应用噬菌体随机肽库技术研究干扰素-α2b的模拟肽和拮抗肽
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干扰素(interferon,IFN)是一类重要的细胞因子,作为抗病毒和抗肿瘤的药物已广泛用于临床。IFN通过与靶细胞表面的受体结合后,激活信号通路,诱导相关抗病毒、抗肿瘤基因的转录和表达,发挥其生物学作用。而蛋白质之间的相互作用或识别是通过局部肽段间的少量氨基酸残基相互作用来实现的,合理设计的小肽可以完全或部分模拟完整蛋白分子的功能。通常完整的蛋白分子由于对蛋白酶敏感、具有宿主免疫原性以及成本高等原因并不是最佳的候选药物。IFN除了具有以上不足外,在临床使用时还会出现副作用,限制了其使用。而小分子肽类细胞因子模拟物或拮抗剂由于其相对分子质量小、易于合成、无抗原性和毒副作用较小等特点,在基础研究以及临床治疗等领域逐渐显现出其优势。本论文以IFN-α2b为研究对象,以Anti-IFN-α2b多克隆抗体、天然表达IFN受体的细胞为靶标,利用噬菌体随机肽库技术,研究IFN-α2b的抗原表位、筛选IFN-α2b的拮抗肽和模拟肽,对研究IFN的分子机制以及设计和开发IFN小分子模拟肽药物有重要的意义。
     本文首先以结合有Anti-IFN-α2b多克隆抗体的免疫磁性微球为靶标,筛选噬菌体随机12肽库。经ELISA鉴定,四轮筛选后同抗体结合的噬菌体得到明显的富集,其阳性率达到53%(49/92)。随机挑取12个阳性噬菌体进行序列分析并与IFN-α2b序列进行同源比对。结果显示:12个阳性克隆可分为三组,分别对应IFN-α2b N端(1~13)、AB环附近(35~47)和CD环附近(98~110)的三组高抗原性表位区,与IFN抗原预测分析的数据相吻合。特异性抗体封闭试验和噬菌体免疫试验表明,所得到的噬菌体展示肽在免疫反应性和免疫原性上均可以一定程度地模拟IFN-α2b不同的表位区。结合IFN的三维结构进行分析,三组模拟表位均暴露在IFN分子结构的外部,更容易被抗原呈递细胞上的抗原识别受体所识别。其中第二组表位AB环(29~35)直接参与与IFN受体的结合,推测在使用IFN治疗疾病过程中,针对该区域所产生的中和抗体可能直接影响IFN的生物学活性。
     采用基因重组技术,本文成功构建了原核表达载体pET32a(+)/GFP- IFN -α2b,并在大肠杆菌E.coli BL21中成功地进行了表达。SDS-PAGE和Western blot实验显示该融合蛋白GFP-IFN-α2b保持了良好的IFN抗原性;受体结合实验表明,该融合蛋白能够与WISH细胞上的IFN受体结合,并在488nm激发光下呈现亮绿色荧光;抗病毒实验表明,该融合蛋白具有一定的抗病毒活性,比活力为1.0×107IU/mg,证明该融合蛋白为具有绿色荧光和IFN抗病毒活性的双功能蛋白。本研究为在细胞及分子水平研究IFN与靶细胞相互作用提供了简便、快捷、直观的研究材料,同时也为IFN的代谢及功能研究建立了方法学基础。
     以天然表达IFN受体的WISH细胞并结合Anti-IFN-α2b多克隆抗体为靶分子,本文采用竞争性洗脱的方法筛选噬菌体随机7肽库。经鉴定六轮筛选后同细胞和抗体结合的噬菌体得到明显的富集,最后一轮筛选的阳性率达到51.1%(23/45)。随机挑取10个阳性克隆进行序列分析并与IFN序列进行同源比对。结果显示:10个克隆可分为三组,分别对应IFN AB环的24~41和43~49以及E螺旋的148~158位氨基酸残基。分别选取对应AB环的第一组的No.26,以及E螺旋第三组的No.35两个噬菌体克隆为例做进一步研究。竞争性ELISA和细胞免疫组化实验显示,No.26和No.35能与IFN竞争性的同IFN受体或抗体结合。以其展示的序列分别合成SP-7(SLSPGLP)和FY-7(FSAPVRY)两个小肽。细胞受体竞争实验显示,SP-7和FY-7能够有效地模拟IFN的部分受体结合表位,特异性地抑制IFN与其受体的结合,其IC50值分别为8.90μg和3.22μg。采用细胞病变抑制法分析SP-7和FY-7对IFN抗病毒活性的影响,结果显示当两个合成肽的加入量在6.25~100μg之间时,合成肽对IFN抗病毒活性均具有抑制作用,并且存在剂量依赖关系,其IC50约为25μg,证明SP-7和FY-7为两个IFN拮抗肽。
     为了得到具有抗病毒活性的IFN模拟肽,本文在上述细胞筛选的基础上,对上述同细胞结合的噬菌体,又增加了三轮功能筛选。经鉴定具有抗病毒活性的噬菌体克隆得到了一定的富集,其阳性率为1.98%(20/1012)。随机挑取10个阳性克隆进行序列分析并与IFN-α2b的序列进行比对。结果显示:10个克隆可分为四组,分别对应IFN的31~37、68~74、93~121和132~161位氨基酸残基。其中第一组的No.T9(31~37)与IFN中AB环(26~35)有部分重叠;第四组中的No.T3(143~149)与IFN中E螺旋(141~158)有部分重叠,并且其序列中144R和149R与IFN分子中参与受体结合并激活信号通路的“热点”氨基酸一致。竞争ELISA和细胞免疫组化实验显示,No.T9和No.T3能与IFN竞争性的同IFN受体结合。以其展示的序列分别合成KP-7(KNVHPPP)和IR-7(IRPDTPR)两个小肽。
     细胞受体竞争实验显示,KP-7和IR-7能有效地模拟IFN的部分受体结合表位,特异性地抑制IFN与其受体的结合,其IC50值分别为13.43μg和9.49μg。细胞病变抑制法的抗病毒实验表明:KP-7和IR-7在1.25~5μg范围内,表现出一定的抗病毒活性,并呈现剂量依赖关系,证明KP-7和IR-7为两个模拟IFN不同表位具有抗病毒作用的模拟肽。其中KP-7抗病毒活性略高于IR-7,并在发挥抗病毒作用时两者呈现出一定的协同作用,提示IFN的抗病毒作用是多位点共同作用其受体的结果。
     本文较全面地了解了IFN-α2b的抗原结合价,以及其特定的抗原决定簇的特性,为进一步探讨IFN分子与受体的作用机理,制备抗特定表位的单克隆抗体奠定了基础。同时本文开发了全细胞结合抗体或功能性筛选的淘筛系统,为细胞因子的拮抗肽和模拟肽的筛选,研究IFN的功能和分子机制,以及小肽类药物的开发提供了一条新的途径。
Interferons (IFNs) are important cytokines which are used clinically as antiviral and antitumor agents. Binding of IFN to a cell surface receptor mediates activation of the signal transduction pathway that elicits the biological functions by inducing the transcription and expression of IFN-related genes. However, the recognition and interaction of proteins with others are finished through the interaction among several amino acids in the peptide fragments. Many researches demonstrate that short peptide ligands can mimicry the function of the corresponding whole protein molecules. In general, whole proteins are not suitable drug candidates for a number of reasons, including