稻草γ辐照降解效果及酶解工艺优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
积极开发可再生能源是应对能源危机和环境污染的有效途径之一。生物质能源是全球储存量最丰富的可再生能源之一。生物质能源的生产原料主要是存量丰富的天然木质纤维素。如何有效破坏天然木质纤维素原料的结构以提高其酶解反应性能是目前生产生物乙醇的瓶颈。目前,物理、化学、生物、物理化学、组合方法等方法广泛应用于天然木质纤维素原料的预处理,但这些方法都存在如效率低、成本高、污染环境等缺点,故寻找新的方法是非常必要的。
     本研究建立和完善了稻草纤维素、半纤维素、木质素含量的分析方法,分析测定了60Coγ射线辐照处理的稻草纤维素、半纤维素、木质素含量;采用离子色谱定性、定量测定水溶性糖;采用扫描电镜观察稻草表观形态变化;采用FTIR仪对辐照的单糖、寡糖、纯纤维素及木质素结构分析;研究稻草辐照结合酶解进行糖化效果;优化了辐照酶解参数,建立了稻草辐照酶解的优化工艺;研究了分别经辐照预处理和蒸汽爆破预处理稻草中各种水溶性糖的含量和同一条件下酶解效果,为稻草产辐照预处理技术提供了理论依据和技术支撑。本文的主要研究结果如下:
     1稻草成分分析方法
     建立稻草纤维素、半纤维素、木质素含量测定方法。先测定中性洗涤纤维和酸性洗涤纤维含量,再用70%乙酸溶解木质素;根据差重计算出纤维素、半纤维素、木质素含量分别为35.88%、23.98%、11.19%。
     采用离子色谱测定稻草中水溶性糖。未经预处理的稻草中水溶性糖只有少量的乳果糖、葡萄糖和纤维二糖。
     2辐照预处理后稻草纤维素、半纤维素、木质素含量变化
     在0kGy-2000kGy剂量范围内,纤维素和半纤维素含量随辐照剂量升高而降低;纤维素含量从30.73%降低到21.93%,半纤维素从10.15%降低到5.28%;木质素含量从8.88%降低到7.25%。
     3辐照预处理后稻草表观形态变化
     采用扫描电镜观察辐照预处理后稻草表观形态的变化。稻草表面形态在低剂量辐照下没有变化;在800kGy剂量以上孔度变多,表面变得疏松、不平整,特别是在2000 kGy剂量辐照下变化剧烈,内表面孔隙变更大。
     4辐照处理后单糖、寡糖、纯纤维素及木质素结构特征分析
     采用红外光谱仪分析辐照处理后单糖、寡糖、纯纤维素及木质素结构特征分析。辐照预处理后,单糖、寡糖和纯纤维素中C-O-C结构氧化降解产生C=O功能团;木质素的苯环结构发生变化。
     5稻草酶解工艺优化研究
     采用L9(34)正交试验优化得到稻草酶解最佳条件:酶解温度为45℃,酶用量180 U.g-1,酶解时间60h,液固比为60:1。酶解温度、酶用量和酶解时间对稻草酶解产糖影响显著;液固比影响不显著。
     6稻草辐照酶解的工艺优化研究
     采用L9(34)正交试验优化得到稻草辐照酶解最佳条件:酶用量150 U.g-1,辐照剂量800kGy,酶解时间48h,液固比50:1。酶用量和辐照剂量对稻草酶解产糖影响显著;酶解时间和液固比影响不显著。
     7稻草辐照预处理与蒸汽爆破预处理对比
     通过研究预处理对稻草水溶性糖和酶解效果的影响,明确辐照预处理比蒸汽爆破预处理效果好。与辐照预处理相比,经蒸汽爆破预处理稻草的葡萄糖和木糖总量较小,水苏糖、棉子糖和葡萄糖醛酸产量较大;在相同酶解条件下,经800 kGy处理和2.0Mpa 2.0min蒸汽爆破预处理稻草葡萄糖和木糖总量分别达到90.355 mg.g-1和85.448mg.g-1。
To actively develop renewable energy is an alternative way to cope with the energy crisis and environmental pollution.The biomass energy is one of the most abundant renewable energy source. The major raw material of biomass energy is natural lignocellulose. How to disrupt lignocellulose structure and to improve enzymatic hydrolysis is the bottleneck of biofuel product.At present, there are many methods have been widely used to pretreat natural lignocellulose materials, such as physical method, chemical method, biological method, physical & chemical method, combining method and so on. However,there are some drawbacks,such as low efficiency, high cost,pollut environment and so on.Therefore it is necessary to develop new pretreative technology.
