磁致伸缩与磁弹一体化传感技术及其钢索检测应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢索具有高抗拉、低抗弯和低抗剪等优点,被广泛应用于特种设备、市政工程等领域,例如斜拉索、客运索道与电梯用钢丝绳以及各种起重设备吊索等等。作为上述生命线工程结构中的重要承力部件,钢索健康状况直接影响整体结构的运行安全和使用寿命。由于受力状态复杂与服役环境多样,钢索易因缺陷损伤累积或应力超限等因素而发生失效,导致重大事故和损失。因此,发展新型钢索缺陷与拉力综合检测技术,具有重要的社会意义和经济价值。
     本文基于铁磁性材料的磁致伸缩与磁弹效应基本理论,发展钢索缺陷检测与拉力测量一体化传感器技术。首先,建立传感器幅频特性曲线计算模型,并结合电磁场有限元仿真方法对一体化传感器的结构参数与工作参数进行优化选取;其次,采用柔性印刷电路技术改进传感器线圈结构,提升传感器的检测及实用化性能;最终,将研制的一体化传感器用于钢索中纵向模态超声导波衰减特性研究,以及钢索断丝缺陷检测与拉力测量。本文从检测机理、传感器优化设计及试验研究等三方面对钢索的缺陷与拉力检测技术进行了系统研究,主要研究内容包括:
     (1)建立了考虑电-磁-声场耦合的磁致伸缩传感器幅频特性分析计算模型。以圆电流及多段式感应线圈内部磁场分布计算为基础,分析得出线圈结构参数对磁致伸缩传感器激励与接收性能的影响规律。基于权值与相位叠加原理,采用信号仿真方法计算得出激励与接收传感器的幅频特性曲线,为磁致伸缩传感器的参数设计提供了基础依据。
     (2)研制出具有优良性能,覆盖高、低频段的柔性印刷线圈式磁致伸缩传感器。基于柔性印刷电路技术,设计出具有轻、薄等特点的柔性印刷感应线圈,可卷曲安装于钢索表面,拆装便捷且激励与接收性能提升。试验测试结果表明,基于柔性印刷线圈的磁致伸缩传感器工作频率可覆盖几十千赫兹至兆赫兹范围。
     (3)设计并实现了一种双模式一体化传感器,并对其进行工作参数优化。研制出一款集缺陷检测与拉力测量双功能的一体化传感器,可工作于磁致伸缩与磁弹传感器双模式,基于超声导波技术实现缺陷检测,基于磁弹法进行拉力测量。以能量转换效率和拉力测量灵敏度为优化指标,对一体化传感器的静态偏置磁路进行了优化。
     (4)试验观察到轴向静载作用下钢索中L(0,1)模态的频带缺失与频带漂移现象。利用研制的一体化传感器对轴向拉伸状态下的7芯钢绞线、型号6×19S-FC钢索进行检测,观察到L(0,1)模态在70kHz附近出现频带缺失现象,且缺失频带中心频率随拉力增加而上升;在型号为6×29FI+IWR钢索中L(0,1)模态的频带能量随拉力增加从100kHz附近向30kHz附近漂移。
     (5)一体化传感器的缺陷与拉力检测性能标定。利用研制的一体化传感器工作于磁致伸缩传感器模式进行钢索断丝缺陷检测,试验结果显示4根断丝缺陷处的反射回波可被传感器接收,2m范围内存在的4处断丝缺陷回波信号也可被检测到;工作于磁弹传感器模式时,对7芯钢绞线的最小应力检测分辨率小于10MPa。
Steel wire rope is commonly used in special equipments and civil engineeringsfor its superior property of high tensile strength and poor performance in bending andshear. The application examples of wire rope include the cable in suspension bridgeand passenger ropeway, the hoist wire rope in lift and elevator, etc. The wire ropesserve as the most important bearing parts in the structures, their health conditiondirectly affect the operation safety and service life of the whole structure. Corrosionsor fractured wires occurred in the wire rope due to the complexity in stress state anddiversity of service environment may result in a reduction in the load-carryingcapacity of the structure that can lead to collapse even major accidents and loss.Therefore, the development of new integrated techniques for defect detection andtension measurement of the wire rope has significant social and economic value.