susceptibility to proteolytic degeneration, antigenicity and high cost. Beside those shortcomings, efficient treatment by IFNs is also hampered by various side effects. Since the peptide agonist or antagonist of cytokines has the advantages including low molecular weight, easy to synthesize, without antigenicity as well as reduced side effects, it has attract great attention of both researchers and investors. In this paper, using phage random peptide library technology, the polyclonal anti-IFN-α2b antibodies and WISH cells naturally carrying IFN receptors on the cell membranes were chosen as targets to study the antigen epitope of IFN-α2b and isolate the mimetic or antagonist peptide of IFN-α2b, which is significant in researching on the functional mechanism of IFN-α2b as well as the minimolecular mimic design and development of IFN-α2b.
     The polyclonal anti-IFN-α2b antibodies binding to immunomagnetic microspheres were chosen as targets and the biopanning of a 12-mer phage random peptide library was carried out. After 4 rounds of effective screening, the positive clones were characterized by ELISA and the positive rate was 53 % (49/92), which demonstrated that the positive clones specifically binding to antibodies were enriched. 12 clones randomly picked from the positive clones were sequenced. The homologous analysis of amino acid sequences of positive clones with IFN-α2b showed that 3 groups homologous to the 3 epitopes with strong antigenicity of IFN-α2b were obtained, defined by residues 1~13, 35~47 and 98~110 of IFN-α2b respectively. The results were anatomizing to the antigenicity predicting of IFN-α2b. Antibody blocking and phage immunity tests suggested peptides displayed on the positive phage could simulate, partly, the different epitopes of IFN-α2b in aspect of immune and antigen reactivity. Analysis on the three-dimensional structure of IFN-α2b showed that all 3 mimetic epitopes exposed to outsides of the whole molecular, which was easy to recognize by the antigen receptor of the antigen presenting cell. Especially the sequences of group II exhibited structural homology with Loop AB (29-35) of IFN-α2b involving binding to IFN receptor. It was supposed that neutralizing antibodies against AB loop produced after using IFN affected its biological function directly.
     Using gene recombinant technology, the prokaryotic expression vector pET32a(+)/GFP-IFN-α2b was successfully constructed and the fusion protein was expressed in E.coli BL21. SDS-PAGE and Western blot analysis showed that the fusion protein GFP-IFN-α2b retained the antigenicity of IFN-α2b. The receptor binding experiments indicated that the fusion protein with GFP activity could bind especially to WISH cells containing IFN receptors. The antiviral assay showed that the fusion protein possessed the IFN functions of antiviral activity and the antiviral activity was 1.0×107IU/mg. All the results demonstrated that the fusion protein was a bio-functional one which had not only the green fluorescence but also the IFN-α2b activity. As a simple and visualized material, the fusion protein we prepared here could be used to study the interaction of IFN-α2b with its receptor at the cell or molecular level. Meanwhile, the results laid the foundation for the research on the metabolism and function of IFN-α2b in methodology.
