不同灌水方式下玉米根际硝态氮的分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以玉米作为试验材料,研究了塿土、砂土的玉米根际土壤NO3--N在常规灌水、交替灌水和固定灌水这三种灌水方式下的分布状况,还进一步研究了在不同施氮量、不同施磷量下其分布的影响。得到以下结论。
    1. 在常规灌水、交替灌水、固定灌水方式的湿润区,玉米根际土壤NO3--N的分布均呈累积趋势,且表现为交替灌水>固定灌水>常规灌水;而在干燥区,交替灌水与固定灌水显示出不同的分布状况,NO3--N的分布均呈现亏缺趋势:固定灌水>交替灌水>常规灌水,但在距根面2mm的范围内都存在着NO3--N的相对富集。根际下部的硝态氮含量大于根际上部的硝态氮含量。
    2. 在塿土中,增加施氮量,使根际土壤氮的浓度增加,增大了根际NO3--N的累积趋势,改变了交替灌水方式干燥区根际硝态氮的分布趋势,由亏缺趋势变为累积趋势。固定灌水方式下硝态氮分布在湿润和干燥区的累积和亏缺趋势分别得到加强。
    3.施磷有助于作物对硝态氮的吸收,能提高作物在受到水分胁迫时对硝态氮的吸收,增强了硝态氮在低含水量土壤中向根面迁移的扩散作用。
    4.低氮条件下,砂土根际硝态氮的分布在不同灌水方式下均较平缓,但固定灌水与交替灌水处理的干燥区具有轻微的亏缺趋势,且亏缺趋势基本一致,近根处有轻微的累积趋势,交替灌水大于固定灌水,湿润区硝态氮的累积趋势小于干燥区。高氮条件下,根际硝态氮的累积或亏缺趋势逐渐明显。固定灌水的干燥区根际硝态氮的分布呈累积与亏缺并存的现象,近根处有明显的累积趋势,其余处理均呈明显的累积趋势。这说明植物根系依靠根水倒流在水分含量较少的干燥区也能继续吸收硝态氮,在高氮条件下干燥区质流作用与扩散作用共同起作用。不同灌水方式下,质流作用与扩散作用的影响不同。
    5. 塿土玉米根际NO3--N含量均大于砂土。低氮条件下,不同灌水方式下,塿土根际硝态氮具有明显不同的分布趋势,砂土根际硝态氮的分布差异不大。高氮条件下,塿土根际硝态氮和砂土根际硝态氮的分布趋势差异不大。固定灌水的干燥区近根处的根际硝态氮累积范围,砂土较塿土宽。表明根水倒流对硝酸根在土壤中向根迁移所起的作用,在砂土中大于塿土。
    
    本文的创新点
    
    本文首次结合控制性交替灌溉这种新的节水灌溉方式,利用垂直根面法对根际硝态氮的分布进行了系统的研究。
    硝态氮在根际的分布呈亏缺与累积趋势并存现象,意味着硝态氮在根际从土体向根面的迁移存在着两种方式,即扩散作用和质流作用。
    作物在玉米干燥区仍能吸收硝态氮。近根处的硝态氮存在累积现象,且质地越砂,硝态氮的累积范围越宽,根际硝态氮累积与亏缺并存的现象越明显,说明在干燥区水分倒流对硝态氮吸收起着主要作用。
    灌水方式不同,玉米根际硝态氮的分布趋势不同。找到了交替灌溉有利于提高根系对硝态氮吸收的试验证据,为控制性交替灌溉技术提供了新的理论依据。
In this paper, the distribution of NO3--N in maize rhizosphere was studied under normal irrigation, alternative irrigation and fixed irrigation by spliting root in loess soil and sandy soil, and the effects to the distribution were studied under different amount of N application and different amount of P application furthermore. Following results have been obtained.
    1.The accumulation of NO3--N in maize rhizosphere is observed in the wet zone under different irrigation styles, and the accumulative tendency of NO3--N in rhizosphere are alternative irrigation>fixed irrigation>normal irrigation. On the contrary, the depletion of NO3--N in maize rhizosphere is observed in the dry zone under different irrigation styles, and the depletion tendency are fixed irrigation>alternate irrigation>normal irrigation, but NO3--N is relatively accumulated in the rhizosphere soil within 2mm to the surface of plant root. The content of NO3--N in the lower part of rhizosphere is higher than that in the upper part.
