18.
    [63] 沈烈,乔飞,张稚燕.碳纤维增强羟基磷灰石/聚乳酸复合生物材料的制备和力学性能[J].实验力学,2007(4):385-389.
    [64] Wan YZ, Wang YL, Xu XH, Li QY. In Vitro Degradation Behavior of Carbon Fiber-Reinforced PLA Composites and Influence of Interfacial Adhesion Strength [J]. Journal of Applied Polymer Science, 2001, 82(1): 150-158.
    [65] Zhang H, Wu J, Zhang J. 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid:A New and Powerful Nonderivatizing Solvent for Cellulose[J]. Macromolecules, 2005(38): 8272-8277.
    [66] Ishii D, Tatsumi D, Matsumoto T. Effect of Solvent Exchange on the Solid Structure and Dissolution Behavior of Cellulose [J]. Biomacromolecules, 2003(4): 1238-1243.
    [67] 任强,武进,张军.1-烯丙基,3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究[J].高分子学报,2003(3):448-451.
    [68] Qi HS, Chang CY, Zhang LN. Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution[J]. Cellulose, 2008, 15(6): 779-787.
    [69] Liu SL, Zhang LN. Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution[J]. Cellulose, 2009, 16(2): 189-198.
    [70] Cai J, Zhang LN. Unique Gelation Behavior of Cellulose in NaOH/Urea Aqueous Solution[J]. Biomacromolecules, 2006(7): 183-189.
    [71] Samir MASA, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field [J]. Biomacromolecules, 2005, 6(2): 612-626.
    [72] Bhardwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M. Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic [J]. Biomacromolecules, 2006, 7(6): 2044-2051.
    [73] Huda MS, Drzal LT, Misra M, Mohanty AK, Williams K, Mielewski DF. A study on biocomposites from recycled newspaper fiber and poly(lactic acid) [J]. Industrial and Engineering Chemistry Research, 2005, 44(15):5593-5601.
    [74] Takashi Nishino, Ikuyo Matsuda, Koichi Hirao. All-cellulose composite [J]. Macromolecules, 2004, 37(20):7683-7687.
    [75] 杨安乐,吴人洁,孙康.生物可吸收性甲壳素纤维增强聚(ε-己丙酯)复合材料的动态流变特性研究[J].复合材料学报,2002,19(4):101-105.
    [76] 孙康,吴人洁,陈长春,方笑梅.改性甲壳素纤维增强聚乳酸复合材料及其制备方法[P].中国,发明专利,CN1488673,2004-04-14.
    [77] 陈长春,程海涛.生物可吸收性甲壳素纤维增强聚乳酸复合材料体内体外降解性研究[J].生物医学工程学杂志,2000,17(2):117-121.
    [78] Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R. Preparation and characterization of alpha-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment [J]. Carbohydrate Polymers, 2005, 62(2): 130-136.
    [79] Ma LJ, Wen HP. Biocomposite of double-walled carbon nanotube-doped alginate gel for biomaterial immobilization [J]. Composites science and technology. 2008, 68(6): 1297-1303.
    [80] Zhao H, Yuan WZ, Tang L, Sun JZ, Xu HP, Qin AJ, Mao Y, Jin JK, Tang BZ. Hybrids of Triphenylamine-Functionalized Polyacetylenes and Multiwalled Carbon Nanotubes: High Solubility, Strong Donor-Acceptor Interaction, and Excellent Photoconductivity [J]. Macromolecules, 2008, 41(22): 8566-8574.
    [81] Boccaccini AR, Chicatun F, Cho J, Bretcanu O, Roether JA, Novak S, Chen Q. Carbon Nanotube Coatings on Bioglass-Based Tissue Engineering Scaffolds [J]. Advanced functional materials, 2007, 17(15): 2815-2822.
    [82] Koh LB, Rodriguez I, Zhou JJ. Platelet adhesion studies on nanostructured poly(lactic-co-glycolic-acid)-carbon nanotube composite [J]. Journal of Biomedical Materials Research Part A, 2008, 86A(2): 394-401.