     WISH cells naturally carrying IFN receptors and polyclonal anti-IFN-α2b antibodies were chosen as targets and the biopanning of a 7-mer phage random peptide library was carried out by competitive elution method. The positive clones specifically binding to both WISH cells and antibodies were enriched and the positive rate of the last round was 51.1 % (23/45). 10 clones randomly picked from the positive clones were sequenced and the homologous analysis of amino acid sequences of positive clones with IFN-α2b was done. The corresponding amino acid sequences suggested 3 groups homologous to the 3 domains of IFN-α2b, defined by residues 24~41, 43~49, and 148~158 of IFN-α2b respectively. As represents corresponding to IFN receptor-binding domains, AB loop and E helix, clone No 26 and 35 were chosen for further characterization. Competitive ELISA and immunohistochemistry tests showed that clone No 26 and 35 could compete with IFN for binding to WISH cells and antibodies. Two peptides corresponding to clone No 26 and 35, designated SP-7(SLSPGLP) and FY-7(FSAPVRY) were synthesized. The receptor binding experiments showed that the two peptides could compete with GFP-IFN-α2b for binding to its receptor and the IC50 value was 8.90μg and 3.22μg respectively, which demonstrated that they could mimicry, partly, epitopes of IFN-α2b in charge of binding to receptor. The effects of two synthesized peptides to the antiviral activity induced by IFN were analyzed through CPE method. As a result, when the added amount was from 6.25μg to 100μg, both peptides could inhibit the IFN-induced antiviral activity in a dose-dependent manner. The IC50 values of both peptides were approximate 25μg, which suggested that they were antagonist peptides of IFN-α2b suppressing the antiviral activity mediated by IFN-α2b.
     In order to obtain the peptides mimicking IFN activity, on the basis of cell selection described above, additional 3 rounds of functional screening of the peptide library binding to WISH cells were proceed. The positive clones possessing the IFN functions of antiviral activity were enriched and the positive rate of the last round was 1.98 %( 20/1012). 10 clones randomly picked from the positive clones were sequenced and the homologous analysis of amino acid sequences of positive clones with IFN-α2b was done. The corresponding amino acid sequences suggested 4 groups homologous to the 4 domains of IFN-α2b, defined by residues 31~37, 68~74, 93~121 and 132~161 of IFN-α2b respectively. Of these positive clones, No.T9 (31~37) in group I and No.T3 (143~149) in group III overlapped, partly, with AB Loop (26~35) and E helix (141~158) of IFN-α2b respectively. Especially 2R and 7R of IR-7 were identical to 144R and 149R of IFN-α2b which were so called“hot-spot”residues very important for binding of IFN to its receptor. Competitive ELISA and immunohistochemistry tests showed that No T9 and T3 could compete with IFN for binding to its receptor. Two peptides corresponding to clone No T9 and T3, designated KP-7(KNVHPPP) and IR-7(IRPDTPR) were synthesized. The receptor binding experiments showed that the two peptides could compete with GFP-IFN-α2b for binding to its receptor and the IC50 value was 13.43μg and 9.49μg respectively, which demonstrated that they could mimicry, partly, epitopes of IFN-α2b in charge of binding to receptor. The antiviral assay showed that when the added amount was from 1.25μg to 5μg, both peptides could have the IFN-induced antiviral activity in a dose-dependent manner, which suggested that they were mimetic peptides of IFN-α2b. Furthermore, the antiviral activity of KP-7 was a little higher than IR-7 and there was a cooperation when both peptides were added together. It assumed that multi-sites interaction of IFN to its receptor caused to the IFN-induced antiviral activity.
     In summary, the valences and characteristics of IFN-α2b antigen epitopes had been understood comprehensively. It is helpful in laying the foundation for the molecular mechanism of the interaction of IFN with its receptor and the preparation of monoclonal antibody against specific epitopes. Furthermore, the screening systems such as whole cell together with antibodies or functional screening strategies had been developed, which presented a new method in studying the molecular mechanism of IFN function and screening the mimetic or antagonist peptides of cytokines as well as developing the minimolecular mimics of IFN-α2b.
引文
[1]候云德.干扰素研究进展.国外医学-分子生物学分册. 1979, (1): 315~321
    [2] Charlse E. Samuel. Antiviral actions of interferons. Clinical Microbiology Reviews, 2001, 14 (4): 778~809
    [3] Wheelock EF. Interferon-like virus inhibitor induced in human leukocytes by phytohemagglutinin. Science, 1965, 141: 309~311
    [4] Roberts, RM, L Liu, Q Guo, et al. The evolution of the type I interferons. Journal of interferon research, 1998, 18: 805~816
    [5] Ganes C Sen. Viruses and interferon Annu. Rev. Microbiol, 2001, 55: 255~281
    [6] De Maeyer E, De Maeyer-Guignard J. Type I interferon. Intern Rev Immunol, 1998, 17: 53~73
    [7] Hiscott, J, P Pitha, P Genin, et al. Triggering the interferon response: the role of IRF-3 transcription factor. J. Interferon Cytokine Res, 1999, 19: 1~13
    [8] Seo SH, Hoffmann E, Webster RG. Lethal H5N1 influenza viruses escape host antiviral cytokine response. Nat. Med, 2002, 8 (9): 950~954
    [9] Morandi M, Valeri A. Industrial scale production of beta-interferon. Adv Biochem Eng Biotechnol, 1988, 37: 57~72
    [10] Nagata S, Mantei N, Schwarzstein M, et al. The nucleotide sequence of a cloned human leukocyte interferon cDNA. Gene, 1980, 10 (1): 1~10
    [11] Pestka, S, JA Langer, KC Zoon, et al.. Interferons and their actions. Annu. Rev. Biochem, 1987, 56: 317–332
    [12] Gribaudo G, Lembo D, Cavallo G, et al. Interferon action: binding of viral RNA to the 40-kilodalton2’–5’-oligoadenylate synthetase in interferon-treated Hela cellsinfected with encephalomyocarditis virus. J Virol, 1991, 65: 1748~1757
    [13] Samuel CE, Duncan GS, Knutson GS, et al. Mechanisms of interferon action. J Biol Chem, 1984, 259: 13451~13457
    [14] Pavlovic J, Arzet HA, Hefti HP, et al. Enhanced virus resistance of transgenic mice expressing the human MxA protein. J Viol, 1995, 69: 4506~4510
    [15]张君,于三科.干扰素-γ介导的抗弓形虫作用及其机理.动物医学进展, 2000, 21 (1): 25~27
    [16]孙圣兰,江青艳,傅伟龙.干扰素的研究进展.动物医学进展, 2002, 23 (6): 39~41.