     The analysis method was establish to determine the content of the cellulose, hemicellulose and lignin of 60Co y-rays irradiated rice straw. Soluble sugars were measured qualitatively and quantitatively by Ion chromatography.The apparent structures of irradiated rice straw were scanned by electronmicroscope.
     The structures of irradiated monosaccharide,oligosaccharide,pure cellulose and lignin were analysed by Infrared transform spectrometer.Treated by both irradiation and enzyme,rice straw's saccharification effect was researched.Parameters of irradiation and enzymolysis of rice straw were studied and optimization technology were established.Water-soluble sugars and enzymolysis effect of rice straw were researched, which was pretreated by irradiation and steam explosion respectively.These researches provide theoretical and technical supports for irradiation pretreatment.The experimentsal results as follows:
     1 Analytical methods of rice straw's composition
     The method to determine cellulose,hemicellulose and lignin content was established.NDF and ANF were measured at first,then using 70% acetic acid to dissolve lignin. According to sent heavy, the contents of cellulose, hemicellulose and lignin in rice straw were 23.98%,35.88%,11.19% respectively.
     Water-soluble sugars in rice straw were determined by IC. There were a little lactulose, glucose and cellobiose in rice straw without pretreatment.
     2 The variation of cellulose, hemicellulose and lignin content in irradiated rice straw
     The variation of cellulose, hemicellulose and lignin content in irradiated rice straw was acquired definitely.From OkGy to 2000kGy, with irradiation dose rising, the content of cellulose was reduced from 30.73% to 21.93%; the content of hemicell uloserise was 10.15% to 5.28%; the contents of lignin was reduced from 8.88% to 7.25%.
     3 Analysis the apparent structures of irradiated rice straw
     The apparent structures of irradiated rice straw was analysed by SEM.The apparent structures of irradiated rice straw had no change at low dose,but above 800kGy doses,it becomed porosity and loose. Internal surface becomed more porosity at 2000 kGy.
     4 Analysis the structural feature of irradiated monosaccharide, oligosaccharide, pure cellulose and lignin
     The structural feature of irradiated monosaccharide, oligosaccharide, pure cellulose and lignin was analysed by Infrared spectrometer. The C-O-C structure in monosaccharide,oligosaccharide and pure cellulose was oxidatived to C=O structure. The cyclobenzene of lignin was influenced by irradiation treatment.
     5 Optimization of enzymolysis of rice straw
     Optimal enzymatic hydrolysis conditions of rice straw were 45℃enzymatic hydrolysis temperature,180U/g enzyme dosage,60h enzymatic hydrolysis time and 60:1 liquid-solid ratio. It was optimized by Lg(34) orthogonal experiment. The influence of enzymatic hydrolysis temperature, enzyme dosage, enzymatic hydrolysis time was significant. The influence of liquid-solid ratio was not significant.
     6 Optimization of enzymolysis of irradiated rice straw
     Optimal enzymatic conditions of irradiated rice straw were 150 U/g enzyme dosage, 800kGy irradiational dose,48h enzymatic hydrolysis time and 50:1 liquid-solid ratio. It was optimized by L9(3) orthogonal experiment. The influence of enzyme dosage and irradiational dose was significant. The influence of enzymatic hydrolysis time and liquid-solid ratio was not significant.