    [83] 王宇,辜萍,李广海.碳纳米管的力学性能及碳纳米管复合材料研究[J].力学进展,2002,32(4):563-578.
    [84] 王彪,王贤保,胡平安,刘云圻,王华平,江建明,朱道本.碳纳米管/聚合物纳米复合材料研究进展[J].高分子通报,2002(6):8-14.
    [85] 王依民,夏于旻.纳米颗粒及其聚合物复合材料的研究与应用[J].中国粉体工业,2008(1):5-15.
    [86] Shih YF, Chen LS, Jeng RJ. Preparation and properties of biodegradable PBS/multi-walled carbon nanotube nanocomposites [J]. Polymer, 2008, 49(21): 4602-4611.
    [87] Harrison BS, Atala A. Carbon nanotube applications for tissue engineering [J]. Biomaterials, 2007, 28(2): 344-353.
    [88] 唐金春,黄可龙,于金刚,刘素琴.壳聚糖-碳纳米管/壳聚糖半互穿网络水凝胶的机械性能及pH敏感性[J].化学学报,2008,66(5):541-544.
    [89] Wang SF, Shen L, Zhang WD, Tong YJ. Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites [J]. Biomacromolecules, 2005, 6(6): 3067-3072.
    [90] Ozarkar S, Jassal M, Agrawal AK. pH and electrical actuation of single walled carbon nanotube/chitosan composite fibers [J]. Smart Materials & Structures, 2008, 17(5), Code: 055016.
    [91] Yuan WZ, Sun JZ, Dong YQ, Haussler M, Yang F, Xu HP, Qin AJ, Lam JWY, Zheng Q, Tang BZ. Wrapping carbon nanotubes in pyrene-containing poly(phenylacetylene) chains: solubility, stability, light emission, and surface photovoltaic properties [J]. Macromolecules, 2006, 39(23): 8011-8020.
    [92] Yuan WZ, Mao Y, Zhao H, Sun JZ, Xu HP, Jin JK, Zheng Q, Tang BZ. Electronic Interactions and Polymer Effect in the Functionalization and Solvation of Carbon Nanotubes by Pyrene- and Ferrocene-Containing Poly(1-alkyne)s [J].Macromolecules, 2008, 41(3): 701-707.
    [93] Lam JWY, Tang BZ. Functional polyacetylenes [J]. Accounts of Chemical Research, 2005,38(9): 754.
    [94] Lam JWY, Tang BZ. Liquid-crystal line and light-emitting polyacetylenes [J].Journal of Polymer Science Part A: Polymer Chemistry, 2003,41(17): 2607-2629.
    [95] Sun JZ, Chen HZ, Xu RS, Wang M, Lam JWY, Tang BZ. Electric field induced cis-to-trans isomerization of polyphenylacetylene in solid state [J]. Chemical Communications, 2002, 11: 1222-1223.
    [96] Lam JWY, Peng H, Haussler M, Zheng RH, Tang BZ. Conjugated polymers with linear and hyperbranched structures and advanced materials properties [J]. Molecular Crystals and Liquid Crystals, 2004, 415: 43-60.
    [97] Yuan WZ, Sun JZ, Liu JZ, Dong YQ, Li Z, Xu HP, Qin AJ, Haeussler M, Jin JK,Zheng Q, Tang BZ. Processable Hybrids of Ferrocene-Containing Poly(phenylacetylene)s and Carbon Nanotubes: Fabrication and properties [J]. Journal of Physical Chemistry B, 2008, 112(30): 8896-8905.
    [98] Yuan WZ, Tang L, Zhao H, Jin JK, Sun JZ, Qin AJ, Xu HP, Liu JH, Yang F,Zheng Q, Chen EQ, Tang BZ. Direct Polymerization of Highly Polar Acetylene Derivatives and Facile Fabrication of Nanoparticle-Decorated Carbon Nanotubes [J].Macromolecules, 2009,42(1): 52-61.