    [17]高建忠,祝卫东,黄玉帮.干扰素的研究进展.动物科学与动物医学, 2004, 21 (1): 58~59
    [18] Fellous M, Nir U, Wallach D, et al. Interferon-dependent induction of mRNA for the majorhistocompatibility antigens in human fibroblasts and lymphoblastoid cells. Proc Natl Acad Sci USA, 1982, 79: 3082~3086
    [19] Nakoo K, Nakata K, Yamashita M, et al. P48 (ISGF-3gamma) is involved in interferon alpha induced suppression of hepatitis B viruses enhancer-1 activity. J Biol Chem, 1999, 274 (40): 28075~28077
    [20] Jean-Charles R. Clinical investigation of immunogenicity of interferon-α2. Interferon cytokine research, 1997, 17: 29~32
    [21] Keeffe EB, Hollinger FB. Therapy of hepatitis c: consensus interferon trials. Hepatokogy, 1997, 26: 101~105
    [22]王远方,徐敏,杨龙等.人γ-干扰素对病毒性心肌炎患者可溶性白细胞介素-2受体和肿瘤坏死因子的影响.临床心血管病杂志, 2001, 17 (3): 111~113
    [23] Renault PF. Side effects of alpha interferon. Sem in L iver Dis, 1989, 9: 273
    [24] Ramaswamy R, Leigh JW, Alan H, et al. Zinc mediated dimmer of human interferon-α2b revealed by X-ray crystallography. Structure, 1996, 4 (12): 1453~1463
    [25] Senda T, Shimizu T, Matsuda S, et al. Three dimensional crystal structure of recombinant murine interferon-β. EMBO J, 1992, 11: 3193~3201
    [26] Mitsui Y, Senda D. Shimazu T, et al.Structural, functional and evolutionary implications of the three dimensional crystal structure of murine interferonβ.Pharmachol Ther, 1993, 58 (1): 93~132
    [27] Mitsui Y, Senda D.Elucidation of the basic three dimensional structure of type I interferons and its functional evolutionary implications.J Interferon Cytokine Res, 1997, 17 (6): 319~326
    [28] Walter M R.Three-dimensional models of interferon-αsubtypes IFN-con1, IFN-α8, and IFN-α1 derived from the crystal structure of IFN-α2b.Semin Oncol, 1997, 24 (3 Suppl 9): S952~S962
    [29] Viscomi G C.Structure-activity of type I interferons.Biotherapy, 1997, 10 (1): 59~86.
    [30] Maeyer E, Maeyer G J.Type I interferons.Int Rev Immunol, 1998, 17 (1-4): 53~73
    [31] Zav’yalov VP, Nenesyuk AI, Zav’yalova GA. Theoretical conformational analysis of a family of a helical immunocytokines. Biochem Biophys Acta, 1990, 1041: 178~185
    [32] Domanski P, Colamonici O R.The type I interferon receptor, The long and short of it.Cytokine Growth Factor Rev, 1996, 7 (2): 143~151
    [33] Colamonici O, Yan H, Domanski P, et al.Direct binding to and tyrosine phosphorylation of theαsubunit of the type I interferon receptor by p135tyk2 tyrosine kinase.Mol Cell Biol, 1994, 14: 8133~8142
    [34] Novick D, Cohen B, Rubinstein M.The human interferonα/βreceptor: characterization and molecular cloning.Cell, 1994, 77 (3): 391~400
    [35] Christine P, Oscar R, Colamonici O.Role of the cytoplasmic domains of the type I interferon rceptor subunits in signaling.Cancer Biol, 2000, 10: 83~87
    [36] Korn A P, Rose D R, Fish E N.Three-dimensional model of a human interferon-αconsensussequence.Interferon Res, 1994, 14 (1): 1~9
    [37] Oritani K, Kincade P W, Zhang C, et al.Type I interferons and limitin: a comparison of structures, receptors, and functions.Cytokine Growth Factor Rev, 2001, 12: 337~348
    [38] Colamonici O, Yan H, Domanski P, et al. Direct binding to and tyrosine phosphorylation of the a subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol Cell Biol, 1994, 14: 8133~8142
    [39] Novick D, Cohen B, Rubinstein M. The human interferon alpha/beta receptor: characterization and molecular cloning. Cell, 1994, 77: 391~400
    [40] Domanski P, Witte M, Kellum M.Cloning and expression of a long form of theβsubunit of the interferonα/βreceptor that is required for signaling.J Biol Chem, 1995, 270: 21606~ 21611
    [41] Lutfalla G, Holland S J, Cinato E, et al.Mutant U5A cells are complemented by an interferonα/βreceptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster.EMBO J, 1995, 14: 5100~5108
    [42] Chill JH, Quadt S R, Levy R, et al.The human type I interferon receptor: NMR structure reveals the molecular basis of ligand binding.Structure (Camb), 2003, 11 (7): 791~802
    [43] Choudhary S, Gao J, W D, Douglas W.Interferon Action against human parainfluenza virus type 3: Involvement of a novel antiviral pathway in the inhibition of transcription.J Virol, 2001, 75: 4823 ~4831
    [44] Schindler C, Shuai K, Prezioso V R, et al.Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor.Science, 1992, 257 (5071): 809~813
    [45] Velazquez L, Fellous M, Stark G R, et al.A protein tyrosine kinase in the interferonα/βsignaling pathway.Cell, 1992, 70 (2): 313~322
    [46] Muller M, Briscoe J, Laxton C, et al.The protein tyrosine kinase JAK1 complements defects in interferonα/βandγsignal transduction.Nature, 1993, 366 (6451): 129~135.
