造纸黑液中木质素的提取与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机与环境污染问题日益严重,给全球带来了巨大的压力,人们逐渐将目光转移到废物利用上来,这不仅可以充分地利用资源,节约能源,而且可以有效地减少环境污染,提高环境质量。
     造纸黑液是制浆造纸工艺中主要的副产物,黑色粘稠状液体,伴有特殊恶臭味,并且含有20%~30%的木质素,由于木质素结构复杂,生物降解难,因此是全球主要污染源之一。
     木质素是植物体次生代谢合成的天然芳香族有机高分子物质,是自然界中第二丰富的自然资源,仅次于纤维素,具有可再生性。由于木质素含碳量大,并且表面富含多种官能团,尤其是羟基基团,因此可以将其应用于活性炭的制备和部分替代双酚A型环氧树脂的制备中。
     本论文研究的意义在于:1.扩大了活性炭制备的原料来源,降低成本,节约能源;2.利用天然无毒高分子物质木质素部分替代有毒物质双酚A制备环氧树脂,提高了环氧树脂产品的安全性;3.对造纸黑液的充分利用,减少了污染的排放,同时有效地利用了自然资源,对环境保护起到了积极的作用。
     本论文以造纸黑液为原料,利用酸提取法提取木质素,并将木质素处理成球形;再以木质素粉末为原料,利用磷酸化学活化法制备球形活性炭;并利用水热法在碱性条件下使木质素溶液与环氧氯丙烷反应,部分替代双酚A制备环氧树脂,为造纸黑液中木质素的应用提供了可行性途径。
     在恒温水浴中,利用酸提取法在反应温度为90℃,pH值为2,反应时间为8h的条件下提取造纸黑液中的木质素,收率较高,纯度较好,形貌基本呈球形,粒度分布均匀,颗粒直径大约为100nm左右,表面官能团破坏性小。同时,利用此提取法提取造纸黑液中的木质素成本较低,操作简单易行。
     再以球形木质素粉末为原料,利用磷酸活化法制备活性炭,在浸渍比为1:7,碳化温度为700℃,反应时间为1h的条件下,制备出的活性炭BET比表面积可高达1797m2/g,含碳量高达68.0wt%,孔径分布以微介孔为主,灰分含量较低,并且活性炭形貌呈球形颗粒状。
     利用木质素部分替代双酚A制备环氧树脂,考察了反应温度、木质素添加量对环氧树脂性能的影响。实验证明,所制得的环氧树脂环氧值范围为0.0548~0.0976mol/100g,粘度最大可达到408mPa·s,粘度越大说明聚合程度越高,分子量越大。
As energy crisis and environmental pollution are becoming more serious problem,increasing global pressure to recycle and reuse waste has become necessitated. Notonly can make full use of resources, economize energy, but also can effectively reduceenvironmental pollution and improve environmental quality.
     Pulping black liquor is one of the main by-products of the paper industry, and isconsidered a pollutant because it is a kind of black and viscous liquid with specialodor, and contains20%-30%of lignin. The complex structure of lignin is verydifficult for biodegradation, so it is one of the world's major sources of pollution.
     Lignin is the second most abundant natural and renewable raw material aftercellulose, and is a mixture of polyphenolic compounds with a rather complexchemical structure. Due to the large amount of carbon content of lignin and a varietyof functional groups on the lignin surface, especially hydroxyl groups, it can beapplied in the preparation of activated carbon and partial substitute for bisphenol Atype epoxy resin.
     The significance of this thesis is:1. It expands the source of the raw materials forpreparation of activated carbon, reduces the cost and economizes the energy.2. Thenatural non-toxic polymer material of lignin partly insteads of the toxic substances ofbisphenol A in the preparation epoxy resin, and it can improve the safety of the epoxyproducts.3. Making full use of pulping black liquor to reduce pollution emissions,and making efficient use of natural resources have played a positive role inenvironmental protection.
     This thesis supplies a method of extraction and two aspects of application of thelignin from pulping black liquor. The lignin was extracted by acid precipitation,activated carbon was prepared by phosphoric acid activation method, and epoxy resinwas synthesized by hydrothemal method.
