聚丙烯在拉伸力场下的结晶行为和力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬弹性膜材料是制备微孔膜的基础。本文采用熔融挤出—高倍拉伸—退火处理法制备硬弹性等规聚丙烯(iPP)薄膜。研究了聚丙烯分子量及其分布、熔体挤出温度、拉伸比、退火温度、退火时间、不同成核剂的含量等因素对聚丙烯膜的结晶行为与结晶结构、拉伸性能、弹性回复率的影响,成功制备了弹性回复率大于95%的硬弹性iPP薄膜。研究结果表明:
     (1)两种等规聚丙烯iPP-A及iPP-B均为假塑性流体,随着剪切速率的增加,二者的表观剪切粘度下降,呈现出假塑性流体典型的“剪切变稀”行为。在相同的温度和剪切速率下,平均分子量较小、分布较宽的iPP-B的表观剪切粘度小于iPP-A的表观剪切粘度,拉伸粘度低于iPP-A的拉伸粘度,表明对于剪切或拉伸流动占主导地位的加工过程,iPP-B熔体更容易发生流动。相同温度时,分子量分布较宽的iPP-B熔体的拉伸破裂强度大于iPP-A熔体的拉伸破裂强度,表明iPP-B熔体具有较高的可拉伸性,可以达到较大的拉伸比。
     (2)影响iPP薄膜硬弹性的主要因素有熔体挤出温度、拉伸比、退火温度、退火时间等。在相同的条件下,分子量较高、分子量分布较窄的iPP-A薄膜的弹性回复率、拉伸性能优于iPP-B薄膜。随着挤出温度升高,iPP薄膜的弹性回复率ER_(50)值减小,拉伸强度和断裂伸长率减小。随着拉伸比增加,iPP-A薄膜的熔点升高、片晶厚度和结晶度增加;随着拉伸比增加,iPP膜的弹性回复率增加,拉伸强度增加,断裂伸长率下降。随着退火温度的升高和退火时间的延长,iPP薄膜的熔点升高、片晶厚度和结晶度逐渐增加,弹性回复率逐渐增大,拉伸强度增大,断裂伸长率减小。
     (3)加入α成核剂后,iPP树脂的熔点与结晶温度升高,结晶诱导期变短,结晶速率增大,结晶度增加。随着α成核剂质量分数的增加,iPP的拉伸性能和弯曲性能得到了一定程度的提高。加入β成核剂后,iPP由原来的均相结晶转变为异相结晶,其结晶温度提高,结晶速率加快,球晶尺寸减小,结晶度提高,力学性能也得到提高。β成核剂的加入还有利于iPP中β晶型的形成,诱导了相当一部分α晶型向β晶型转变。随着β成核剂质量分数的增加,iPP结晶中β晶相对质量分数增加。
     (4)α和β成核剂的加入使得iPP薄膜的熔点升高、片晶厚度和结晶度增加,弹性回复率增大。AFM图表明,硬弹性iPP-A薄膜中含有垂直于薄膜挤出方向且平行排列的片晶结构。
The hard elastic PP film was prepared through melting extrusion-high ratio stretching-annealing method. The effects of molecular weight and its distribution, the melting extrusion temperature, draw down ratio, annealing temperature, annealing time and the additions of different type of nucleator on the crystallization behavior, morphology, tensile properties and elastic recovery of PP film were studied in this thesis, and the experimental results show that:
     1) With an increasing shear rate, the shear viscosity of isotactic PP (iPP) decreases, and displays the behavior of shear thinning. At the same temperature and same shear rate or elongational rate, compared with iPP-A, the shear viscosity or elongational viscosity of iPP-B is lower, which has lower average molecular weight and wider distribution, moreover, the tensile strength of iPP-B melt is higher. These indicate that in case of shear flow or extensional flow, iPP-B is easier to flow. During the predominantly extensional flow, iPP-B could be stretched more and have higher drawability.
     2) The hard elasticity of PP film is controlled by melting extrusion temperature, draw down ratio, annealing temperature and annealing time, etc. If other processing parameters are same, compared with iPP-B, the elastic recovery of iPP-A film is higher and tensile properties are better, which has higher molecular weight and narrower distribution. Improving melting extrusion temperature, the elastic recovery ER_(50) is decreased, the tensile strength and elongation at break also go down. With the increase of draw down ratio, the melting point of iPP-A goes up, the lamellar thickness and crystallinity increase. The elastic recovery and tensile strength of PP film increases and elongation at break decreases with the increase of draw down ratio. For the annealed film, with the rise of annealing temperature and prolonging of annealing time, the melting point mount up, the lamellar thickness and crystallinity are increased little by little, the elastic recovery and tensile strength are improved and elongation at break decreases.