     This paper is dedicated to the development of integrated sensor technology forwire rope defect detection and tension measurement based on the magnetostrictiveand elastomagnetic effect of ferromagnetic material. First, the computational modelfor revealing the amplitude-frequency characteristic of the magnetostrictive sensor(MsS) is established.This computational model together with the electromagnetic fieldfinite element simulation method is applied for the optimization of the structural andworking parameters of the integrated sensor. Second, an innovative flexible printedcoil (FPC) is designed and manufactured for the MsS to replace the traditional hardsolenoid coil and enhance the performace in exciting and receiving guide wave energy.Finally, the proposed integrated sensor is applied for experimental study on theattenuation characteristics of longitudinal guided waves in wire rope, detecting defectsand measuring tension level of the wire rope. This paper focuses on the detectionmechanism analysis, optimal sensor design and experimental research on theinspection techniques for wire rope health monitor, the main research contentsinclude:
     (1) A computational model for revealing the amplitude-frequency characteristicof the MsS is established in consideration of the coupling between electromagneticfield and ultrasonic waves. The influence of the sensor structure parameters on theexcitation and receiving performance of MsS is analyzed through the computation ofmagnetic field distribution inside the circular electric current and multiple groups ofsensing coil. Then, the amplitude-frequency characteristic curves of the transmitterand receiver MsS are derived from the signals that are simulated based on weight andphase superposition principle. The obtained conclusions provide fundamental basisfor the parameters design of the MsS.
     (2) An innovative flexible printed coil-based MsS with superior performances is designed for the application in the high and low frequency range. The flexible printedsensing coil is embedded into a light and thin film which can be wrapped onto thewire rope surface, so that the FPC can be easily installed onto and dismounting fromthe rope. The experimental results show the FPC has superior detection performanceand its working frequency can reach from tens of kilohertz to megahertz range.
     (3) An integrated sensor with dual mode is designed and its working parametersare optimized. The integrated sensor can work on dual mode of MsS andelastomagnetic sensor (EMS) with functions of both defects detection and tensionmeasurement. The sensor can detect the defect in the rope based on guided wavetechniques and measure the tension based on the elastomagnetic method. In addition,the bias magnetic circuit of the integrated sensor is optimized in consideration of boththe energy conversion efficiency and the tension measuring sensitivity of the sensor.
     (4) The phenomena of frequency band missing and shifting of L (0,1) mode inwire rope under tension loading are observed. The developed integrated sensor in thispaper is used to measure the notch frequency band of L(0,1) mode in seven-wire steelstrands and6×19S-FC wire ropes, the measured central frequency of the notchfrequency band is around70kHz and it increases as the increase of tension force. Thespectrum energy of the L(0,1) mode in a6×29FI+IWR wire rope will shift from100kHz to30kHz when the tension force is increased.
     (5) The performances on defect detection and tension measurement of theintegrated sensor are calibrated. First, the integrated sensor works on the MsS mode todetect the broken wire flaws in the wire rope. The experimental results show that theMsS can receive the signal reflected from four broken wires and successfully detectthe four broken-wire flaws that locate apart from the sensor less than two meters.Second, the integrated sensor works on the EMS mode to be applied for tensionmeasurement in wire rope. The experimental results obtained from a seven-wire steelstrand shows that the stress measurement resolution of the sensor is less than10MPa.
引文
[1]张启伟,周艳.桥梁健康监测技术的适用性.中国公路学报.2006,19(6):54-58.
    [2]张德坤,葛世荣,朱真才.提升钢丝绳的钢丝微动摩擦磨损特性研究.中国矿业大学学报.2002,31(5):367-370.