     Spherical lignin with highest extraction yield, better purity, good dispersivity,particle size of about100nm was produced under mild reaction conditions, that is, thereaction was at90oC with pH=2for8h, and surface functional groups were notdestroyed seriously. The key features of this methodology are its operationalsimplicity and low cost.
     The spheroidal microporous/mesoporous activated carbon was activated spheroidallignin by H3PO4at700oC with impregnation ratio of1:7and reaction time of1h. TheBET surface area was1797m2g1, and the high carbon content was68.0wt.%.Furthermore, the ash content was very low.
     Replacing bisphenol A by the lignin partly to prepare epoxy resin, the effects of thelignin content and reaction temperature on the epoxy resin property were discussed inthis thesis. The results showed that the epoxy value range was0.0548~0.0976mol/100g, the largest viscosity was408mPa·s, polymerization was higher, and themolecular weight was larger.
引文
[1]武书斌.造纸工业水污染控制与治理技术[M].北京:化学工业出版社,2001:12-14.
    [2] CHI Y L, LV S N, HE Q, et al. Raw skin wastes-used to prepare a flocculant forthe treatment of black liquor from papermaking[J]. Journal of The Society of LeatherTechnologists and Chemists,2011,95(5):209-214.
    [3] DAI K, ZHAI H M. Effect of black liquor on wheat straw soda-aq cooking andlignin[J]. Research Progress in Paper Industry and Biorefinery (4th. Isetpp),2010,1-3:1033-1036.
    [4] HüTTERMANN A, KHARAZIPOUR C M A. Modification of lignin for theproduction of new compounded materials[J]. Applied Microbiology andBiotechnology,2001,55:387-394.
    [5] NADJI H, DIOUF P N, BENABOURA A, et al. Comparative study of ligninsisolated from Alfa grass (Stipa tenacissima L.)[J]. Bioresource Technology,2009,100:3585-3592.
    [6] BAKER D A, GALLEGO N C, BAKER F S. On the characterization and spinningof an organic-purified lignin toward the manufacture of low-cost carbon fiber[J].Journal of Applied Polymer Science,2012,124(1):227-234.
    [7]刘全校,杨淑蕙,朱玲利.酸沉淀提取制浆黑液中的木质素[J].黑龙江造纸,2000(4):15-17.
    [8]周长玲,姜子忠,许易真.草浆黑液硫酸酸析木素的工艺条件[J].东北林业大学学报,2000,28(1):45-47.
    [9]杨益琴.稻麦草蒸煮废液的酸沉淀性能[J].南京林业大学学报(自然科学版),2003,27(3):70-72.
    [10]王三反,张国俊,薛向东,等.木质素及造纸黑液的碱析法处理机理[J].中国给水排水,2002,18(6):51-53.
    [11]张运展,班卫平,高学明,等.制浆废液中溶解木素的壳多糖可絮凝性[J].大连轻工业学院学报,2003,22(1):1-4.
    [12]程贤甦,方华书,陈跃先,等. HBS木质素的制备方法及其性质[J].福州师专学报,2002,22(2):104-105.
    [13] KAJIMOTO J, SANO Y, WIDODO W E, et al. Deligninfication mechanismduring high-boiling solvent pulping[J]. Kamipakyokaishi,2000,54(9):88-95.
    [14]陈为健,程贤甦,方华书,等.高沸醇溶剂法提取花生壳中木质素的研究[J].花生学报,2003,32(2):7-11.
    [15]李仲民,童张法.超滤法回收造纸黑液中的木质素的研究[J].化学工程,2003(1):49-52.
    [16]吴钩.可再生材料木质素的新用途[J].国外塑料,2002(2):35-36.
    [17] OUYANG W Z, HUANG Y, LUO H J, et al. Poly(Lactic acid) blended withcellulolytic enzyme lignin: mechanical and thermal properties and morphologyevaluation[J]. Journal of Polymers and The Environment,2012,10:1-9.
    [18] MOILANEN U, KELLOCK M, GALKIN S. The laccase-catalyzed modificationof lignin for enzymatic hydrolysis[J]. Enzyme and Microbial Technology,2011,49:492-498.