    [99] Spinks GA, Shin SR, Wallace GG, Whitten PG, Kim IY, Kim SI, Kim SJ. A novel "dual mode" actuation in chitosan/polyaniline/carbon nanotube fibers [J]. Sensors and Actuators B-Chemical, 2007,121(2): 616-621.
    [100] Tang CY, Xiang LX, Su JX, Wang K, Yang CY, Zhang Q, Fu Q. Largely Improved Tensile Properties of Chitosan Film via Unique Synergistic Reinforcing Effect of Carbon Nanotube and Clay [J]. Journal of Physical Chemistry B, 2008,112(13): 3876-3881.
    [101] Sweetman LJ, Moulton SE, Wallace GG Characterisation of porous freeze dried conducting carbon nanotube-chitosan scaffolds [J]. Journal of Materials Chemistry,2008, 18(44): 5417-5422.
    [102] Lau C, Cooney MJ, Atanassov P. Conductive macroporous composite chitosan-carbon nanotube scaffolds [J]. Langmuir, 2008,24(13): 7004-7010.
    [103] Zhang MG, Smith A, Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes [J]. Analytical Chemistry,2004, 76(17): 5045-5050.
    [104] Tumpane J, Karousis N, Tagmatarchis N, Norden B. Alignment of carbon nanotubes in weak magnetic fields [J]. Angewandte Chemie-International Edition,2008,47(28): 5148-5152.
    [105] Kumar S, Bisoyi HK. Aligned carbon nanotubes in the supramolecular order of discotic liquid crystals [J]. Angewandte Chemie-International Edition, 2007, 46(9):1501-1503.
    [106] Lagerwall J, Scalia G, Haluska M, Dettlaff-Weglikowska U, Roth S,Giesselmann F. Nanotube alignment using lyotropic liquid crystals [J]. Advanced Materials, 2007, 19(3): 359-364.
    [107] Scalia G, von Buhler C, Hagele C, Roth S, Giesselmann F, Lagerwall JPF. Spontaneous macroscopic carbon nanotube alignment via colloidal suspension in hexagonal columnar lyotropic liquid crystals [J]. Soft Matter, 2008,4(3): 570-576.
    [108] Strobl CJ, Schaflein C, Beierlein U, Ebbecke J, Wixforth A. Carbon nanotube alignment by surface acoustic waves [J]. Applied Physics Letters, 2004, 85(8):1427-1429.
    [109] Zilli D, Bonelli PR, Cukierman AL. Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays [J].Nanotechnology, 2006, 17(20): 5136-5141.
    [110] Huang SM, Fu Q, An L, Liu J. Growth of aligned SWNT arrays from water-soluble molecular clusters for nanotube device fabrication [J]. Physical Chemistry Chemical Physics, 2004, 6(6): 1077-1079.
    [111] Kim S, Xuan Y, Ye PD, Mohammadi S, Lee SW. Single-walled carbon nanotube transistors fabricated by advanced alignment techniques utilizing CVD growth and dielectrophoresis [J]. Solid-State Electronics, 2008, 52(8): 1260-1263.
    [112] Li JQ, Zhang Q, Yan YH, Li S, Chen LQ. Fabrication of carbon nanotube field-effect transistors by fluidic alignment technique [J]. IEEE Transactions on Nanotechnology, 2007, 6(4): 481-484.
    [113] Miaudet P, Badaire S, Maugey M, Derre A, Pichot V, Launois P, Poulin P, Zakri C. Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment [J]. Nano Letters, 2005, 5(11 ): 2212-2215.
    [114] Kim SK, Lee HW, Tanaka H, Weiss PS. Vertical alignment of single-walled carbon nanotube films formed by electrophoretic deposition [J]. Langmuir, 2008, 24(22): 12936-12942.
    [115] 官建国,马会茹,段华军.用液晶高分子微纤自增强的原位复合材料[J].复合材料学报,2002,19(2):7-13.
    [116] 陈占春,王荣飞,高磊,邓聪,高雪琴,申开智.HDPE在少量HMWPE和剪切应力双重诱导作用下结构与性能的关系[J].工程塑料应用,2008,36(6):26-29.
    [117] 益小苏.高分子材料的制备与加工[M].杭州:浙江大学出版社,1997.