    [3]缑庆林,钱宾旗,许恩荣.国内电梯钢丝绳的需求与生产研发.金属制品.2006,32(2):6-9.
    [4]郭俊平,邓宗才,林劲松.预应力高强钢绞线网加固钢筋混凝土板的试验研究.土木工程学报.2012,45(5):84-92.
    [5] D. Mikhaluk, I. Voinov, A. Borovkov. Finite element modeling of the arresting gear andsimulation of the aircraft deck landing dynamics. http://lib.physcon.ru/download/p1695.pdf.
    [6]张岩.健康监测的发展动态.山西建筑.2009,35(23):354(368).
    [7]姚志强,阮小平,邓清.拱桥吊杆变形差异引发桥面断裂及类似事故的预防措施.公路.2002,7:73-74.
    [8]廖景娱,苏达根.斜拉桥钢索坠落事故原因分析.腐蚀与防护.1999,20(2):83-85.
    [9]王坤明,林晨.福建武夷山公馆大桥断裂已致1死22伤. http://news.sina.com.cn/c/p/2011-07-14/121122813208.shtml.
    [10]施京京.2009年全国特种设备安全状况公布.中国质量技术监督.2010,(8):18-19.
    [11]《中国客运索道“十二五”发展规划(2011-2015)(征求意见稿)》. http://www.chinaropeway.org/gonggao2.htm.
    [12]国家质检总局:我国电梯安全形势总体平稳. http://www.aqsiq.gov.cn/zjxw/zjxw/zjftpxw/201107/t20110715_190132.htm.
    [13]窦柏林.人身安全悬于一“线”——特种设备钢丝绳使用现状堪忧.中国安全生产报.2008年/11月/11日/第007版.
    [14]陈君璽.受軸向力复杂钢索之理论分析.台湾:国立中兴大学土木工程学系博士学位论文,2006.
    [15] F. Treyssède, L. Laguerre. Investigation of elastic modes propagating in multi-wire helicalwaveguides. Journal of Sound and Vibration.2010,29(10):1702-1716.
    [16]范斯豪.复杂钢索中高阶螺旋线之几何线型研究.台湾:国立中心大学土木工程学系硕士论文,2006.
    [17] J. Y. Yen, C. H. Chen, K. L. Ho. Analytical expressions of curvatures of higher-order helicallines in wire ropes by particle-motion-analogy method. Journal of the Chinese Institute ofCivil and Hydraulic Engineering.2004,16(1):159-165.
    [18] S. Chaki, G. Bourse. Guided ultrasonic waves for guided ultrasonic waves for non-destructivemonitoring of the stress levels in prestressed steel strands. Ultrasonics.2009,49(2):162-171.
    [19] P. Rizzo, E. Sorrivi, F. L. Di-Scalea, et al. Wavelet-based outlier analysis for guided wavestructural monitoring: Application to multi-wire strands. Journal of Sound and Vibration.2007,307(1-2):52-68.
    [20] P. Rizzo, E. Sorrivi, F. L. Di-Scalea. Ultrasonic inspection of multi-wire steel strands with theaid of the wavelet transforms. Smart Materials and Structures.2005,14(4):685-695.
    [21] H. Kwun, K. A. Bartels, J. J. Hanley. Effects of tensile loading on the properties ofelastic-wave propagation in a strand. Journal of the Acoustical Society of America.1998,103(6):3370-3375.
    [22] F. Treyssède. Numerical investigation of elastic modes of propagation in helical waveguides.Journal of the Acoustical Society of America.2007,121(6):3398-3408.
    [23] F. Treyssède, A. Frikha. A semi-analytical finite elements method for elastic guided wavespropagating in helical structures. Journal of the Acoustical Society of America.2008,123(5):5995-5999.
    [24] F. Treyssède. Elastic waves in helical waveguides. Wave Motion.2008,45(4):457-470.
    [25] I. Bartoli, A. Marzani, F. L. di-Scalea, et al. SAFE modeling of waves for the structural healthmonitoring of prestressing tendons. Proceedings of SPIE.2007,6532:65320D.