    [47] Novick D, Engelmann H, Revel M, et al.Monoclonal antibodies to the soluble human IL-6 receptor: affinity purification, ELISA, and inhibition of ligand binding.Hybridoma, 1991, 10 (1): 137~146
    [48] Chill JH, Nivasch R, Levy R, et al.The human interferon receptor: NMR-based modeling, mapping of the IFNα2 binding site, and observed ligand-induced tightening.Biochemistry, 2002, 41 (11): 3575~3585
    [49] Roisman, L C, Piehler J, Trosset J Y, et al.Structure of the interferon-receptor complex determined by distance constraints from double-mutant cycles and flexible docking.Proc Natl Sci USA, 2001, 98: 13231~13236
    [50]韩亮,曾国华,赵丽欣等.抗人α-2a型基因工程IFN单克隆抗体及亲和层析柱的研制.微生物学免疫学进展, 1998, 26 (4): 19~24
    [51] Clemens MJ, A Elia. The double-stranded RNA-dependent protein kinase PKR: structure andfunction. J. Interferon Cytokine Res., 1997, 17: 503~524
    [52] Proud CG. PKR: a new name and new roles. Trends Biochem. Sci, 1995, 20: 241~246
    [53] Samuel CE. The eIF-2αprotein kinases regulators of translation in eukaryotes from yeasts to humans. J. Biol. Chem, 1993, 268: 7603~7606
    [54] Kerr IM. The 2-5A system: a personal view. J. Interferon Res, 1987, 7: 505~510
    [55] Sarkar SN, GC Sen. Production, purification, and characterization of recombinant 2’-5’-oligoadenylate synthetases. Methods, 1998, 15: 233~242
    [56] Rebouillat D, AG Hovanessian. The human 2’-5’-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties. J. Interferon Res, 1999, 19: 295~308
    [57] Arnheiter H, Frese MR, Kamadur E, et al. Mx transgenic mice-animal models of helath. Curr. Top. Microbiol, 1996, 206: 119~147
    [58] Haller O, M Frese , G Kochs. Mx proteins: mediators of innate resistance to RNA viruses. Rev. Sci. Technol. Off. Int. Epizootol, 1998, 17: 220~230
    [59] Staeheli P, F Pitossi, J Pavlovic. Mx proteins: GTPases with antiviral activity. Trends Cell Biol, 1993, 3: 268~272
    [60] Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science, 1990, 249: 386~390
    [61] Smith GP, Petrenko VA. Phage display. Chem Rev, 1997, 97 (2): 391~410.