     7 Contrast y-irradiation and steam explosion pretreatment to rice straw
     Contrast y-irradiation and steam explosion pretreatment to rice straw.Compared to irradiative pretreatment, the content of glucose and xylose in steam explosive rice straw was smaller.But the contents of stachyose, gossypose and glucuronic acid were larger. At the same enzymatic conditions, the contents of glucose and xylose were 90.355 mg/g and 85.448 mg/g respectively,which from 800kGy dose and 2.0 Mpa 2.0 min steam explosion pretreatment rice straw respectively.
引文
[1]毕于运,王亚静,高春雨.中国主要秸秆资源数量及其区域分布[J].农机化研究,2010,3(3):234-237.
    [2]包雪梅,张福锁,马文奇.我国作物秸秆资源及养分循环研究[J].中国农业科技导报,2003,5:14-17.
    [3]田双起,王振宇,左丽丽,等.木质纤维素预处理方法的最新研究进展[J].资源开发与市场,2010,26(10):903-908.
    [4]李建政,汪群慧.废物资源化与生物能源[M].北京:化学工业出版社,2004.
    [5]陈洪章.纤维素生物技术[M].北京:化学工业出版,2005
    [6]US Department of Energy.International Energy Outlook 2004.DOE/EIA-0484(2004). Washington DC:Energy Information Administration[J],US Department of Energy,2004.
    [7]哈益明,刘世明.甲基纤维素辐射降解及工艺研究[J].激光生物学报,2001,10(2):112-114.
    [8]程成华,李建.现代中国水稻[M].金盾出版社,2010.
    [9]罗学刚.高纯木质素提取与热塑改性[M].北京:化学工业出版社,2007.
    [10]Lee JW,Gwak KS,Park JY,et al.Biological pretreatment of softwood Pinus densiflora by three white rot fungi[J].J Microbiol,2007,45(6):485-491.
    [11]张鑫,刘岩.木质纤维原料预处理技术的研究进展[J].纤维素科学与术,2005,13(2):54-58.
    [12]于斌,齐鲁.木质纤维素生产燃料乙醇的研究现状[J].化工进展,2006,25(3):244-24.
    [13]Sun Y,Cheng J.Hydrolysis of lignocellulosic materials for ethanol production:a review[J]. Bioresource Technol,2002,83:1-11.
    [14]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学出版社,1999.
    [15]朱圣东,吴元欣,喻子牛,等.微波预处理稻草糖化工艺研究[J].林产化学与工业,2005,25(1):112-114.
    [16]熊犍,叶君,梁文芷,等.微波对纤维素Ⅰ超分子结构的影响[J].华南理工大学学报(自然科学版),2000,28(3):85-88.
    [17]Kitchaiya P,IntanakulP,Krairish M. Ehancement of enzymatic hydrolysis of Lignocellulosic wastes by microwave pretreatment under atmospheric pressure [J]. Wood Chem Tehcnol, 2003,23(2):217-225.
    [18]Khmelev VN,Tsyganok S N,Khmelev S S,et al.Ultrasonic Device for Intensification of Extrusion Process of Fibrous Material Edm[C].2009 10th International Conference and Seminar on Micro/Nanotechnologies and Electron Devices,2009:290-293.
    [19]唐爱民,梁文芷.超声波预处理对速生材木浆纤维结构的影响[J].声学技术,2000,19(2):78-85.
    [20]李松晔,刘晓非,庄旭品,等.棉浆粕纤维素的超声波处理[J].应用化学,2003,20(11):1030-1034.
    [21]任世学,方桂珍.超声波处理对麦草碱木质素结构特性的影响[J].林产化学与工业,2005,25(10):82-86.
    [22]唐爱民,梁文芷.纤维素预处理技术的发展[J].林产化学与工业,1999,19(4):81-88.
    [23]许洪林,张文辉.60Co-γ辐照引发的木材自由基[J].辐射研究与辐射工艺学报,1994,12(4):214-219.