    [118] 王惠民,益小苏.自增强高分子材料力学性能和结构特点分析[J].浙江大学学报:自然科学版,1991,25(4):465-469.
    [119] 益小苏,高分子材料分子自增强的理论与实践[J].化工进展,1990(5):16-21.
    [120] 瞿金平,秦雪梅.高分子材料成型加工过程的自增强[J].广东化工,2005,32(11):18-23,74.
    [121] 张斌,周科朝,朱武,黄苏萍.自增强高密度聚乙烯/超高分子量聚乙烯复合材料制备与表征[J].功能材料,2007,38(9):1507-1510.
    [122] 江涛,胡平.生物医用高分子材料自增强工艺的研究[J].功能材料,2001,32(4):353-355.
    [123] 杨丹,刘毅,何兰珍.甲壳素交联改性制备超级保水凝胶[J].石油化工,2003,32(2):133-138.
    [124] Kulkarni PV, Keshavayya J, Kulkarni VH. Effect of method of preparation and process variables on controlled release of insoluble drug from chitosan microspheres [J]. Polymers for Advanced Technologies, 2007, 18 (10): 814-821.
    [125] Gupta KC, Jabrail FH. Glutaraldehyde cross-linked chitosan microspheres for controlled release of centchroman [J]. Carbohydrate Research, 2007, 342 (15): 2244-2252.
    [126] Huang XJ, Ge D, Xu ZK. Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization [J]. European Polymer Journal, 2007, 43 (9): 3710-3718.
    [127] Schiffman JD, Schauer CL. Cross-linking chitosan nanofibers [J]. Biomacromolecules, 2007, 8 (2): 594-601.
    [128] Ma L, Gao CY, Mao ZW et al. Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagen-chitosan porous scaffolds used as dermal equivalent [J]. Journal of Biomaterials Science-Polymer Edition, 2003, 14 (8): 861-874.
    [129] Tan HP, Gong YH, Lao LH et al. Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering [J]. Journal of Materials Science-Materials in Medicine, 2007, 18 (10): 1961-1968.
    [130] Wu XM, Black L, Santacana-Laffitte G, Patrick CW. Preparation and assessment of glutaraldehyde-crosslinked collagen-chitosan hydrogels for adipose tissue engineering [J]. Journal of Biomedical Materials Research Part A, 2007, 81A(1): 59-65.
    [131] 邵自强,高波,王飞俊.壳聚糖微波辐射交联改性及其成膜[J].高分子材料科学与工程,2005,21(6):197-200.
    [132] 杜予民,唐汝培,樊李红.高强度抗菌性双醛淀粉交联壳聚糖膜及其制法和用途[P].中国,发明专利,CN1434072,2003-08-06.
    [133] Subramanian A, Lin HY. Crosslinked chitosan: Its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation [J]. Journal of Biomedical Materials Research Part A, 2005, 75A(3): 742-753.
    [134] 完莉莉,汪玉庭.新型冠醚交联壳聚糖的合成[J].化学试剂,2001,23(1):6-7.
    [135] Wan LL, Wang YT, Qian SH. Study on the Adsorption Properties of Novel Crown Ether Crosslinked Chitosan for Metal Ions[J]. Journal of Applied Polymer Science, 84(1): 29-34.
    [136] 郑化,杜予民.交联壳聚糖膜的制备及其性能的研究[J].高等学校化学学报,2000,21(5):809-812.
    [137] 刘袖洞,于炜婷,王为,雄鹰,马小军,袁权.海藻酸钠和壳聚糖聚电解质微胶囊及其生物医学应用[J].化学进展,2008,20(1):126-139.
    [138] Saether HV, Holme HK, Maurstald G, Smidsrod O, Stokke BT. Polyelectrolyte complex formation using alginate and chitosan [J]. Carbohydrate Polymers, 2008, 74(4): 813-821.
    [139] Kim SG, Lim GT, Jegal J, Lee KH. Pervaporation separation of MTBE (methyl tert-butyl ether) and methanol mixtures through polyion complex composite membranes consisting of sodium alginate/chitosan [J]. Journal of Membrane Science, 2000, 174(1): 1-15.