    [62] Smith GP, Scott JK. Libraries of peptides and proteins displayed on filamentous phage. Methods enzymol, 1993, 217: 228~257
    [63] Sachdev SS. Engineering M13 for phage display. Biomolecular Engineering, 2001, 18: 57~63
    [64] Germaine Fuh, Sachdev SS. Efficient phage display of polypeptides fused to the carboxy-terminus of the M13 gene-3 coat protein. FEBS letters, 2000, 480: 231~234
    [65] Maruyama IN, Maruyama HI, Brebner SA. A phage vector for the expression of foreign proteins. Proc Natl Acad Sci, 1994, 91: 82733~82773
    [66] Stenberg N, Hoess RH. Display of peptides and proteins on the surface of bacteriophage. Proc Natl Acad Sci, 1995, 92: 1609~1613
    [67] Efimov VP, Nepluev IV, Mesyanzhinov VV. Bacteriophage T4 as a surface display vector. Virus Genes, 1995, 92: 1609~1613
    [68] Lowman HB. Phage display of peptide libraries on protein scaffolds. Meth mol bio, 1998, 87: 249
    [69] Dybwad A, Forre O, Natvig J B, et al. Identification of new B cell epitopes in sera of rheumatoid arthritis patients using a random nanopeptide phage library. Eur J Immunol, 1983, 23 (12): 3189~3193
    [70] Conley AJ, Kessler JA, Boots LJ, et al. Neutralization of divergent human immunodeficiencyvirus type I variants and primary isolates by IAM-41-2F5, an anti-gp41 human monoclonal antibody. Proc Natl Sci USA, 1994, 41 (3): 3348~3352
    [71] Cason J. Strategies for mapping and viral-B cell epitopes. J Vriol Methols, 1994, 49 (1): 209~220
    [72] Geysen HM, Melven RH, Barteling SJ. Using of pep tide synthesis to p robe viral antigens for ep itopes to a resolution of a single amine acide. Proc Natl Sci USA, 1984, 81: 3998~4006
    [73] Motti C, Nuzzo M, Meola A, et al.Recognition by human sera and immunogenicity of HBsAg mimotopes selected from an M13 phage display library. Gene, 1994, 146 (2): 191~198
    [74] Pereboeva LA, Pereboeva AV, Morris GE, et al. Identification of antigenic sites on three hepatitis C virus proteins using phage-displayed peptide libraries. Med Virol, 1998, 56 (2): 105~111
    [75] Chirinosr CL, Steward MW, Partidos CD, et al. Apeptide-mimotic antagonist of TNF-alpha-mediated cytotoxicity identified from a phage-displayed random peptide library. J Immunol, 1998, 161 (10): 5621~5626
    [76] Krook M, Lindblandh C. Selection of a cyclic nanopeptide inhibitor to alpha chymo-trypsin using phage display peptide library. Mol Divers, 1998, 3 (3): 149~159
    [77] Cook AD, Davis JM, Myers MA, et al. Mimotopes identified by phage display for monoclonal antibody c2-1 to typeⅡc ollagen. J Autoimmuno, 1998, 11 (3): 205~211
    [78]李全喜,王琰,李竟等.识别9E10单抗的噬菌体短肽的免疫学特性分析.中华微生物学和免疫学杂志, 1997, 17 (1): 64~67
    [79]李爱民,周志江,宋华宾等.噬菌体肽库的构建及抗狂犬病毒肽的筛选.中国兽医学报, 1997, 17 (6): 575~580
    [80]杜勇,王海涛.应用噬菌体随机肽库研究丙型肝炎病毒核心蛋白B细胞抗原表位.中华微生物学和免疫学杂志, 1999, 19 (1): 4~8
    [81] Prezzi C. Selection of antigenic and immunogenic mimics of hepatitis C viruses using sera from patients. J Immunol, 1996, 156 (11): 4504~4513
    [82] Motti C, Nuzzo M, Meola A, et al. Recognition by human sera and immunogenicity of HBsAg mimotopes selected from an M13 phage display library. Gene, 1994, 146 (2): 191~198
    [83] Naidu BR. An immunogenic epitope of Chlamydia pneumoniae from a random phage display peptide library is reactive with both monoclonal antibody and patients sera. Immunol Lett, 1998, 62 (2): 111~105
    [84] Pincus SH, Smith MJ, Jennings HJ, et al. Peptides that mimic the group B streptococcal type III capsular polysaccharide antigen. J Immunol, 1998, 160 (1): 293~298
    [85] Estaquier J, Boutilln C, Georges B, et al. A combinatorial peptide library around variation ofthe human immunodeficiency virus (HIV-1) V3 domain leads to distinct T helper cell responses. J Pept Sci, 1996, 2 (3): 165~175
    [86] Pereboeva LA, Pereboev AV, Morris GE. Identification of antigenic sites on three hepatitis C virus proteins using phage-displayed peptide libraries. J Med Virol, 1998, 56 (2): 105~111
    [87] Dybwad A, Bogen B, Natvig JB, et al. Peptide phage libraries can be an efficient tool for identifying antibody ligands for polyclonal antisera. Clinical & Experimental Immunology, 1995, 102 (2): 438~442
    [88] Ferrer M, Harrison SC. Peptide ligands to human immunodeficiency virus type 1 gp120 identified from phage display libraries. J Virol, 1999, 73 (7): 5795~5802
    [89] DeLano WL, Ultsch MH, de Vos AM, et al. Convergent solutions to binding at a protein-protein interface. Science, 2000, 287 (5456): 1279~1283