     3) With the addition of a nucleator, the melting point and crystallizing temperature of iPP rise, the induction period of crystallization is shortened, the crystallizing gets faster and the crystallinity increases. With the increase of a nucleator amount, the tensile and flexural properties of iPP are improved. Through the addition ofβnucleator, the crystallization process of iPP is transferred from homogeneous nucleation to heterogeneous nucleation. The crystallization temperature goes up, crystallization gets faster, the spherulite size becomes smaller and crystallinity increases. Moreover, the mechanical properties of iPP are improved. The addition ofβnucleator is favorable to formβcrystal and cause more a crystal transform toβcrystal. With the increase ofβnucleator amount, theβcrystal content is increased.
     4) The addition of a andβnucleator make the melting point of iPP film ascend, lamellar thickness and crystallinity increase, and elastic recovery is improved. AFM of hard elastic iPP film indicates that the existence of stacked lamellae rows which are parallel to each other and perpendicular to the extrusion direction.
引文
[1] Sang-Yang Lee, Soon-Yang Park, Heon-Sik Song. Lamellar crystalline structure of hard elastic HDPE films and its influence on microporous membrane formation. Polymer, 2006, 47: 3540~3547
    [2] Cannon S L, Mckenna G B, Statton W O. Hard-elastic fibers. (A review of a novel state for crystalline polymers). J Polym Sci, Part D: Macromolecular Reviews, 1976, 11:209~275
    [3] Noether H D. High modulus through lamellar structure neucleated by flow induced substrates. Polym Eng and Sci, 1979, 9:427~432
    [4] Noether H D. Crystallization under extreme temperature and pressure gradients. Int J Polymeric Mater, 1979, 7 (1-2): 57~82
    [5] Sprague B S. Relationship of structure and morphology to properties of hard elastic fibers and films. J Macromol Sci, Phys, 1973, 8 (1): 157-87
    [6] Quynn R G, Braddy H. Elastic hard fiber. J Macromol Sci, Phys, 1971, B5 (4): 721~738
    [7] Gaber C A, Clark E S. J Macromol Sci, Phys, 1970, B4 (3): 499-504
    [8] Noether H D, Whitney W. X-ray diffraction and morphology of crystalline 'hard' elastic materials. Polymer, 1973, 2:991~998
    [9] Park I K, Noether H D. Crystalline hard elastic materials. Ⅱ. Mechanical properties. Colloid and Polymer Sci, 1975, 253 (10): 824~839
    [10] 杜强国,徐国锋,于同隐.硬弹性高分子材料.高分子材料科学与工程,1986,2:1~6.
    [11] 杜强国,林明德,于同隐.硬弹性聚丙烯弹性的结构特点.复旦学报,1986,25(4):375~382
    [12] 徐又一,徐昌辉,谢柏明,王红军.结晶高聚物硬弹性材料的研究进展.功能材料,1996,27(1):12~31
    [13] Kim J J, Jang T S, et al. Structure study of microporous polypropylene hollow fiber membrane made by the melt-spinning and cold-stretching method. J Membr Sci, 1994, 93: 209~215
    [14] 胡继文,岑美柱等.改性聚丙烯中空纤维膜的纺制工艺与结构性能.高分子材料科 学与工程,1994,(1):79~83
    [15] Raab M, Scudla J, Kozlov A G, Lavrentyev V K, Elyashevich G K. Structure development in oriented polyethylene films and microporous membranes as monitored by sound propagation. J Appl Polym Sci, 2001, 80 (2): 214~222
    [16] Celanese Corporation of America. Filamentous material and a process for its manufacture. Belgium Pat, 650890, 1965
    [17] Hermann A J. Fibres. US Pat 3 256 258, 1966