    [26] I Bartoli, G Castellazzi, A Marzani, et al. Prediction of stress waves propagation inprogressively loaded seven wire strands. Proceedings of SPIE.2012,8345:834505.
    [27]陈厚桂,李晋,康宜华等.钢丝绳中缺陷的描述方法.机械工程学报.2009,45(1):309-314.
    [28] Y. N. Cao, D. L. Zhang, C. Wang, et al. A novel electromagnetic method for local defectsinspection of wire rope. TENCON, November14th-17th, Hong Kong, China,2006,14-17:1-4.
    [29] R. Christen, A. Bergamini, M. Motavalli. Three-dimensional localization of defects in staycables using magnetic flux leakage methods. Journal of Nondestructive Evaluation.2003,22(3):93-101.
    [30] C. Jomdecha, A. Prateepasen. Design of modified electromagnetic main-flux for steel wirerope inspection. NDT&E International.2009,42(1):77-83.
    [31]康宜华,武新军,杨叔子.磁性无损检测技术中的信号处理技术.无损检测.2000,22(6):255-25.
    [32]杨理践,郑晓婷,高松巍.基于交变磁场的钢丝绳外部断丝检测方法.无损探伤.2010,34(1):34-36.
    [33]康宜华,杨叔子,杨克冲.钢丝绳缺陷检测信号的计算机辅助定量评估.振动与冲击.1994,49:23-30.
    [34]马凤铭.高速漏磁检测中速度效应的研究.鞍山师范学院学报.2006,8(4):24-27.
    [35] H. Kwun, Y. S. Kim, G.. M. Light. The magnetostrictive sensor technology for long rangeguided wave testing and monitoring of structures. Materials evaluation.2003,61(1):80-84.
    [36] F. L. Di-Scalea, P. Rizzo, F. Seible. Stress measurement and defect detection in steel strandsby guided stress waves. Journal of Materials in Civil Engineering.2003,15(3):219-227.
    [37] J. Xu, X. J. Wu, L. Y. Wang. Detecting the flaws in prestressing strands using guided wavesbased on the magnetostrictive effect. Insight.2007,49(11):647-650.
    [38] J. Xu, H. Tang, X. J. Wu, et al. Broken wire detection in stay cables based on guided waves.MACE, June26th-28th, Wuhan, China,2010.
    [39]宋庭新.便携式缆索张力测定仪的研制.计算机测量与控制.2002,10(03):202-203.
    [40] H. Zui, T. Shinke,Y. Namita. Practical formulas for estimation of cable tension by vibrationmethod. Journal of Structural Engineering.1996,122(6):651-656.
    [41] B. H. Kim, T. Park, H. Shin, et al. A comparative study of the tension estimation methods forcable supported bridges. Steel Structures.2007,7(1):77-84.
    [42] E. Tanala, G. Bourse, M. Fremiot, et al. Determination of near surface residual stresses onwelded joints using ultrasonic methods. NDT&E International.1995,28(2):83-88.
    [43] H. Fukuoka, H. Toda, H. Naka. Nondestructive residual-stress measurement in awide-flanged rolled beam by acoustoelasticity. Experimental Mechanics.1983,23(1):120-128.
    [44] A. Zagrai, V. Gigineishvili, W. A. Kruse, et al. Acousto-elastic measurements andbaseline-free assessment of bolted joints using guided waves in space structures. Proceedingsof SPIE.2010,7650:765017.
    [45] S. Chaki, G. Bourse. Stress level measurement in prestressed steel strands usingacoustoelastic effect. Experimental Mechanics.2009,49(5):673-681.
    [46]刘增华,刘溯,吴斌,等.预应力钢绞线中超声导波声弹性效应的试验研究.机械工程学报.2010,46(2):22-27.