    [24]李宝忠,张利华,于家艳.辐照聚酰胺1010的后效应[J].辐射研究与辐射工艺学报,1996,14(3):153-156.
    [25]宫宁瑞,常德华,张剑容,等.棉纤维素辐射降解的后效应[J].北京理工大学学报,1998,18(5):647-649.
    [26]哈益明,刘世明.甲基纤维素辐射降解及工艺研究[J].激光生物学报,2001,10(2):112-114.
    [27]张琳,顾汉泉,高仁孝.辐射对纤维素结晶度的影响[J].火炸药学报,2002,1:76-77.
    [28]陈静萍,王克勤,彭伟正,等.60Co-γ射线处理稻草秸秆对其纤维素酶解效果的影响[J].激光生物学报,2008,17(1):39-42.
    [29]马瑞德,周瑞敏,陈驹声.植物纤维素的辐射裂解及酶水解[J].工业微生物,1986,6:21-25.
    [30]Khan F,Ahmad S R,Kronni E.Radiation induced changes in the physical andchemical properties of lignocellulose[J].Biomacromolecules,2006,7:2303-2309.
    [31]Khan F,Ahmad S R,Kronni E. y-Radiation induced changes in the physical and chemical properties of lignocellulose[J]. Biomacromolecules,2006,7:2303-2309.
    [32]Ko J K,Bak J S,JungMW,et al.Ethanol Production from Rice StrawUsing Optimized Aqueous-ammonia Soaking Pretreatment and Simultaneous Saccharification and Fermentation Processes[J].Bioresource Technol,2009,(100):4374-4380.
    [33]Koullas D P,Christakopoulos P,Kekos D,Macris B J,Koukios E G. Correlating the effect of pretreatment on the enzymatic hydrolysis of straw[J].Biotechnol Bioeng,1992,38:113-116.
    [34]何艳峰,李秀金,方文杰,等NaOH固态预处理对稻草中纤维素结构特性的影响[J].可再生能源,2007(5):31-34.
    [35]Wang Z Y,Keshwani D R,Redding A P,et al.SodiumHydroxide Pretreatment and Enzymatic Hhydrolysis of Coastal Bermuda Grass[J].Bioresource Technol,2010,(101):3583-3585.
    [36]陈为民.作物秸秆主要处理技术的研究[J].宁夏农林科技,2003,6:86-87.
    [37]Frederick W J,Lien S J,Courchene C E,et al.Production of Ethanol from Carbohydrates from Loblolly Pine:A Technical and Economic Assessment [J].Bioresource Technol,2008,(99):5051-5057.
    [38]Torget,R,Walter,P.J.,GrohmannmK. Dilute acid pretreatment of corn residures and short rotation woody crops[J].Applied Biochemistry and Biotechnology,1991,28:75-86.
    [39]Tucker,M.P.Km,K.H.,Nguyen,Q.A.Effects of corn stover and cellulose enzyme digestibility [J].Applied Biochemistry and Biotechnology,2003,105:165-178.
    [40]Kim K H,Tucker M P,Nguyen Q A.Effects of Pressing Lignocellulosic Biomass on Sugar Yield inTwo-stage Dilute-acidHydrolysisProcess[J]. Biotechnol Progr,2002,(18):489-494.
    [41]Sun Y,Cheng J Y.Hydrolysis of Lignocellulosic Materials for Ethanol Production:A Review. Bioresource Technol,2002,(83):1-11.
    [42]Vidal P F,Molinier J.Ozonolysis of ligin improvement of in vitro digestibility of polor sawdust[J].Biomass,1998,16:1-17.
    [43]Sugimoto T,Magara K,Hosoya S,et al.Ozone Pretreatment of Lignocellulosic Materials for Ethanol Production:Improvement of Enzymatic Susceptibility of Softwood[J].Holzforschung, 2009,(63):537-543.
    [44]KUMAR P,BARRETT D M,DELWICHE M J,et al.Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production[J].Ind Eng Chem Res,2009,48(8):3713-3729.