    [18] Knobloch F W, Statton W O. Fibres of modified polypivalolactone. US Pat 3299171, assigned to E. I. du pont de Nemous and company. Inc, 1967
    [19] Quyrm R G, Sprague B S. Physical structure and properties of 3-methylbutene-1 polymer fiber. J Polym Sci, 1970, A-2 (8): 1971~1982
    [20] Noether H D. Fibers. US Pat, 3513110, 1970
    [21] Cayrol B, Petermarm W. Elastic hard polyethylene fibers. J Polym Sci -Phys, 1974, 12: 2169~2173
    [22] Yarnazki T, Oya S. Studies on poly(iso-buteneoxide):3 Elastic hard fiber of poly(iso-butene oxide). Polymer, 1975, 16:425~436
    [23] Miles M, Petermarm J, Gleiter H, Trucfure S. Deformation of polyethylene hard elastic fibers. J Macromol Sci Phys, 1976, B12 (4):523~534
    [24] Goritz D, Muller F H. Structure and properties of commercial polymer. Colloid and Polymer Sci, 1975, 253:844~864
    [25] Cannon S L, Statton W O, Hearle J W S. Mechanical and properties of springe polyethylene. Polym Eng Sci, 1975, 15:633~646
    [26] Zhu Y Z, Okui N, Tanaka, Umemoto S, Saka T. Low temperature properties of hard elastic polypropylene fibers. Polymer, 1991, 32 (14):2588~2593
    [27] Fung P Y F, Carr S H. Morphology and deformation of melt-spun polyethylene fibers. J Macromol -Phys, 1972, B6 (4): 621~634
    [28] 徐又一,杜国强,王树源等.硬弹性聚丙烯晶相和非晶相分子链取向的研究.高分子学报,1993,(1):75~79
    [29] 胡七一,胡家璁.硬弹性聚合物的热力学行为.全国高分子会议论文集,1992, 410~412
    [30] Sarada T, Sawyer L C. Three Dimensional structure of celgard(?) microporous membrane. J Membr Sci, 1983, 15:97~105
    [31] Chen R T, Saw C K, Jamieson. M G, Aversa T R, Callahar R W. Structural characterization of cetgard(?) microporous membrane precursors: extruded polyethylene films. J Appl Polym Sci, 1991, 53:471~483
    [32] Hild S, Gutmannsbauer W, Luthi R, Fuhrmann J, Guntherodt H J. A nanoscopic view of structure and deformation of hard elastic polypropylene with scanning force microscopy. J Polym Sci, Part B: Polym Phys, 1996, 32 (12): 1953~1959
    [33] Tagawa T. Piled-lamellae structure in polyethylene film and its deformation. J Polym Sci-phys, 1980, 18:971
    [34] Samels R J. Quantitative structural characterization of the deformation and shringe of isotactic polypropylene fibers and films. J Macromol Sci-phys, 1973, B8 (1-2): 157~187
    [35] Mackay M E, Teng T G, Schultz J M. Craze role in the fatigue of polycarbonate. J Mater Sci, 1979, 14:221
    [36] Hosemann R, Caokovic H. Adhasiv reibungsealastizitat yon hartelastischem polypropylen(HEPP). Colloid Polym Sci, 1981, 259 (1): 15~21
    [37] Xu F G, Du Q G, Wang L H. Hard elasticity of polyethylene formed by cold-drawn and annealed. Makromol Chem Rapid Commun, 1987, (8): 539~542
    [38] 胡继文,岑美柱等.应力场下聚丙烯熔体的结晶与硬弹性的形成.应用化学,1997,14(4):83~84
    [39] Takeji Hashimoto, Kikuo Nagatoshi, et.al. Deformation mechanism of "hard elastic polyethylene films". Polymer, 1976, 17 (12): 1063~1069
    [40] 史观一.β晶型聚丙烯研究.自然科学年鉴,1987,(2):48~64
    [41] Norton D R, Keller A. Spherulitic and Lamellar Morphology of Melt crystallized Isotactic Polypropylene. Polymer, 1985, 26 (5): 704~716
    [42] 王克智,李训刚,代燕琴.成核剂与聚烯烃的结晶改性.中国塑料,2001,15(1):1-5
    [43] 马承银,杨翠纯,陈红梅等.聚丙烯成核剂研究的进展.现代塑料加工应用,2002,14(1):41~44
    [44] 王朝晖,王锡臣,李涛.聚丙烯透明改性.中国塑料,2000,14(11):22~26