    [47] I. Bartolia, C. Nucera, A. Srivastava. Nonlinear ultrasonic guided waves for stress monitoringin prestressing tendons for post-tensioned concrete structures. Proceedings of SPIE.2009,7292:729220.
    [48]田民波.磁性材料.北京:清华大学出版社,2001.
    [49] W. Ricken, H. C. Schoenekess, W. J. Becker. Improved multi-sensor for force measurementof pre-stressed steel cables by means of the eddy current technique. Sensors and Actuators A:Physical.2006,129(1-2):80-85.
    [50] B. Kvasnica, P. Fabo. Highly precise non-contact instrumentation for magnetic measurementof mechanical stress in low-carbon steel wires. Measurement Science and Technology.1996,7(5):763-767.
    [51] G. M. Lloyd, V. Singh, M. L. Wang, et al. Temperature compensation and scalability ofhysteretic/anhysteretic magnetic-property sensors. IEEE Seonsors Journal.2003,3(6):708-716.
    [52] S. Sumitro, T. Okamoto, Y. Matsui, et al. Long span bridge health monitoring system in Japan.Proceedings of SPIE.2001,4337-67:517-524.
    [53] S. Sumitro, S. Kurokawa, K.Shimano, et al. Monitoring based maintenance utilizing actualstress sensory technology. Smart Materials and Structures.2005,14(3):68-78.
    [54] W. M. Chen, L. Liu, P. Zhang, et al. Non-destructive measurement of the steel cable stressbased on magneto-mechanical effect. Proceedings of SPIE.2010,7650:765014.
    [55]姜建山,黄尚廉,陈伟民.旁路励磁的钢缆索索力传感器.光学精密工程.2009,17(3):563-569.
    [56]姜建山,陈伟民,黄尚廉.旁路励磁的钢缆索索力传感器参数设计与试验.仪器仪表学报,2009,30(6):1158-1163.
    [57]中华人民共和国国家标准GB/T8903-2005.电梯用钢丝绳.
    [58]中华人民共和国冶金行业标准YB/T146-1998.预应力钢丝及钢绞线用热轧盘条.
    [59]中华人民共和国国家标准GB/T699-1999.优质碳素结构钢钢丝.
    [60]张世远,路权等.磁性材料基础.北京:科学出版社,1988.
    [61]郭贻诚.铁磁学.北京:高等教育出版社,1965.
    [62]肖春涛译. D. Jiles著.磁学及磁性材料导论.甘肃:兰州大学出版社,2003.
    [63] N. B. Ekreem, A. G. Olabi, T. Prescott, et al. An overview of magnetostriction, its use andmethods. Journal of Materials Processing Technology.2007,191(1-3):96–101.
    [64] M. Hirao, H Ogi. EMATs for science and industry: noncontacting ultrasonic measurements.London: Kluwer Academic Publishers,2003.
    [65]何存富,吴斌,王秀彦译. J. L. Rose著.固体中的超声波.北京:科学出版社.2004.
    [66] B. A. Auld. Acoustic field and wave in solid.Vol. I&II, New York: Springer,1973.
    [67] W. Ostachowicz, P. Kudela, M. Krawczuk. Guided waves in structures for SHM: the time-domain spectral element method. Chichester: John Wiley&Sons Ltd,2012.
    [68] B. Pavlakovic, M. Lowe. Disperse software manual version2.0.1.6B. London:ImperialCollege,2003.
    [69] R. Mijarez, F. Martinez, A. Baltazar. Real time damage detection system using guided wavesin ACSR cables. Review of Progress in Quantitative Nondestructive Evaluation.2011,30:1402-1409.
    [70] A. Rabani, R. E. Challis, V. J. Pinfield. The torsional waveguide viscosity probe: design andanomalous behavior. IEEE Transactions on Ultrasonics, Ferroelectrics, and FrequencyControl.2011,58(8):1628-1640.
    [71] W. Kim, Y. Y. Kim. Design of a bias magnetic system of a magnetostrictive sensor forflexural wave measurement. IEEE Transactions on Magnetics.2004,40(5):3331-3338.