    2. With adding NO3--N amount, the content of NO3--N in rhizosphere increases, the accumulation tendency is expanded, and the distribution of NO3--N in the dry zone is changed from the depletion tendency to the accumulative tendency under alternative irrigation. The expansion of depletion tendency in the dry zone and that of accumulation tendency in the wet zone are expanded respectively.
    3. Increasing P application are beneficial to crop to uptake NO3--N, it can improve the performance of crop on NO3--N uptake under the stress of soil moisture. It means that the diffusion of NO3--N in rhizosphere to the root plane strengthened under lower water content.
    4. In sandy soil, under lower content of NO3--N, the distributions of NO3--N are almost smooth and even under different irrigation styles, but there are weak depletion tendencies of NO3--N in the dry zones and weak accumulative tendency in the dry zones near plant root under fixed irrigation and alternative irrigation, the accumulative tendency are alternative irrigation>fixed irrigation. The accumulative tendency in the wet zones is less than that in the dry zones. Under higher content of NO3--N, the accumulative or depletion tendency became significant in the maize rhizosphere. The phenomena of accumulation and depletion of NO3--N exist in the dry zone under fixed
    
    
    irrigation at the same time, the accumulative tendency in the dry zones near plant root is apparent, the accumulative tendency are apparent under other irrigation styles. It shows that plant roots can uptake nutrients under the lower moisture content depending on water reverse flow in plant roots. The affection of mass flow and diffusion are different under different irrigation styles.
    5. The content of NO3--N in loess soil rhizosphere are higher than that of sandy soil. Under lower content of N, The distributions of NO3--N in loess soil rhizophere are different under different irrigation styles apparently, but there are little differences in sandy soil. Under higher content of N, there are little differences in the distributions of NO3--N between loess soil and sandy soil. The extent of the NO3--N accumulation in sandy soil rhizosphere is wider than that in loess soil under fixed irrigation. This shows that the role of water reverse flow in plant roots in sandy soil is greater than that in loess soil at NO3--N transference from soil to plant roots.
    The new finding was followed:
    In this paper, the distribution of NO3--N in the rhizosphere was studied systematically by the dense root plane in contract with soil blocks combined with a new way of saving irrigation style- controlled alternate irrigation for the first time.
    The phenomena of accumulation and depletion of NO3--N exist in the rhizosphere at the same time. This shows that NO3--N transference from rhizosphere soil to plant root exists two ways—mass flow and diffusion..
    Corn can uptake NO3--N from soil in the dry zone. The accumulation of NO3--N in rhizosphere near roots exists and its extent becomes larger with the texture of soil becomi
引文
康绍忠,许迪.我国现代农业节水高新技术发展战略的思考.[J].中国农村水利水电,2001年第10期:25-29
    许迪,康绍忠,现代农业技术研究进展与发展趋势[J].高技术通讯,2002年第12期,104-108
    崔玉亭.肥与生态环境保护[M]北京:化学工业出版社,2000,5-10
    曹志洪.科学施肥与我国粮食安全保障[J]土壤,1998 , (2) :57-63
    张春伦,朱兴明,胡思农.缓释尿素肥效及氮素利用率研究[J].土壤肥料,1998,(6)
    党廷辉,马海涛,高晓妮.矿态氮反映旱地土壤供N能力的研究[J].陕西农业科学,1991, (6) :14—15
    朱兆良,文启孝中国土壤氮素[M]南京:江苏科学技术出版社, 1992:6-11 ,185 ,232—245
    沈善敏中国土壤肥力[M]北京:中国农业出版社,1998 :170—182
    张国梁,章申.农田氮素淋失研究进展[J].土壤,1998 ,( 6) :291—297
    史文娟,康绍忠,王全九.控制性交替灌溉—常规节水灌溉技术的新突破[J].灌溉排水,2000,19(2)2000,19(2):32-35
    康绍忠,张建华,梁宗锁,胡笑涛,蔡焕杰.控制性交替灌溉——种新的农田节水调控思路[J].干旱地区农业研究,1997,15(1):1—6
    许旭旦,诸涵素.植物水分的根部倒流现象[J].植物生理学通讯,1995,31(4):241—245.