    [140] Kim SG, Lee KS, Lee KH. Pervaporation Separation of Sodium Alginate/Chitosan Polyelectrolyte Complex Composite Membranes for the Separation of Water/Alcohol Mixtures: Characterization of the Permeation Behavior with Molecular Modeling Techniques [J]. Journal of Applied Polymer Science, 2007, 103(4): 2634-2641.
    [141] Lin XZ, Zheng H, Zhu KL. Study on release characteristics of tinidazole-chitosan-sodium alginate complex membrane [J]. Journal of Zhejiang University(Sciences Edition), 2006, 33(4): 444-446,480.
    [142] Smitha B, Sridhar S, Khan AA. Chitosan-sodium alginate polyion complexes as fuel cell membranes [J]. European Polymer Journal, 2005, 41(8): 1859-1866.
    [143] Moon GY, Pal R, Huang RYM. Novel two-ply composite membranes of chitosan and sodium alginate for the pervaporation dehydration of isopropanol and ethanol [J]. Journal of Membrane Science, 1999, 156(1): 17-27.
    [144] Ma LH, Yu WT, Ma XJ. Preparation and Characterization of Novel Sodium Alginate/Chitosan Two Ply Composite Membranes [J]. Journal of Applied Polymer Science, 2007, 106(1): 394-399.
    [145] Kanti P, Srigowri K, Madhuri J, Smitha B, Sridhar S. Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation [J]. Separation and Purification Technology, 2004, 40(3): 259-266.
    [146] Fan LH, Zhao Z, Huang J, Xu YM. Polyelectrolyte Sponges with Antimicrobial Functions Based on Chitosan and Sodium Alginate [J]. Journal of Wuhan University of Technology, 2006, 28(11): 25-28.
    [147] Qin Y, Pei GX, Xie DM, Jin D, Wei KH. Study of the Biocompatibility of Chitosan Microspheres with Bone Marrow Stem Cell(BMSc) [J]. The Orthopedic Journal of China, 2003, 11(13): 901-903.
    [148] Liu Q, Xue WM, Yu WT, Liu XD, Yan RY, Li JY, Ma XJ. Studies on the Membrane Strength of Alginate/Chitosan Microcapsule Prepared by Emulsification/Internal Gelation Method [J]. Chemical Research in Chinese Universities, 2002, 23(7): 1417-1420.
    [149] Gonzalez-Rodriguez ML, Holgado MA, Sanchez-Lafuente C, Rabasco AM, Fini A. Alginate/chitosan particulate systems for sodium diclofenac release [J]. International Journal of Pharmaceutics, 2002, 232(1-2): 225-234.
    [150] Lee KY, Park WH, Ha WS. Polyelectrolyte Complexes of Sodium Alginate with Chitosan or Its Derivatives for Microcapsules [J]. Journal of Applied Polymer Science, 1997, 63(4): 425-432.
    [151] Liu ZH, Jiao YP, Zhang ZY. Calcium-carboxymethyl chitosan hydrogel beads for protein drug delivery system [J]. Journal of Applied Polymer Science, 2007, 103(5): 3164-3168.
    [152] Lu GY, Kong LJ, Sheng BY, Wang G, Gong YD, Zhang XF. Degradation of covalently cross-linked carboxymethyl chitosan and its potential application for peripheral nerve regeneration [J]. European Polymer Journal, 2007, 43(9): 3807-3818.
    [153] Chen RN, Wang GM, Chen CH, Ho HO, Sheu MT. Development of N,O-(carboxymethyl)chitosan/collagen matrixes as a wound dressing [J]. Biomacromolecules, 2006, 7(4): 1058-1064.
    [154] El-Shafei AM, Fouda MMG, Knittel D, Schollmeyer E. Antibacterial activity of cationically modified cotton fabric with carboxymethyl chitosan [J]. Journal of Applied Polymer Science, 2008, 110(3): 1289-1296.