    [72] J. L. Rose. Dispersion curves in guided wave testing. Materials Evaluation.2003,61:20-22.
    [73]石燚,陈光,吴士云.基于窗函数的Chirp-UWB信号研究.通信技术.2010,43(6):43-46.
    [74] P. Fromme, M. B. Sayir. Measurement of the scattering of a Lamb wave by a through hole ina plate. Journal of the Acoustical Society of America.111(3):1165-1170.
    [75] W. J. Song, J. L. Rose, J. M. Gal n, et al. Ultrasonic guided wave scattering in a plate overlap.IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2005,52(5):892-903.
    [76] A. Demma, P. Cawley, M. Lowe, et al. The reflection of guided waves from notches in pipes:a guide for interpreting corrosion measurements. NDT&E International.2004,37(3):167-180.
    [77] P. Cawley, M. Lowe, F. Simonetti, et al. The variation of the reflection coefficient ofextensional guided waves in pipes from defects as a function of defect depth, axial extent,circumferential extent and frequency. Journal of Mechanical Engineering Science.2002,216(11):1131-1143.
    [78] H. Kwun, J. J. Hanley, C. M. Teller. The performance of a noncontact acoustic emissionsensor on a cylindrical steel rod. Journal of Acoustic Emission.1993,11:27-32.
    [79] H. Kwun, A. J. Parvin, E. C. Laiche. Magnetostrictive sensor probe for guided-waveinspection and monitoring of wire rope/cables and anchor rods. USA patent,US20100052670A1,2010.
    [80] H. Kwun, J. J. Hanley, K. A. Bartels. Recent developments in nondestructive evaluation ofsteel strands and cables using magnetostrictive sensors. OCEANS, Florida, USA,1996,1:144-148.
    [81] P. Rizzo, F. L. Di-Scalea. Monitoring steel strands via ultrasonic measurements. Proceedingsof SPIE.2002,4696:62-73.
    [82]刘增华,张易农,张慧昕,等.基于磁致伸缩效应在钢绞线中激励接收纵向导波模态的试验研究.机械工程学报.2010,46(6):71-76(82).
    [83]王悦民,康宜华,武新军.磁致伸缩效应在圆管中激励纵向导波的理论和试验研究.机械工程学报.2005,41(10):174-179.
    [84]沈立华,王悦民,范春利等.纵向导波磁致伸缩传感器信号检测的试验研究.传感技术学报.2007,20(9):2049-2052.
    [85] R. Ribichini, P. B. Nagy, H. Ogi. The impact of magnetostriction on the transduction ofnormal bias field EMATs. NDT&E International.2012,51:8-15.
    [86] D. C. Jiles. Theory of the magnetomechanical effect. Journal of Physics D: Applied Physics.1995,28(8):1537-1546.
    [87] C. S. Schneider, M. Charlesworth. Magnetoelastic processes in steel. Journal of Applied.Physics.1985,57(1):4198-4200.
    [88] Y. Zhao, M. L. Wang. Non-destructive condition evaluation of stress in steel cable usingmagnetoelastic technology. Proceedings of SPIE.2006,6178(617802):1-7.
    [89] M. L. Wang, G. Wang, Y. Zhao. Application of EM stress sensors in large steel cables.Sensing Issues in Civil Structural Health Monitoring, Chapter III,145-154. Springer,2005.
    [90] D. C. Jiles, D. L. Atherton. Theory of ferromagnetic hysteresis. Journal of Applied Physics.1984,55(6):2115-2120.
    [91] D. C. Jiles, J. B. Thoelke. Theory of ferromagnetic hysteresis: determination of modelparameters from experimental hysteresis loops. IEEE Transactions on Magnetics.1989,25(5):3928-3930.
    [92]严密.磁学基础与磁性材料.杭州:浙江大学出版社.2006.