    梁宗锁,康绍宗,高俊凤,张建华.分跟脚体渗透胁迫与脱落酸对玉米根系生长和蒸腾效率的影响[J]作物学报,2000,26(2):250—255
    陈子英.水稻根系微生物的主要特性.微生物学报,1963,9(2):186-192
    陈华癸等.土壤微生物学.上海:上海科技出版社,1979
    钦绳武,刘芷宇.土壤-根系微区养分状况的研究Ⅵ.不同形态肥料在根际的迁移规律.土壤学报,1989,26(2):117-123
    中国科学院南京土壤研究所主编.中国土壤.北京:科学出版社,1978.345-359
    于天仁等编著.土壤的电化学性质及其研究法(修订本)[M]. 北京:科学出版社,1978,399-464
    于天仁等编著.水稻土的物理化学性质[M].北京:科学出版社,1983,35-60
    中国科学院农业丰产研究丛书编辑委员会.水稻丰产的土壤环境.1961:163-187
    范晓晖等.根际pH环境与P素利用研究进展.土壤通报,1992,23(5):238-240
    朱兆良.土壤中N素的转化[J].土壤学报,1963,11(3):328-338
    
    陈杰,骆国保等译.郭廷彬,邓文钦审校.基础土壤科学研究的契机( Opportunities in Basic Soil Science Research)[M].北京:中国农业科技出版社,1995
    黄子蔚.锌肥效果和磷锌关系的放射性示踪研究II水稻平面根培养法及其在磷锌关系研究上的应用:(学位论文).1982
    许曼丽,刘芷宇.土壤—根系微区养分状况的研究[J].土壤学报.1982,19(4):367-374
    许曼丽,刘芷宇.土壤-根系微区养分状况的研究II.K离子的富集与亏缺[J].土壤学报,1983,20(3):295-305
    曹一平,徐永泰,李晓林.小麦根际微区钾养分状况的研究[J].北京农大学报,1991,17(2):69-74
    宣家祥.根界面研究(Ⅰ)钾离子向稻根迁移的模型[J].土壤学报, 1982,19(3):296-304
    张福锁等主编.土壤与植物营养研究新动态(Vol II.) [M].北京:北京农业大学出版社.1995.137-159
    张福锁.根分泌物及其在营养中的作用,Ⅱ.Zn对禾本科植物根系分泌有机化合物的影响[J].北京农业大学学报,1991,17(4):67-70
    宣家祥. 离子在土-根体系中运移的数学模式[J].土壤学进展,1984;(4):1-13
    徐明岗,张一平,张君常.根—土界面养分运移研究进展[J].土壤通报,1997,28 (1):46-封三
    钦绳武,刘芷宇.土壤-根系微区养分状况的研究Ⅲ.水稻根际氮素的转化[J].土壤学报,1984,21(3):238-246
    苏宝玲,韩士杰,王建国.根际微域中土样采集方法的研究进展[J].应用生态学报,2001,11(3):477-480
    刘志光,于天仁.土壤电化学性质的研究(Ⅱ)微电极方法在土壤研究中的应用[J].土壤学报,1963,11(2):160-170
    季国亮,王敬华.用微电极研究碳铵粒肥在水稻土中的释放扩散问题[J].土壤学报,1987,15(2):182-186
    施卫明,徐梦熊,刘芷宇.土壤—根系微区养分状况的研究(Ⅳ)电子探针方法的比较及其应用[J].土壤学报,1987,24(3):286-290
    郭朝晖,张杨珠,黄子蔚.根际微域营养研究进展(一)[J].土壤通报,1999,30(1):46- 封3
    郭朝晖,张扬珠,黄子蔚.根际微域营养研究进展(二)[J].土壤通报.1999,30(2):85-88
    
    徐明岗、姚其华、吕家珑.土壤养分运移[M].北京:中国农业科技出版社,2000:131—134.