    [155] 常菁,刘万顺,韩宝芹,刘冰.羧甲基壳聚糖和羧甲基甲壳素的生物学性 质研究和比较[J].功能材料,2007,38(A05):1839-1842.
    [156] 张玲莉,郭咸希.羧甲基壳聚糖在大鼠颅内组织相容性的初步观察[J].中国药师,2007,10(12):1191-1193.
    [157] 徐广飞,吴金彪,赵健亚,仇梁林.羧甲基壳聚糖对大鼠乙酸型胃溃疡黏膜保护作用的研究[J].现代预防医学,2008,35(12):2231-2233.
    [158] Kennedy R, Costain DJ, McAlister VC, Lee TDG. Prevention of experimental postoperative peritoneal adhesions by N,O-carboxymethyl chitosan [J]. Surgery, 1996, 120(5): 866-870.
    [159] Chen XG, Wang Z, Liu WS, Park HJ. The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts [J]. Biomaterials, 2002, 23(23): 4609-4614.
    [160] Wang Y, Chen XG, Lv YH, Zhou HY, Zhang J. Effects of molecular structural parameters of carboxymethyl chitosan on the growth of fibroblasts in vitro [J]. Journal of Applied Polymer Science, 2007, 106:3136-31421
    [161] Wongpanit P, Sanchavanakit N, Pavasant P, Supaphol P, Tokura S, Rujiravanit R. Preparation and characterization of microwave-treated carboxymethyl chitin and carboxymethyl chitosan films for potential use in wound care application [J]. Macromolecular Bioscience, 2005, 5(10): 1001-1012.
    [162] 庄昭霞,林志勇,曹金芳.壳聚糖-羧甲基壳聚糖膜的生物相容性研究[J].上海口腔医学,2003,12(5):362-365.
    [163] 刘峻,原续波,安超,侯信,盛京.离子凝胶反应法制备壳聚糖/N,O-羧甲基壳聚糖微球[J].高分子通报,2005,6:84-89.
    [164] 王娟,刘忠.羧甲基壳聚糖作为纸张增强剂研究[J].上海造纸,2006,37(3):40-45.
    [165] Gupta KC, Jabrail FH. Preparation and characterization of sodium hexameta phosphate cross-linked chitosan microspheres for controlled and sustained delivery of centchroman [J]. International Journal of Biological Macromolecules, 2006, 38(3-5): 272-283.
    [166] 吕瑞勤,朱家壁.阿昔洛韦眼用壳聚糖纳米粒的制备及家兔生物利用度研 究[J].药学与临床研究,2007,15(1):14-17.
    [167] 蒋新宇,周春山,张俊山.应用三聚磷酸钠为交联剂制备载药物纳米粒的研究[J].中国现代医学杂志,2003,13(22):69-71.
    [168] 梁凯,杜予民,李艳,张婷.三偏磷酸钠交联壳聚糖膜的制备及其性能研究[J].分析科学学报,2008,24(2):136-140.
    [169] Lim LY, Khor E, Kool O. Gamma irradiation of chitosan [J]. Journal of biomedical materials research, 1998, 43(3): 282-290.
    [170] Huang L, Peng J, Zhai M, Li J, Wei G. Radiation-induced changes in carboxymethylated chitosan [J]. Radiation physics and chemistry, 2007, 76(11-12): 1679-1683.
    [171] Ramaprasad AT, Rao V, Praveena M, Sanjeev G, Ramanani SP, Sabharwal S. Preparation of Crosslinked Chitosan by Electron Beam Irradiation in the Presence of CCl4 [J]. Journal of applied polymer science, 2009, 111(2): 1063-1068.
    [172] Ramnani SP, Chaudhari CV, Patil ND, Sabharwal S. Synthesis and characterization of crosslinked chitosan formed by gamma irradiation in the presence of carbontetrachloride as a sensitizer [J]. Journal of polymer science part a-polymer chemistry, 2004, 42(15): 3897-3909.
    [173] Yang F, Li XH, Cheng MY, Gong YD, Zhao NM, Zhang XF, Yang YY. Performance modification of chitosan membranes induced by gamma irradiation [J]. Journal of biomaterials applications, 2002, 16(3): 215-226.