    [45] Khanna Y P. Rheological Mechanism and Overview of Nucleated Crystallization Kinetics. Macromolecules, 1993, 26 (14): 3639~3643
    [46] Smith T L, Masilamani D, Bui L K, et al. The Mechanism of Action of Sugar Acetals as Nucleating Agents for Polypropylene. Macromolecules, 1994, 27 (12): 3147~3155
    [47] Shepard T A, Dclsorbo C R, Louth R M, et al. Self-Qrganization and Polyolefm Nucleation Efficacy of 1, 3:2, 4-Di-p-Methylbenzylidene Sorbito. J Polym Sci Part B: Polym Phys, 1997, 35 (16): 2617~2628
    [48] Thorsten B, Ralf T, Rolf M. Two-Component Gelators and Nucleating Agents for Polypropylene Based upon Supramolecular Assembly. Macromolecules, 1998, 31 (22): 7651~7658
    [49] Miliner O, Titus G. Effect of DBS Nucleating Agents on Isotactic Polypropylene. Chemical Design Automation News, 1990, (5): 10~16
    [50] Thierry A, Straupe C, Lotz B, et al. Physical Gelation: A Path towards 'Ideal' Dispersion of Additive in Polymers. Polym Commun, 1990, 31 (7): 299~301
    [51] 郭敏怡,陈呜才,于莲,郑德.聚丙烯B晶成核剂研究进展.塑料,2004,33(2):38~42
    [52] Binsbergen F L, Delange B G M. Morphology of polypropylene crystallized form the melt. Polymer, 1968, 9:23~40
    [53] 冯嘉春,陈鸣才,黄志镗.硬脂酸镧复合物对聚丙烯β晶的诱导作用.高等学校化学学报,2001,22(1):154~156
    [54] 冯嘉春,陈鸣才.中国专利,Z L 00117339.1,2000
    [55] Lotz B, Stocker W, Schumacher M, et al, Epitaxial crystallization and AFM investigation of a frustrated polymer structure: Isotactic polypropylene, β phase. Macromolecules, 1998, 31 (3): 807~814
    [56] Garbarezyk J, Paukzta D. Influence of additives on the structure and properties of polymer [A]-2: polymorphic transition of i.sotactic polypropylene caused by aminosulphur compounds. Polymer, 1981, 22:562-564
    [57] Wittmann J C, Lotz B. Epitaxial crystallization of polyethylene on organic substrates: A reappraisal of the mode of action of selected nucleating agent. J Polym Sci, Polym Phys Edt, 1981,19:1837~1851
    [58] 史观一,张景云.β晶型聚丙烯的研究.科学通报,1981,12:731~733
    [59] 史观一,张景云,金禾生等.中国专利,CN 1004076B,1986
    [60] 黄美荣,李新贵,戚慰光等.β晶型等规聚丙烯的成核剂结构特征.高分子材料科学与工程,1994,(3):62~65
    [61] Kbanna Y P. Rheological mechanism and overview of nucleated crystallization kinetics. Macromolecules, 1993, 26 (14): 3639~3643
    [62] Fujiyama M, Wakino T. Structures and properties of injection moldings of crystallization nucleator-added polypropylenes. 1. Strectures property relationships. J Appl Polym Sci. 1991, 42 (10): 2739~2747
    [63] Fujiyama M, Wakino T. Distribution of higher-order structures in injection-molded polypropylenes. J Appl Polym Sci. 1991, 43 (1): 57~81
    [64] Sterzynski T, Lambla M, Crozier H. Structure and properties of nucleated random and block copolymers of propylene. Adv Polym Technol, 1994, 13 (1): 25~36
    [65] 李祖德主编.塑料加工技术应用手册.北京:中国物资出版社,1997:1206
    [66] 麦堪成,汪克风,曾汉民等.磷酸盐与山梨醇类成核剂成核PP样品等温结晶行为与熔融特性.中山大学学报,2002,41(1):43~45
    [67] Mai K C., Wang K, Han Z W, et al. Study on the thermal stability of heterogeneous nucleation effect of polypropylene nucleated by different nucleating agents. J Appl Polym Sci., 2002, 83 (8): 1643~1650
    [68] 李春成,朱光,李贞宣等.脱氢枞酸性聚丙烯成核剂的研究.高技术通讯,2001,(12):87~90
    [69] 钱欣,程蓉等.α和β成核剂对聚丙烯力学性能的影响.塑料工业,2003,31(2):5~8
    [70] 胡晓华,马进,雷军庆,臧疆山.成核剂对聚丙烯结晶性能形态及性能的影响.中国塑料,2002,16(5):66~68
    [71] 熊传溪,闻荻江.聚丙烯-锡复合材料的研究.复合材料学报,1999,16(3):40~45.