    [19] NGUYEN D, NGUYEN T T B, DUONG L D, et al. An eco-friendly andefficient route of lignin extraction from black liquor and a lignin-based copolyestersynthesis[J]. Pplymer Bulletin,2012,68(3):879-890.
    [20] Bozell J J, Holladay J E, Johnson D, et al. Top Value added chemicals frombiomass[J]. Pacific Northwest National Laboratory,2007.
    [21]张世润.东北林区活性炭工业的现状与发展前景.1996年全国活性炭学术交流会论文集[C].哈尔滨:东北林业大学,1996.
    [22] RAGAN S, MEGONNELL N. Activated carbon from renewableresources-lignin[J]. Cellulose Chemistry and Technology,2011,45(7-8):527-531.
    [23]徐志宏,漆辉,漆玉邦.由制浆黑液提取木质素制备活性炭[J].四川农业大学学报,1999,17(3):309-312.
    [24] WILLIAMS P T, REED A R. Development of activated carbon pore structurevia physical and chemical activation of biomass fibre waste[J], Biomass andBioenergy,2006,30:144-152.
    [25] RODRíGUEZ-MIRASOL J, CORDERO T, RODRíGUEZ J J. Activated carbonsfrom CO2partial gasification of eucalyptus kraft lignin[J]. Energy Fuels,1993,7:133-138.
    [26] HAYASHI J, KAZEHAYA A, MUROYAMA K, et al. Preparation of activatedcarbons from lignin by chemical activation[J]. Carbon,2000,38:1873-1878.
    [27] BAKLANOVA O N, PLAKSIN G V, DROZDOV V A, et al. Preparation ofmicroporous sorbents from cedar nutshells and hydrolytic lignin[J]. Carbon,2003,42:1793-1800.
    [28] CARROTT P J M, SUHAS, CARROTT M M L R, et al. Reactivity and porositydevelopment during pyrolysis and physical activation in CO2or steam of kraft andhydrolytic lignins[J]. Journal of Analytical and Applied Pyrolysis,2008,82:264-271.
    [29] ZOU Y, HAN B X. Preparation of activated carbons from Chinese coal andhydrolysis lignin[J]. Adsorption Science&Technology,2001,19:59-72.
    [30] KHEZAMI L, CHETOUANI A, TAOUK B, et al. Production andcharacterisation of activated carbon from wood components in powder: Cellulose,lignin, xylan[J]. Powder Technology,2005,157:48-56.
    [31] VANESSA T, JOSEP M M, DANIEL M, et al. Statistical Optimization of theSynthesis of Highly Microporous Carbons by Chemical Activation of Kraft Ligninwith NaOH[J]. Journal of Chemical&Engineering Data,2009,54(8):2216-2221.
    [32] FIERRO V, TORNé-FERNáNDEZ V, CELZARD A. Methodical study of thechemical activation of Kraft lignin with KOH and NaOH[J]. Microporous andMesoporous Materials,2007,101:419-431.
    [33] GONZALEZ-SERRANO E, CORDERO T, RODRIGUEZ-MIRASOL J, et al.Development of porosity upon chemical activation of kraft lignin with ZnCl2[J].Industrial&Engineering Chemistry Research,1997,36:4832-4838.
    [34] SUN Y, WEI J, WANG Y S, et al. Production of activated carbon by K2CO3activation treatment of cornstalk lignin and its performance in removing phenol andsubsequent bioregeneration[J]. Environmental Technology,2010,31:53-61.
    [35] HAYASHI J, KAZEHAYA A, MUROYAMA K, et al. Preparation of activatedcarbon from lignin by chemical activation[J]. Carbon,2000,38:1873-1878.
    [36] FIERRO V, TORNE V, MONTANé D, et al. Activated carbons prepared fromkraft lignin by phosphoric acid impregnation[J]. Carbon,2003b, Oviedo, Spain.