    [90] Dennis MS, Eigenbrot C. Peptide exosite inhibitors of factor VIIa as anticoagulants. Nature, 2000, 404 (6777): 46~52
    [91] Owens RA, Gesellchen PD, Houchins BJ, et al. The rapid identification of HIV protease inhibitors through the synthesis and screening of defined peptide mixtures. Biochem Biophys Res Commun, 1991, 181 (1): 402~408
    [92]王克夷.开发小肽,筛选新药.中国生化药物杂志. 2003, 24 (1): 48~50
    [93] Geysen HM, Rodda SJ, Mason TJ,et al. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol, 1986, 23 (7): 709~715
    [94] Banner DW, D'Arcy A, Janes W, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell, 1993, 73 (3): 431~445
    [95]杨子义,董家新,王鑫等.利用15肽随机肽库确定抗TNF单抗表位的研究.中国生物化学与分子生物学报,1999, 15 (2): 252~255
    [96] Akeson AL, Woods CW, Hsieh LC, et al. AF12198, a novel low molecular weight antagonist, selectively binds the human type I interleukin (IL)-1 receptor and blocks in vivo responses to IL-1.J Biol Chem, 1996, 271 (48): 30517~30523
    [97] Binétruy-Tournaire R, Demangel C, Malavaud B, et al. Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J, 2000, 19 (7): 1525~1533
    [98] Fan H, Liu Y, Zhou H, et al. Selection of peptide ligands that bind to acid fibroblast growth factor. IUBMB Life, 2000, 49 (6): 545~548
    [99] Olsen SK, Ibrahimi OA, Raucci A, et al. Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity. Proc Natl Acad Sci USA, 2004, 101 (4): 935~940
    [100] Kaji M, Ikari M, Hashiguchi S, et al. Peptide mimics of monocyte chemoattractant protein-1 (MCP-1) with an antagonistic activity. J Biochem (Tokyo), 2001, 129 (4):577~583
    [101] Wrighton NC, Farrell FX, Chang R, et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science, 1996, 273: 458~46487
    [102] Livnah O, Stura EA, Johnson DL, et al. Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 A. Science, 1996, 273 (5274): 464~471
    [103] Souriau C, Gracy J, Chiche L, et al. Direct selection of EGF mutants displayed on filamentous phage using cells overexpressing EGF receptor. Biol Chem, 1999, 380 (4): 451~458
    [104] Ballinger MD, Shyamala V, Forrest LD, et al. Semirational design of a potent, artificial agonist of fibroblast growth factor receptors. Nat Biotechnol, 1999, 17 (12): 1199~1204
    [105] Lowman HB, Chen YM, Skelton NJ, et al. Molecular mimics of insulin-like growth factor 1 (IGF-1) for inhibiting IGF-1: IGF-Binding. Biochemistry, 1998, 37 (25): 8870~8878
    [106] Skelton NJ, Chen YM, Dubree N, et al. Structure-Function Analysis of a Phage Display-Derived Peptide That Binds to Insulin-like Growth. Biochemistry, 2001, 40 (29): 8487~8498
    [107] Dower WJ, Cwirla SE, Balasubramanian P, et al. Peptide agonists of the thrombopoietin receptor. Stem Cells, 1998, 16 suppl 2: 21~29
    [108] Maliartchouk S, Feng Y, Ivanisevic L, et al. A designed peptidomimetic agonistic ligand of TrkA nerve growth factor receptors. Mol Pharmacol, 2000, 57 (2): 385~391
    [109] Geysen HM, Melven RH, Barteling SJ. Using of peptide synthesis to p robe viral antigens for epitopes to a resolution of a single amine acide. Proc. Natl. Acad Sci. USA, 1984, 81: 3998~4006
    [110] Gershoni JM, Stern B, Denisova G, et al. Combinatorial libraries, epitope structure and the prediction of protein conformations. Immunol Today, 1997, 18 (3): 108~110
    [111] Hideaki Tanimori, Tsunehiro Kitagawa. A new liquid-phase enzyme immunoassay for rabbit IgM antibodies and its application for comparing the specifity of IgM and IgG antibodies contained in the same antiserum. Journal of immunological Methods, 1990, 129: 233~242
    [112]朱勇,金伯泉,刘雪松.用生物传感器测定重组人α-2a IFN单克隆抗体的亲和力及抗原识别表位.中国免疫学杂志, 2000, 16: 322~328
    [113] Felicity D M, Charalambos D P, Michael W S, et al.Definition of the primary structure of hepatitis B virus (HBV) pre-S hepatocyte binding domain using random peptide libraries.Virology, 1997, 237: 319~326
    [114] Heim R, Cubitt AB, Tsien RY. Improved green fluorescence. Nature, 1995, 373: 663~664
    [115] Heim R, Tsien RY. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol, 1996, 6: 178~182
    [116]孙义敏,尹丙姣,李卓娅等.重组绿色荧光蛋白和肿瘤坏死因子融合蛋白的表达及应用.华中科技大学学报. 2004, 33 (5): 519~521
    [117]胡晓,王丽峰,高晓明等.重组人IL-18和IL-18-GFP融合蛋白的表达及生物活性的研究.中华微生物学和免疫学杂志, 1999, 19 (4): 306~310
    [118]曾星,梅玉屏,杨明等.绿色荧光蛋白和白介素-2在卡介苗中的共表达.中国生物制品杂志, 2001, 14 (4): 197~199
    [119]李先茂,沈丽佳,朱梅刚等.粒-巨噬细胞集落刺激因子与绿色荧光蛋白融合基因慢病毒载体构建.中国病理生理杂志, 2005, 21 (7): 1448~1451
    [120] Kenji O, Paul W, Cai Zhang, et al. Type I interferons and limitin: a comparison of structure, receptors, and functions. Cytokine Growth Factor Rev, 2001, 12: 337~348.