    [72] 祝景云,赵和英.β晶型成核剂对PP结晶行为及性能的影响.合成树脂及塑料,2004,21(5):23
    [73] 窦强,王斌.β晶型聚丙烯的力学性能与结晶行为研究.功能高分子学报,2001,14(3): 338~340
    [74] 沈静,任宏燕.β晶型聚丙烯室温抗冲性能改善的形态学依据.电子显微镜学报,1993,12(4):342~347
    [75] 张景云,史观一,曹友虹等.β晶型聚丙烯的力学性能.高分子通讯,1986,(4):241~244
    [76] 梁瑞凤,吴毓华.β型聚丙烯注塑件的分层结构与力学性能.高分子学报,1991,(2):190~195
    [77] 金日光,华幼卿.高分子物理.北京:化学工业出版社,2002:P36-37,P126-127,P200
    [78] 许元泽.高分子结构流变学.成都:四川教育出版社,1988:100
    [79] Cogswell F N. Converging flow of polymer melts in extrusion dies. Polymer Engineering and Science, 1972, 12 (1): 64
    [80] Andrzej Wlochowicz. Distribution of lamella thicknesses in isothermally crystallized polypropylene and polyethylene by differential scanning calorimetry. Polymer, 1984, 25 (9): 1268~1270
    [81] T Labour, C Gauthier, R Seguela, G Vigier, Y Bomal, G Orange. Influence of the β-Crystalline Phase on the Mechanical Properties of Unfilled and CaCO_3-filled Polypropylene Ⅰ. Structural and Mechanical Characterisation. Polymer, 2001, 42:7127~7135
    [82] 吴人杰.现代分析技术在高聚物中的应用.上海科学技术出版社.1987:346~348
    [83] Turner-Jones A, Aizlewood J M, Beckett D R. Macromol Chem, 1964, 75:134~158
    [84] 金日光.高聚物流变学及其在加工中的应用.北京:化学工业出版社,1986:1
    [85] Lama H M, H Schuch. Transient elongational viscosities and drawability of polymer melts. Journal of Rheology, 1989, 33 (1): 119
    [86] Zatloukal, Martin, Stach Petr, Liu Pengbo, Saha Petr. Tensile Strength Characteristics of Polymer Melts. International Polymer Processing, 2002, ⅩⅦ(3): 223
    [87] 何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,1993:263
    [88] 樊卫华,刘玉坤,白娟,王经武,陈金周.HDPE/E-TMB共混物熔体的流变行为研究.塑料工业,2005,33(15):39~41
    [89] 吴其晔,巫静安.高分子材料流变学.北京:高等教育出版社,2002:59
    [90] 胡继文,黄勇,沈家瑞.硬弹性聚丙烯中空纤维的形成.膜科学与技术,2002,22(5): 21~24
    [91] 胡继文,黄勇,沈家瑞.聚丙烯中空纤维膜的微孔结构的控制.功能高分子学报,2002,15(3):24~28
    [92] Ville Virkkunena, Pasi Laaria, Paivi Pitkanen, Franciska Sundholm. Tacticity distribution of isotactic polypropylene prepared with heterogeneous Ziegler-Natta catalyst. 1. Fractionation of polypropylene. Polymer, 2004, 45:3091~3098
    [93] Zhang S G, Qiu X Z. Makromol Chem. 1992, 193:583
    [94] 熊芬,肖兆新,鲁德平,管蓉.α-成核剂对聚丙烯结晶性能和形态的影响.现代塑料加工应用,2006,18(1):39~42
    [95] GREIN C, PLUMMER C J G, KAUSCH H H, et al. Influence of β Nucleation on the Mechanical Properties of Isotactic Polypropylene and Rubber Modified Isotactic Polypropylene. Polymer, 2002, 43:3279
    [96] 潘鉴元,朱诚身,杨始堃等.等规聚丙烯β晶形态研究.高分子学报,1987,(6):432.
    [97] 李良训,卢善真,郭群.化学降解改性剂对聚丙烯纺丝成形的影响.合成纤维,1999,28(2):16~18
    [98] 陈稀,仲蕾兰,屈凤珍等.国产Z30S聚丙烯纺制细旦丙纶复丝的研究.合成纤维工业,1995,18(2):1~5