    孙景生,康绍忠,蔡焕杰,胡笑涛.控制性交替灌溉技术的研究进展[J].农业工程学报,2001,17(4):1—5.
    武永军,刘红霞,梁宗锁,康绍忠.分根区干湿交替对玉米光合速率及蒸腾效率的影响[J].西北植物学报,1999,19(4): 605—611.
    张福锁,曹一平.根际动态过程与植物营养[J].土壤学报,1992, 29(3):239-250.
    Davies W.J., Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology, 1991,42:55-76
    Zhang J., Zhang X., Liang J., Exudation rate and hydralic conductivity of maize rootsare enhance by soil drying and abscisic acid treatment[J].New Phytologist,1995,131(3):329-336
    North G.B., Nobel P.S., Radial hydraulic conductivity of individual root tissues of opuntia ficus-indica (L.) miller as soil moisture varies [J]. Annuals of Botany (London), 1996,77(2):133-142
    North G.B., Nobel P.S., Changes in root hydraulic conductivity for two tropical epiphytic cacti as soil moisture varies [J]. American Journal of Botany, 1994,81(1):46-53
    Ayars J.E.,Hutmacher R.B.,Cotton reponse to nonuniform and varying depths of irrigation [J].Agricultural Water Management.1991, 19(2):151-166
    Jeffrey Melkonian and D. W. Woffe .Relative plants to changes in leaf and soil water potentials [J].Horticulture section.1995
    Volkmar K.M., Water stressed nodalroots of wheat:effects on leaf growth [J].Plant Physiol.1997,(24):49-56
    Mackay A .D., Baber S.S., Effect of cyclic wetting of a soil on root hair growth of maize roots [J].Plant and soil,1987,104:291-293
    Tardieu F., Davies W.J. Integration of hydraulic and chemical signaling in the control of stomatal conductance and water status of droughted plants [J].Plant Cell Environ,1993(16):341-349
    Scheible W.R., Lauerer M., Schuize E.D., Acumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco [J].The Plant Journal.1997,11(4):671-691
    
    Woldendrop J W. The influence of living plants on denitrifincation melded land bhogesch [J]. Wageningen, 1963,63:1-100
    Bray R.H., A nutrient mobility concept of soil-plant relationships [J]. Soil Sci., 1954, 78: 9-12
    Hetier J.M., Andreux F., Schouller E. and Maro1 C. Organic matter input to soil after growth of carban-14-nitrogen-15 labeled maize [J]. Soil Sci. Soc. Am. J, 1986, 50:76-80
    Janzen H H and Bruins ma Y. Soil Biol.Biochem,1989,21(2):189-196
    Janzen H H.Soil Biol.Biochem,1990,22(8):1155-1160
    Sawatsky N Soper R J.Soil Biol.Biochem,1991,23(3):255-259
    Woldendorp J W.,Proceedings from 16th colloquium International. Potash stitute, Bern, Switzerland 1981:99-125
    Wheeler G L.and Donaldson J M.Soil Biol.Biochem.1983,15(1):119-121
    Berg P and Rosswall T. Microbiol. Ecology,1987,13(1):75-87
    Klemedtsson L,Berg P,Clarholm Mand Schnurer J. Soil Biol. Biochem.1987,19(5):551-558
    Haider K., Mosier A.R. and Heinemeyer V. The effect of growing plants on denitrification at high nitrate concentrations [J]. Soil Sci. Soc.Am,J. 1987,51:97-102
    Bakken L R.Symbiosis,1990,9:37-41
    Cortez J and Cherqui A.Soil Biol.Biochem.1991,23(3):261-267
    Buresh R.J. and Patrick W.H.J., Nitrate reduction to ammonium in anaerobic soil, Soil Sci.Soc.Am.J.1978,42:913-918
    Nieder R,Schollmayer G,Richter J.Biol.Fertil,Soils,1989,8:219-226
    Klemedtsson L., Svensson B.H., Ross wall T., Dinitrogen and nitrous oxide produced by denitrification and nitrification in soil with and without barly plants [J]. Plant and Soil, 1987,99:303-319