    [45]CHEN H Z,LIU L Y.Unpolluted fractionation of wheatstraw by steam explosion and ethanol extraction[J].Bioresource Technol,2007,98(3):666-676.
    [46]FERNANDEZ-BOLANOS J,FELIZON B,HEREDIA A. Steam-explosion of olive stones: Hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose[J]. Bioresource Technol,2001,79(1):53-61.
    [47]Curreli N,Fadda M B,Rescigno A,et al.Mild alkaline/oxidative pretreatment of wheat straw[J].Process Biochemistry,1997,32(8):665-670.
    [48]Kyoung Heon Kim,Hong Juan.Supercritical CO2pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis [J].Bioresource Technology,2001,77(2):139-144.
    [49]王蔚,高培基.褐腐真菌木质纤维素降解机制的研究进展[J].微生物学通报,2002,29(3):90-93.
    [50]Elisashvili V,Kachlishvili E,Penninckx M.Effect of growth substrate,method of fermentation,and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes[J].J Ind Micro-biol Biotechnol,2008,35(11):1531-1538.
    [51]徐春燕,张小昱,马福英,等.两类担子菌处理玉米秸秆的比较研究[J].中国食用菌,2009,28(6):35-38.
    [52]SunY,ChengJY.Hydrolysis of lignocellulosic materials for ethanol production:a review [J]. Bioresour Technol,2002,83(1):1-11.
    [53]Zhu SD,Wu YX,Yu ZN,et al.The effect of microwave irradiation on enzymatic hydrolysis of rice straw[J].Bioresour Technol,2006,97(15):1964-1968.
    [54]Mosier N,Wyman C,Dale B,et al.Features of promising technologies for pretreatment of lignocellulosic biomass[J].Bioresour Technol,2005,96 (6):673-686.
    [55]常景玲,李慧.预处理对作物秸秆纤维素降解的影响[J].江苏农业科学,2006,(4):177-179.
    [56]李辉勇,黄可龙,金密,等.碱性臭氧预处理对稻草酶水解的影响[J].化学与生物工程,2009,26(10):60-62.
    [57]王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木素的定量分析程序[J].微生物学通报,2002,(1):81-84.
    [58]鲁爱华,袁兴中,康广博,等.稻草经超声波辅助预处理后酶解过程的动力学研究[J].环境工程学报,2010,4(6):1399-1404.
    [59]杜甫佑,张晓昱,王宏勋.木质纤维素的定量测定及降解规律的初步研究[J].生物技术,2004,14(5):46-48.
    [60]石淑兰,何福望.制浆造纸分析与检测[M].中国轻工业出版社,2002.
    [61]翁诗甫.傅里叶变换红外光谱分析[M].化学工业出版社,2010.
    [62]叶海辉,何秀芬,王秀兰.费林试剂滴定法测定还原糖方法的改进[J].热带农业科学,2001,(3):9-11.
    [63]齐香君,苟金霞,韩戌瑶,等.3,5-二硝基水杨酸比色法测定溶液中还原糖的研究[J].纤维素科学与技术,2004,12(3):17-20.
    [64]郑雪红,郑爱榕,陈祖峰.气相色谱法分析海洋胶体多糖中的单糖组成[J].分析测试学报,2004,(4):15-17.
    [65]王璐,耿永勤,王岚,等.烟草中主要糖的高效液相色谱法测定研究[J].云南大学学报(自然科学版),1(31):31-34.
    [66]耿越,赵相轩,花义山,等.高效毛细管电泳法测定蜂蜜中单糖的含量[J].食品科学,2002,23(1):785-787.
    [67]唐坤甜,梁立娜,蔡亚岐,等.高效阴离子交换色谱分离-脉冲安培检测法测定烟草料液中 的糖、糖醇和醇类化合物[J].分析化学研究报告,2007,35(9):1274-1278.