    [93] P. Gawrońskia, A. Zhukov, J. M. Blanco, et al. Tensile stress dependence of the magnetostaticinteraction between Fe-rich wires. Journal of Magnetism and Magnetic Materials.2005,290-291:595-598.
    [94] V. Singh, G. M. Lloyd, M. L. Wang. Modeling of structural steels and magnetite for NDEcorrosion sensing. Proceedings of SPIE.2004,5391:30-39.
    [95] Z. L. Chen. Characterization and constitutive modeling of ferromagnetic materials formeasurement of stress. PhD thesis, University of Illinois at Chicago, USA,2000.
    [96] D. Bulte, R, Langman. Comparison of the normal and initial induction curves. IEEETransactions on Magnetics.2001,37(6):3892-3899.
    [97] S. Sumitro, A. Jarosevic, M. L. Wang. Elasto-magnetic sensor utilization on steel cable stressmeasurement. Proceedings of the1st Fib Congress, Concrete Structures in the21st Century,Osaka, October13–19,2002,15:79–86.
    [98] Z. H. Liu, J. C. Zhao, B. Wu, et al. Configuration optimization of magnetostrictivetransducers for longitudinal guided wave inspection in seven-wire steel strands. NDT&EInternational.2010,43(6):484-492.
    [99] S. H. Cho, S. W. Han, C. II. Park, et al. Noncontact torsional wave transduction in a rotatingshaft using oblique magnetostrictive strips. Journal of Applied Physics.2006,100(10):104903.
    [100] I. K. Kim, Y. Y. Kim. Development of acoustic wave filters by using magnetostrictive nickelgratings. http://www.ndt.net/article/wcndt2004/pdf/guided_waves/487_kim.pdf.
    [101] C. II. Park, S. H. Cho, Y. Y. Kim. Z-shaped magnetostrictive patch for efficient transductionof a torsional wave mode in a cylindrical waveguide. Applied Physics Letters.2006,89(17):174103.
    [102] S. H. Cho, Y. K. Kim, Y. Y. Kim.The optimal design and experimental verification of thebias magnet configuration of a magnetostrictive sensor for bending wave measurement.Sensors and Actuators A.2003,107(3):225–232.
    [103] H. Kwun, A. J. Parvin, R. H. Peterson. Flexible plate magnetostrictive sensor probe forguided-wave inspection of structure. U.S. Patent,7913562B2,2011.
    [104]兵器工业无损检测人员技术资格鉴定考核委员会.常用钢材磁特性曲线速查手册.北京:机械工业出版社,2003.
    [105]刘增华,张易农,吴斌,等.钢绞线用磁致伸缩传感器偏置磁场的有限元分析.应用基础与工程科学学报.2009,17(2):281-289.
    [106] http://ansys.com/.
    [107]张星辉.圆电流磁感线的分布及磁感应强度的函数表达式.大学物理.2006,25(1):32-37.
    [108]刘耀康.导出圆电流的磁感应强度的简便方法.大学物理.2007,26(7):32-33.
    [109] M. P. Perry. Multiple layer series connected winding design for minimum losses. IEEETransactions on Power Apparatus and Systems.1979, PAS-98(1):116-123.
    [110] T. Hamajima, N. Harada, M. Tsuda, et al. Analysis of current distributions in amulti-laminated HTS tape conductor for solenoid coils. Cryogenics.2004,44(5):341-348.
    [111]邰爱东.有限长直密绕螺线管的自感系数.物理与工程,2003,13(6):8-9.
    [112]金建华,申阳春.一种用于管道检测的磁致伸缩式周向超声导波传感器.传感技术学报.2004,17(4):576-579.
    [113] H. Kwun, S. Y. Kim, H. Matsumoto, et al. Detection of axial cracks in tube and pipe usingtorsional guided waves. Review of Quantitative Nondestructive Evaluation.2008,27:193-199.
    [114] C. H. Yang, J. H. Chien, B. Y. Wang, et al. A flexible surface wetness sensor using a RFIDtechnique. Biomed Microdevices.2008,10(1):47-54.