    [121] Orchansky P, Colamonic OR. Type I interferon receptor: the long and short of it. Cytokine growth factor rev, 1996, 7: 143~151
    [122]吕宏亮,段招军,李武平等.一种人新型基因工程干扰素rh- IFNα-m的高效表达、纯化和活性检测.微生物学免疫学进展, 2002, 30 (2): 22~25
    [123] Yang F, Moss LG, Phillips GN. The molecular structure of green fluorescent protein. Nat. Biotechnol, 1996, 14: 1246~1251
    [124] Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science, 1994, 263 : 802~805
    [125]胡晓,吕平,王丽峰.重组人IL-18和IL-18-GFP融合蛋白的表达及其生物活性的研究.中华微生物学和免疫学杂志, 1999, 19: 306~310
    [126]周华荣,张晓晖,周新荣等.绿色荧光蛋白与Weel Hu融合基因的构建及其真核表达.中国生物化学与分子生物学报, 2001, 17: 715~719
    [127]刘丹,盛军,杨贵贞.绿色荧光蛋白融合表达HBsAg基因载体的构建及其在COS-7细胞中的表达.中国生物制品学杂志, 2004, 17: 68~70
    [128] Renault PF. Side effects of alpha interferon. Sem in L iver Dis, 1989, 9: 273
    [129] Timothy A. Stewart. Neutralizing interferon alpha as a therapeutic approach to autoimmune diseases. Cytokine Growth Factor, 2003, 14: 139~154
    [130] Huang ZH, Sateesh K, Aruna P, Siba KS. Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J Virol, 2003, 77: 8676~8685
    [131] Pan HJ, Francoise CF, Brigitte RG, Madeleine S, Charles C. Sarcolectin: an interferon antagonist extracted from hamster sarcomas and normal muscles. J Biol Chem, 1983, 258: 12361~12367
    [132] Mario D. Inhibition of interferon (IFN)γ-induced jak-STAT1 activation in microglia by vasoactive intestinal peptide. J Biol Chem, 2003, 278: 27620~27629
    [133] Kontsek P, Borecky L, Kontsekova E, et al.Mapping of two immunodominant structures on human interferonα2c and their role in binding to cells.Mol Immunol, 1991, 28 (11):1289~1297
    [134] Cebrian M, Yague E, Landazuri M O, et al.Different functional sites on rIFN-α2 and their relation to the cellular receptor binding site.J Immunol, 1987, 138: 484~490
    [135] Uze G, Lutfalla G, Mogensen KE.α/βinterferons and their receptor and their friends and relations.J Interferon Cytokine Res, 1995, 15 (1): 3~26
    [136] Salih A M, Nixon N B, Dawes P T, et al.Antibodies to neuroblastoma cells in rheumatoid arthritis: a potential marker for neuropathy.Ciln Exp Rheumatol, 2000, 18 (1): 23~30
    [137] Liu Z, Gurlo T, von Gafenstein H.Cell-ELISA using beta-galactosidase conjugated antibodies.Immunol Methods, 2000, 234 (1-2): 153~167
    [138] Lee J C W, Cevallos A M, Naeen A, et al.Detection of anti-colon antibodies in inflammatory bowel disease using cultured colonic cells.Gut, 1999, 44 (2): 196~202
    [139] Cwirla SE, Balasubramanian, Palaniappan. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science, 1997, 276: 1696~1699
    [140] Kimura T, Kaburaki H, Miyamoto S, et al. Discovery of a novel thrombopoietin mimic agonist peptide. J Biochem, 1997, 122: 1046~1051
    [141] Atsushi S, Saburo S. A peptide mimetic of human interferon-β. J Biochem, 2003, 371: 603~608
    [142]胡荣,马学军,魏开坤等.中和抗体识别短肽对IFN-α生物活性的影响.中华实验和临床病毒学杂志. 1999, 13 (1): 29~32
    [143] Jie Cao, Ping Zhao, Xiao Hui Miao, et al. Phage display selection on whole cells yields a small peptide for HCV receptor human CD81. Cell research, 2003, 13 (6): 473~479
    [144] Belizaire AK, Tchistiakova L, St-Pierre Y, et al. Identification of a murine ICAM-1-specific peptide by subtractive phage library selection on cells. Biochem Biophys Res Commun, 2003, 309 (3): 625~630
    [145] Szardenings M, Muceniece R, Mutule I, et al. New highly specific agonistic peptides for human melanocortin MC(1) receptor. Peptides, 2000, 21 (2): 239~243
    [146] Venkatesh N, Zaltsman Y, Somjen D, et al. A synthetic peptide with estrogen-like activity derived from a phage-display peptide library. Peptides, 2002, 23 (3): 573~580
    [147] Doorbar J, Winter G. Isolation of a peptide antagonist to the thrombin receptor using phage display. J Mol Biol, 1994, 244 (4): 361~369
    [148] Ramaswamy R, Leigh JW, Alan H, Paul R, Paul PT, Tattanahalli LN, et al. Zinc mediated dimmer of human interferon-α2b revealed by X-ray crystallography. Structure, 1996, 4: 1453~1463
    [149] Piehler J, Roisman LC, Schreiber G. New structure and functional aspects of the type I interferon-receptor interaction revealed by comprehensive mutational analysis of the binding interface. J Biol Chem 2000; 275: 40425~40433
    [150] Seto MH, Harkins RN, Adler M, et al. Homology model of human interferon-alpha 8 and its receptor complex. Protein Sci, 1995, 4 (4): 655~670
    [151] Mitsui Y, Senda T, Shimazu T, et al. Structural, functional and evolutionary implications of the three-dimensional crystal structure of murine interferon-beta. Pharmacl Ther, 1993, 58 (1): 93~132
    [152] UzéG, Lutfalla G, Mogensen KE. Alpha and beta interferons and their receptor and their friends and relations. J Interferon Cytokine Res, 1995, 15 (1): 7648431~7648454