    [174] Yang F, Yang YY, Li XH, Zhao NM, Zhang XF. A Study of the Gamma Radiation Induced of Performances' Modification of Chitosan Film [J]. Chinese Journal of Dialysis and Artificial Organs, 2003, 14(2): 14-19.
    [175] Cao WL, Li J, Jing DH, Gong YD, Zhao NM, Zhang XF. Influence of irradiation sterilization on mechanical properties and biodegradability of chitosan conduits [J]. Nuclear techniques, 2005, 28(3): 187-191.
    [176] Wasikiewicz JM, Yoshii F, Nagasawa N, Wach RA, Mitomo H. Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods [J]. Radiation physics and chemistry, 2005, 73(5): 287-295.
    [177] Cardenas G, Diaz J, Melendrez MF, Cruzat C. Physicochemical properties of edible films from chitosan composites obtained by microwave heating [J]. Polymer Bulletin, 2008, 61 (6): 737-748.
    [178] Lim LY, Khor E, Ling CE. Effects of dry heat and saturated steam on the physical properties of chitosan [J]. Journal of Biomedical Materials Research, 1999,48(2): 111-116.
    [179] 王立铎,孙文珍,梁彤翔,王英华,李恒德.仿生材料的研究现状[J].材料工程,1996(2):3-5.
    [180] 黄勇,李翠伟.陶瓷强韧化新纪元-仿生结构设计[J].材料导报,2000,14(8):8-11.
    [181] 李秀华,袁启明,杨正方.贝壳结构及陶瓷的仿生研究[J].硅酸盐通报,2003,22(2):53-56.
    [182] 关春龙,赫晓东,李垚.叠层状复合材料的研究进展[J].材料导报,2004,18(4):49-52,55.
    [183] 杨大祥,周新贵,金志浩,李冬云,宋永才.SiC/C层状复合材料的烧结工艺及其对性能的影响[J].机械工程材料,2005,29(6):48-51.
    [184] Tormala P, Vasenius J, Vainionpaa S, Laiho J, Pohjonen T, Rokkanen P. Ultra-high-strength absorbable self-reinforced polyglycolide (sr-pga) composite rods for internal-fixation of bone-fractures - invitro and invivo study [J]. Journal of Biomedical Materials Research, 1991, 25(1): 1-22.
    [185] 沈伟,胡晓亮,沈燕国,邱永敏.可吸收张力带在骨折中的临床应用[J].实用骨科杂志,2006,12(5):412-414.
    [186] Li BQ, Jia DC, Zhou Y, Hu QL, Cai W. In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field [J]. Journal of Magnetism and Magnetic Materials, 2006(306): 223-227.
    [187] Yen MT, Yang JH, Mau JL. Physicochemical characterization of chitin and chitosan from crab shells [J]. Carbohydrate Polymers, 2009, 75(1): 15-21.
    [188] Liu XD, Nishi N, Tokura S, Sakairi N. Chitosan coated cotton fiber: preparation and physical properties [J]. Carbohydrate Polymers, 2001, 44(3): 233 - 238.
    [189] Lima IS, Lazarin AM, Airoldi C. Favorable chitosan/cellulose film combinations for copper removal from aqueous solutions [J]. International Journal of Biological Macromolecules, 2005, 36(1-2): 79-83.
    [190] Liu Chengjin, Li Houbin, Ke Xianwen, ZHAN Huaiyu. Application Advances and Interact Mechanisms of Chitosan as an Additive in Paper making Systems [J]. Paper Chemicals, 2006, 18(2): 22-27.
    [191] 蒋挺大.壳聚糖[M].北京:化学工业出版社,2006.
    [192] 李淑琴,王经文,王晔,王芳,肖军.多壁碳纳米管填充聚偏氟乙烯复合薄膜的介电性能[J].南京航空航天大学学报,2008,40(1):115-119.
    [193] 王新鹏,梁琳俐,赵辉鹏,王依民,王燕萍.UHMWPE/CNTs复合纤维的结晶行为研究[J].合成技术及应用,2005,20(3):16-19,25.