    [115] S. H. Cho, H. W. Kim, Y. Y.Kim. Megahertz-range guided pure torsional wave transductionand experiments using a magnetostrictive transducer. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control.2010,57(5):1225-1229.
    [116]刘增华,刘溯,吴斌,等.预应力钢绞线中超声导波声弹性效应的试验研究.机械工程学报.2010,46(2):22-27.
    [117] J. Xu, X. J. Wu, C. Cheng, et al. A magnetic flux leakage and magnetostrictive guided wavehybrid transducer for detecting bridge cables. Sensors.2012,12(1),518-533.
    [118] H. J. Wichmann, A. Holst, H. Budelmann. Magnetoelastic stress measurement and materialdefect detection in prestressed tendons using coil sensors. NDTCE, June30th–July3rd,Nantes, France,2009.
    [119] S. Sumitro, T. Okamoto, D. Inaudi. Intelligent sensory technology for health monitoringbased maintenance of infrastructures. Proceedings of SPIE.2004,5384:131-142.
    [120] E. Kannan, B. W. Maxfield, K. Balasubramaniam. SHM of pipes using torsional wavesgenerated by in situ magnetostrictive tapes. Smart Materials and Structures.2007,16(6):2505-2515.
    [121]刘小亮,陈伟民,刘琳,等.套筒式磁弹索力传感器设计研究.传感技术学报.2010,23(10):1510-1514.
    [122] G. Y. Tian, A. Sophian. Defect classification using a new feature for pulsed eddy currentsensors. NDT&E International.2005,38(1):77-82.
    [123] W. Ricken, J. Liu, W. J. Becker. GMR and eddy current sensor in use of stress measurement.Sensors and Actuators A.2001,91(1-2):42-45.
    [124] A. Demma, P. Cawley, M. Lowe. The reflection of the fundamental torsional mode fromcracks and notches in pipes. Journal of the Acoustical Society of America.2003,114(2):611-625.
    [125] S. Vinogradov, J. Leonard. Development of magnetostrictive sensor technology for guidedwave examinations of piping and tubing.10th European Conference on NDT, Moscow,Russia, June7-11,2010.
    [126] D. N. Alleyne, B. Pavlakovic, M. Lowe. Rapid, long range inspection of chemical plantpipework using guided waves. AIP Conference Proceedings.2000,557:180-187.
    [127] G. Baskaran, G. Swamy, K. Balasubramaniam. Application of TOFD technique to thinsections using ESIT and PSCT. Review of Quantitative Nondestructive Evaluation.2005,24:813-819.
    [128] http://en.wikipedia.org/wiki/Attenuation.
    [129]蔡斯特,芮晓明,倪海云.架空线路导线分层力学模型及应用.电力建设.2009,30(11):8-12.
    [130] T. Haag, B. M. Beadle, H. Sprenger, et al. Wave-based defect detection and interwirefriction modeling for overhead transmission lines. Archive of Applied Mechanics.2009,79(6-7):517-528.
    [131] A. Baltazar, C. D. Hernandez-Salazar, B. M. Martinez. Study of wave propagation in amultiwire cable to determine structural damage. NDT&E International.2010,43(8):726-732.
    [132] M. Redwood. Mechanical waveguides:The propagation of acoustic and ultrasonic waves influids and solids with boundaries. New York: Pergamon,1960.
    [133] A. H. Meitzler. Mode coupling occurring in the propagation of elastic pulses in wires.Journal of the Acoustical Society of America.1961,33(4):435-445.
    [134] C. R. Bowen, L. R. Bradley, D. P. Almond, et al. Flexible piezoelectric transducer forultrasonic inspection of non-planar components. Ultrasonics.2008,48(5):367-375.
    [135] A. M. Robinson, B. W. Drinkwate, J. Allin. Dry-coupled low-frequency ultrasonic wheelprobes: application to adhesive bond inspection. NDT&E International.2003,36(1):27–36.