    [68]王荔,陈巧珍,宋国新,等.高效阴离子交换色谱-脉冲安培检测法测定烤烟中的水溶性葡萄糖、果糖和蔗糖[J].色谱,24(2):201-204.
    [69]杨淑惠.植物纤维化学[M].北京:中国轻工业出版社,2008:69-81.
    [70]潘亚非,邢亚铣.米糠中戊聚糖气相色谱分析测定方法研究[J].动物营养学报,1997,9(3):45-49.
    [71]陈惠萍,谭文良,邢廷铣.混合糠中戊聚糖的化学分析测定方法[J].饲料研究,1996(7):22-23.
    [72]李胤,陆健,顾国贤.啤酒中戊聚糖的测定——地衣酚-盐酸法[J].食品与发酵工业,2003,29(9):35-38.
    [73]李利民,朱永义,宫俊华,等.谷物中戊聚糖含量测定方法的比较研究[J].郑州工程学院学报,2004,25(3):64-66.
    [74]Zimmermann T, PohterE,GergerT. Cellulose fibrils for polymer reinforcement[J].Adv Eng Mater,2004,6(9):754-761.
    [75]詹怀宇.纤维化学与物理[M].北京:科学技术出版社,2005:226-316.
    [76]姚穆,孙润军,陈美玉.植物纤维素、木质素、半纤维素等的开发和利用[J].精细化工2009,26(10):837-941.
    [77]罗学刚.高纯木质素提取与热塑改性[M].北京:化学工业出版社,2008.
    [78]薛惠琴,杭怡琼,陈谊.稻草秸秆中木质素、纤维素测定方法的研讨[J].上海畜牧兽医通讯,2001,2:15.
    [79]王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木质素的定量分析程序[J].微生物学通报,1987(2):82-84.
    [80]齐香君,苟金霞,韩戌珺等.3,5-二硝基水杨酸比色法测定溶液中还原糖的研究[J].纤维素科学与技术,2004,12(3):17-30.
    [81]陈伟才.糖蛋白寡糖及单糖色谱分析的研究进展[J].天津药学,2000,11(4):358-362.
    [82]王静,王晴,向文胜.色谱法在糖类化合物分析中的应用[J].分析化学2001,29(2):45-48.
    [83]刘庆生,张萍,范志影.离子色谱法检测糖[J].Modem Scientific Instruments 2005,1:75-78.
    [84]王荔,陈巧珍,宋国新.高效阴离子交换色谱-脉冲安培检测法测定烤烟中的水溶性葡萄糖、果糖和蔗糖[J]. Chinese Journal of Chromatograph,2006,24(2):201-204.
    [85]Xuebing Zhao,Lingmei Dai,Dehua Liu.Characterization and Comparison of Acetosolv and Milox Lignin Isolated from Crofton Weed Stem [J]. Journal of Applied Polymer Science, vol. 2009,114:1295-1302.
    [86]鲁爱华,袁兴中,康广博,等.稻草经超声波辅助预处理后酶解过程的动力学研究[J].环境工程学报,2010,4(6):1399-1404.
    [87]郑金贵.水稻秸秆品质化学与遗传改良[M].厦门:厦门大学出版社,2003.
    [88]Sanchez O J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks [J]. Bioresource Technology,2008,99:5270-5295.
    [89]Sun Y, Cheng J.Hydrolysis of lignocellulosic materials for ethanol production:a review [J].BioresourceTechnology,2002,83:1-11.
    [90]MosierN,Wyman C,Dale B,etal.Features ofpromising technologies for pretreatment of lignocellulosic biomass [J].Bioresource Technollogy,2005,96:673-86.
    [91]孙万里,陶文沂.稻草秸秆3种预处理方法的比较[J].精细化工,2009,26(7):656-674.
    [92]陈东,陆琦,黄俊,等.稻草超高压爆破前处理研究[J].广西科学,2009,16(2):180-184.
    [93]刘洪凤,俞镇慌.秸秆纤维性能[J].东华大学学报(自然科学版),2002,28(2):123-128.