    Troldenier G. and Hecht-buchholz ch., Effect of aeration status of nutrient solution on micro organisms, mucilage and ultrastructure of wheat roots[J]. Plant and Soil, 1984, 80:381-390
    Prade K,Trolldenier G Z. PHanzernernahr. Bodenkd.,1989,152 :391-393
    Trolldenier G,Z Pflanzenernahr.Bodenkd.1989,52:223-230
    Parade K and Trolldenier G.Biol.Fertil.Soils,1990,9:215-219
    Bakken L R.Biol.Fertil.Soils,1988,6:271-278
    Gardner W K.Plant & Soil,1982,68:33-41
    
    Ae N, et al.Trans.14th Intern.Congress.Soil Sci.Vol.II,Comn.II 1990,164-169
    Nye P H., Acid-base changes in the rhizosphere. Adances in Plant Nutrition. Vol.II, 1986, 129-153
    Rhodes L.H. and Gerdemann J. W.New phytol.1975,75:555-561
    Li X L, George E and Marschner H.Extension of the phosphorus depletion zone in VA mycorrhizal white clover in a calcareous soil[J].Plant Soil,1991,136:41-48
    Nye P H.. Changes in pH across the rhizophere induced by roots [J]. Plant and Soil.1981, 61:7-26
    Hoffland E.,Findenegg G.R., Nelemans J.A.. Solubilization of rock phosphate by rape[J]. Plant Soil,113:161-165
    Barber S.A.and Ernani P.O., Soil Sci.,1990,2:136-140
    Evans S.D. and Barber S.A., The effect of rubidium –86 diffusion on the uptake of rubidium-86 bycorn, Soil Soc.Am.Proc., 1964,28(1):56-57
    Kauffman M.D. and Bouldin D.R., Relationship of exchangeable and non-exchangeable potassium in soil adjacent to cation-exchange resins and plant roots. Soil Sci., 1967, 104:145-150
    Farr E., Vaidyanathan L.V. and Nye P.H., Measurement of ionic concentration gradients in soilnear roots. Soil Sci., 1969, 107:385-391
    Tan K.H. and Nopamornbodi O., Electron microbeanm scaning of element distribution zone in soil rhizophere and plant tissue, Soil Sci., 1979, 127:235-241
    Stanley A., Barber and Peter G., Ozanne, Auto radiographic evadence for the differential effect of four plant species in altering the calcium content of the rhizosphere soil. Soil Sci. Soc. Am. Proc., 1970, 34: 635-637
    Bienfait H F.J.Bioenergetiesbiomemb.1985,17:73-78
    Marschner H., Cakmak I. and Romheld V., Root-induced changes of nutrient availability in the rhizosphere [J]. Plant Nutr., 1987, 9:695-713
    Romheld V., Different strategies for iron acquisition in higher plants [J]. Physiologia plantarum, 1987, 70:231-234
    Inskeep W.P. and Cmfort S.D., [J].of Plant Nutrition.1986,9(3-7),567-586
    
    Bienfait H.F., Van den Briel M.L., Mesland Mul N.J., J.of Plant Nutrition,1984,7(105),659-665
    Youssef R.A. and Chino M., Study on the behaviour of nutrient in the rhizosphere Ⅰ.Establishment of a new rhizobox system to study nutrient status in the rhizosphere[J].Plant Nutrition, 1987, 10:1185-1195
    Refat A.,Youssef and Nitsuo,Chino, Root-induced changes in the rhizosphere of plants[J]. Soil Sci. Plant Nutr.1989, 35(4): 609-621
    Tara Singh Gahoonia.Plant and Soil, 1993,149:289-291
    Jianlin Wang, Zhongwen Liao and shuman L. M., Rhizosphere at low pH in relation to rice growth
    Marschner H. Mechanisms of manganese acquisition by roots from soils[M]. In Graham. R, Hannam, R J.Uren N C. Kluwer Academic Publishers, Norwell, Mass.1988,191-204
    Possingham J V.Nutr.J.Biol.Sci.1957, 37: 207-216