    [37] GONZALEZ-SERRANO E, CORDERO T, RODRIGUEZ-MIRASOL J, et al.Removal of water pollutants with activated carbons prepared from H3PO4activationof lignin from kraft black liquors[J]. Water Research,2004,38:3043-3050.
    [38] FIERRO V, TORNé-FERNáNDEZ V, CELZARD A. Kraft lignin as a precursorfor microporous activated carbons prepared by impregnation with ortho-phosphoricacid: Synthesis and textural characterization[J]. Microporous and MesoporousMaterials,2006,92:243-250.
    [39] FIERRO V, TORNé-FERNáNDEZ V, CELZARD A, et al. Influence of thedemineralisation on the chemical activation of Kraft lignin with orthophosphoricacid[J]. Journal of Hazardous Materials,2007,149:126-133.
    [40] MUSSATTO S I, FERNANDES M, ROCHA G J M, et al. Production,characterization and application of activated carbon from brewer’s spent grainlignin[J]. Bioresource Technology,2010,101:2450-2457.
    [41] SUHAS, CARROTT P J M, CARROTT M M L R. Lignin–from naturaladsorbent to activated carbon: A review[J]. Bioresource Technology,2007,98:2301-12.
    [42] GHAEDI M, TAVALLALI H, SHARIFI M, et al. Preparation of low costactivated carbon from Myrtus communis and pomegranate and their efficientapplication for removal of Congo red from aqueous solution[J]. Spectrochimica ActaPart A-molecular and Biomolecular Spectroscopy,2012,86:107-114.
    [43]闫新龙,刘欣梅,乔柯,等.成型活性炭制备技术研究进展[J].化工进展,2008,27(12):1868-1881.
    [44] GOSSELINK R J A, JONG E, GURAN B, et al. Co-ordination network forlignin—standardisation, production and applications adapted to market requirements(EUROLIGNIN)[J]. Industrial Crops and Products,2004,20:121-129.
    [45] Liu W C, Shen S J, Wang X G, et al. The diffusion-controlled curing kinetics of aliquid crystalline epoxy resin[J]. Acta Polymerica Sinica,2000,2:167-171.
    [46]王海洋,陈克利.木质素的氢解及其合成环氧树脂探索[J].化工时刊,2004,18(3):27-30.
    [47] FELDMAN D, BANU D, LUCHIAN C, et al. Epoxy-lignin polyblends:correlation between polymer interaction and curing temperature[J]. Jounral of AppliedPolymer Science,1991,42:1307-1318.
    [48] FELDMAN D, BANU D, NATANSOHN A, et al. Structure-properties relationsof thermally cured epoxy-lignin polyblends[J]. Jounral of Applied Polymer Science,1991,42:1537-1550.
    [49] NONAKA Y, TOMIDA B, HATANO Y. Synthesis of lignin/epoxy resin inaqueous systems and their properties[J]. Holzforschung,1997,51(2):183-187.
    [50]林玮,程贤甦.高沸醇木质素环氧树脂的合成与性能研究[J].纤维素科学与技术,2007,15(2):8-12.
    [51]程贤甦,陈为健,方华书.高沸醇木质素环氧树脂的制备方法:中国,200410061295. X[P].2008-01-23.
    [52]程贤甦.酶解木质素环氧树脂的原料配方及其制备方法:中国,200610069529.4[P].2009-08-19.
    [53] NAKAMURA Y, SAWADA T, KUNO K, et al. Resinification of woody ligninand its characteristic on safety and biodegradation[J]. Journal of ChemicalEngineering of Japan,2001,34(10):1309-1312.
    [54]胡春平,方桂珍,王献玲,等.麦草碱木质素基环氧树脂的合成[J].东北林业大学学报,2007,35(4):53-55.
    [55]赵斌元,李恒德,胡克鳌,等.木质素基环氧树脂合成及表征[J].纤维素科学与技术,2000,8(4):19-26.
    [56]赵斌元,胡克鳌,范永忠,等.木质素磺酸及其衍生物红外光谱研究[J].分析化学,2000,28(6):716-719.
    [57] ZHAO B Y, FAN Y Z, HU K A, et al. Development of lignin epoxide-a potentialmatrix of resin matrix composite[J]. Journal of Wuhan University ofTechnology-Material Science Edition,2000,15(3):6-12.