    [194] Takegami K, Sano T, Wakabayashi H, Sonoda J, Yamazaki T, Morita S, Shibuya T, Uchida A. New ferromagnetic bone cement for local hyperthermia [J]. Journal of Biomedical Materials Research, 1998, 43(2): 210-214.
    [195] Markaki AE, Clyne TW. Magneto-mechanical stimulation of bone growth in a bonded array of ferromagnetic fibres [J]. Biomaterials, 2004, 25(19): 4805-4815.
    [196] Yan QC, Tomita N, Ikada Y. Effects of static magnetic field on bone formation of rat femurs [J]. Medical Engineering & Physics, 1998, 20(6): 397-402.
    [197] Wang S, Bao HM, Yang PY, Chen G. Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion [J]. Analytica Chimica Acta, 2008, 612(2): 182-189.
    [198] Hu QL, Chen FP, Li BQ, Shen JC. Preparation of three-dimensional nano-magnetite/chitosan rod [J]. Materials Letters, 2006, 60(3): 368-370.
    [199] Maurstad G, Danielsen S, Stokke BT. Analysis of Compacted Semiflexible Polyanions Visualized by Atomic Force Microscopy: Influence of Chain Stiffness on the Morphologies of Polyelectrolyte Complexes [J]. Journal of Physical Chemistry B, 2003, 107(32): 8172-8180.
    [200] Yang XM, Zhu ZY, Liu Q, Chen XL, Thermal and Rheological Properties of Poly(vinyl alcohol) and Water-Soluble Chitosan Hydrogels prepared by a combination of gamma-ray irradiation and freeze thawing [J]. Journal of Applied Polymer Science, 2008, 109(6): 3825-3830.
    [201] 江龙.胶体化学概论(第一版)[M].北京:科学出版社,2002.Jiang L.Principles of Colloid Chemistry 1st ed [M]. Beijing: Science Press,2002:193.
    [202] 胡巧玲,刘俊奇,沈家骢.一次成形法制备壳聚糖微球模板及其空心结构的机理初探[J].材料科学与工程学报,2007(25):20-24.
    [203] Yao KD, Liu WG, Liu J. The unique characteristics of water in chitosan-polyether semi-IPN hydrogel [J]. Journal of Applied Polymer Science, 1999, 71(3): 449-453.
    [204] 孟平蕊,李良波,陈翠仙,李继定.壳聚糖-三聚磷酸钠聚离子复合膜的研究[J].高分子材料科学与工程,2004,20(2):188-190,194.
    [205] Tahtat D, Uzun C, Mahlous M, Guven G. Beneficial effect of gamma irradiation on the N-deacetylation of chitin to form chitosan [J]. Nuclear instruments & methods in physics research section b-beam interactions with materials and atoms, 2007, 265(1): 425-428.
    [206] Wu GZ, Long DW, Chen SP, Yao SD. High efficient fabrication of chitosan micropowder by combination of gamma radiation and jet pulverization [J]. Carbohydrate polymers, 2005, 60(1): 61-65.
    [207] Zainol I, Akil HM, Mastor A. Effect of gamma-irradiation on the physical and mechanical properties of chitosan powder [J]. Materials science & engineering c-biomimetic and supramolecular systems, 2009, 29(1): 292-297.
    [208] Feng T, Du YM, Li J, Hu Y, Kennedy JF. Enhancement of antioxidant activity of chitosan by irradiation [J]. Carbohydrate polymers, 2008, 73(1): 126-132.
    [209] Hai L, Diep TB, Nagasawa N, Yoshii F, Kume T. Radiation depolymerization of chitosan to prepare oligomers [J]. Nuclear instruments & methods in physics research section b-beam interactions with materials and atoms, 2003, 208: 466-470.
    [210] Hu QL, Lei Y, Zhang ZM, Shen JC. Surface biomimetic waterproof modif ication of chitosan rod [J]. Chemical Research in Chinese Universities, 2005,26(6): 1162-1165.