    [94]李辉勇,黄可龙,金密,等.稻草秸秆的碱性臭氧预处理效果[J].农业工程学报,2010,26(4):264-268.
    [95]廖双泉,邵自强,马凤国,等.剑麻纤维蒸汽爆破处理研究[J].纤维素科学与技术,2002,10(1):46-56.
    [96]蒋挺大.木质素[M].化学工业出版社,2001.
    [97]张桂梅,廖双泉,海兰,等.木质素的提取方法及综合利用研究进展[J].热带农业科学,2005,25(1):66-70.
    [98]王三反,张国俊,薛向东,等.木质素及造纸黑液的碱析法处理机理[J].中国给水排水,2002,18(6):51-53.
    [99]赵士举,陶京朝.高沸点溶剂法从麦草中提取木质素的研究[J].河南化工,2008,(25):81-83.
    [100]周梅村.仪器分析[M].华中科技大学出版社,2008.
    [101]邵自强.天然纤维素高压闪爆改性及其应用研究[J].北京理工大学博士后研究报告,2000,(4):112-114.
    [102]陈洪章,李佐虎.麦草蒸汽爆碎处理的研究Ⅱ麦草蒸汽爆破处理作用机制分析[J].纤维素科学与技术,1999,7(4):14-22.
    [103]邬义明.植物纤维化学[M].北京:中国轻工业出版社,1997.
    [104]秋增昌,王海毅.木质素的应用研究现状与进展[J].西南造纸,2004,33(3):29-33.
    [105]Kim, T.H., Taylor, Frank, Hicks, K.B.. Bioethanol production from barely hull using SAA (soaking in aqueous ammonia)pretreatment[J].Bioresource Technology,2008,99(13):5694-5702.
    [106]Jacobsen, S.E, Wyan, C.E.. Cellulose and hemicelulose hydrolysis models for application to current and novel pretreament processes[J]. Applied Biochemistry and Biotechnology,2000, (84):81-96.
    [107]李言郡,刘小杰,陈启和.利用稻草粉酶解产乙醇的初步研究[J].中国酿造,2006,162(9):16-18.
    [108]康广博,袁兴中,曾光明,等.酸-超声波预处理及糖化水解稻草研究[J].农业环境科学学报2009,28(2):375-379.
    [109]朱圣东,吴元欣,喻子牛,等.微波预处理稻草糖化工艺研究[J].林产化学与工业,2005,25(1):112-114.
    [110]杨长军,汪勤,杨平.绿色木霉和黑曲霉协同酶解稻草秸秆纤维素的效果研究[J].酿酒科技,2010,10(196):32-35.
    [111]刘娜,石淑兰,张小英.小麦秸秆转化为可发酵糖的研究[J].可再生能源,2005,3:21-24.
    [112]张木明,徐振林,张兴秀,等.预处理对稻草秸秆纤维素酶解产糖及纤维素木质素含量的影响[J].农产品加工,2006,3:4-6.
    [113]SUNY, CHENGJ.Hydrolysisoflignocellulosicmaterialsforethanolproduction[J]. Bioresource Technology,2002,83:1-11.
    [114]王许涛,周恒涛,张百良.秸秆生产乙醇的预处理方法分析[J].安徽农业大学,2007,35(22):6883-6886.
    [115]陈洪章,李佐虎.无污染秸秆汽爆新技术及其应用[J].纤维素科学与技术,2002,10(3):47-51.
    [116]何源禄,王玉华.苏联植物纤维原料辐射水解研究进展[J].核技术,1987,2:1-6.
    [117]Mackie K L,Brownell H H,West K L,et al.Effect of sulphur dioxide and sulphuric acid on stream explosion of aspenwood[J].Journal of Wood Chemistry and Technology,1995,5(3): 405-425.
    [118]唐述祥,周瑞敏.用辐射处理浆粕制造粘胶纤维的研究[J].上海大学学报(自然科学版),2000,6(6):558-560.