    [58]魏兰,刘忠.木素基环氧树脂的合成[J].中华纸业,2004(1):44-48.
    [59]叶菊娣,洪建国.改性木质素合成环氧树脂的研究[J].纤维素科学与技术,2007,15(4):28-32.
    [60] HIROSE S, HATAKEYAMA T, HATAKEYAMA H. Synthesis and thermalproperties of epoxy resins from ester-carboxylic acid derivative of alcoholysislignin[J]. Macromolecular Symposia,2003,197:157-169.
    [61] HIROSE S, HATAKEYAMA T, HATAKEYAMA H. Glass transition and thermaldecomposition of epoxy resins from the carboxylic acid system consisting ofester-carboxylic acid derivatives of alcoholysis lignin and ethylene glycol withvarious dicarboxylic acids[J]. Thermochimica Acta,2005,431(1-2):76-80.
    [62]张珂,周思毅.造纸工业蒸煮废液的综合利用与污染防治技术[M].北京:中国轻工业出版社,1992:400-437.
    [63]张引枝,贺福.中孔活性炭纤维对VB12的吸附性能研究.离子交换与吸附[J].1997,13(5)454-458.
    [64] ZUO S L, YANG J X, LIU J L, et al. Significance of the carbonization of volatilepyrolytic products on the properties of activated carbons from phosphoric acidactivation of lignocellulosic material[J]. Fuel Processing Technology,2009,90:994-1001.
    [65] DASTGHEIB S A, ROCKSTRAW D A. Pecan shell activated carbon: synthesis,characterization, and application for the removal of copper from aqueous solution[J].Carbon,2001,39:1849-1855.
    [66] PUZIY A M, PODDUBNAYA O I, MARTíNEZ-ALONSO A, et al. Syntheticcarbons activated with phosphoric acid III. Carbons preared in air[J]. Carbon,2003,41:1181-1191.
    [67] ZHANG J, YU L X, WANG Z C, et al. Spherical microporous/mesoporousactivated carbon from pulping black liquor[J]. Journal of Chemical Technology andBiotechnology,2011,86:1177-1183.
    [68] SUHAS P, CARROTT J M, RIBEIRO CARROTT M M L. Lignin-from naturaladsorbent to activated carbon: a review[J]. Bioresource Technology,2007,98:2301-2312.
    [69] QU Y N, TIAN Y M, ZOU B, et al. A novel mesoporous lignin/silica hybridfrom rice husk produced by a sol–gel method[J]. Bioresource Technology,2010,101:8402-8405.
    [70] PUZIY M, PODDUBNAYA O I, MARTíNEZ-ALONSO A, et al. Syntheticcarbons activated with phosphoric acid. I. Surface chemistry and ion bindingproperties[J]. Carbon,2002,40:1493-1505.
    [71] WANG T, TAN S, LIANG C. Preparation and characterization of activatedcarbon from wood via microwave-induced ZnCl2activation[J]. Carbon,2009,47:1867-1885.
    [72] RULAND W, SMARSLY B. X-ray scattering of non-graphitic carbon: animproved method of evaluation[J]. Journal of Applied Crystallography,2002,35:624-633.
    [73] WANG L L, GUO Y P, ZHU Y C, et al. A new route for preparation ofhydrochars from rice husk[J]. Bioresource Technology,2010,101:9807-9810.
    [74] ISMAIL T N M T, HASSAN H A, HIROSE S, et al. Synthesis and thermalproperties of ester-type crosslinked epoxy resins derived from lignosulfonate andglycerol. Society of Chemical Industry,2010,59:181-186.
    [75] SUN H G, SUN G, LV H, et al. DSC Study on the effect of cure reagents on thelignin base epoxy cure reaction[J]. Journal of Applied Polymer Science,2007,105:2332-2338.
    [76] ZHAO B Y, CHEN G, LIU Y, et al. Synthesis of lignin base epoxy resin and itscharacterization[J]. Journal of Materials Science Letters,2001,20:859-862.