    Lewis D G.and Quirk, J. P., Phosphate diffusion in soil and uptake by plants [J]. Plant and Soi1.1967, 26: 99-118
    Nye P H.and Tinker P B. Solute movement in the soil-root system [M]. Blackwell Scientific publications, Oxford. 1977
    Barber S.A., Walker J.M.and Vasey E.H.,Mechanisims for the movement of plant nutrients from the soil and fertilizer to the plant root. [J]. Agr.Food Chem.,1963,11:204-207
    Oliver S.and Barber, S. A., Mechanisms for the movement of Mn, Fe, B, Zn, Cu, Al and Sr from one soil to the surface of soybean roots[J]. Soil Sci.Soc.Amer.Proc.1966, 30: 468-470
    Halstead E. H., Barber, S. A., warncek D. D., Supply of Ca, Sr,Mn and Zn to plant roots growing in soil[J]. Soi1 Sci.Soc.Am.J.1968, 32(1):69-72
    Ali Sk J. and Omanwar, P. K., Movement of P, Zn, Fe and Mn to rice roots growing in soils[J].lndian Soc.Soil Sci.1978, 26(2):13-138
    Grelgory P J., Grawford, D. V. and Mcgowan, M., Nutrient relations of winter wheat. 2. Movement of nutrients to the roots and their uptake[J]. Agr. Sci. Camb. 1979, 93:495-504
    Kirkby E A. Maximizing calcium uptake by plants [J]. Comm.Soil Sci.Plant Ana1.1979, 10: 89-113
    Wray F.J. and Tinker P.B., Root growth. Whitting:Butterworth,London.1969
    
    Bhat, K. K. S. and Nye, P. H., Diffusion of phosphate to plant roots in soil.Ⅱ. Uptake along the roots at different times and the effect of different levels of phosphorus [J]. Plant and Soil.1974, 41: 365-382
    Farr, E. and Vaidyanathan, L. V., The supply of nutrient ions by diffusion to plant roots in soil.Ⅳ. Direct measurement of changes in labile phosphate content in soil near absorbing root[J].Plant and Soil. 1972,37(3): 609-616
    Dunham, R.J. and Nye, P.H., The influence of soil water content on the uptake of ions by roots. Ⅱ.Chloride uptake and concentration gradients in soil [J].Appl.Ecol., 1974,11: 581-596
    Sen A. and Deb D.L., Significance of deffusion in the uptake of zinc and moisture levels [J]. Nuclear Agric Biol. 1979, 8:103-108
    Hendriks L., Claassen N. and Jungk A.,Phosphatverarmung des wurzelnahen bodens und phophatau fnahme ron Mais und Raps.Z. Pflanzenernahr Bodenkd, 1981, 144:486-499
    Tan K H. and Nopamornbodi O., Elctron microbeam analysis and scanning microscopy of soil-root interface[J]. Soil Sci., 1981, 131:100-106
    Claassen N., Syring M. and Tungk K., Verification of a mathematical model by simulation potassium uptake from soil[J]. Plant Soil.1986, 95: 209-220
    Vermeer J.and Mccully M.E., The rhizophere in Zea: New insight into its structure and development[J]. Planta.1982, 156: 45-61
    Ramzan M.and Nye P.H., The measurement and mechanism of ion diffusion in soils.Ⅸ. Changes in soil acidity near a source of bicarbonate ions [J]. Soil Sci. 1978,29(2): 184-194
    Riley D.and Barber, S. A., Biaarbonate accumulation and pH changes at soybean root-soil interface[J].Soil Sci. Amer. Proc,1969,33:905- 908
    Riley D. and Barber S.A., Solt accumulation at the soybean root-soil interface[J]. Soil Sci Am Proc., 1970,34:154-155
    Farr, E., Vaidyanathan, L. V. and Nye, P. H., Measurement of ionic concentration gradients in soil near roots[J].Soil Sci.1969,107: 385-391
    Kuchenbuch R and Jungk A. A method for determining concentration profiles at the soil-root interface by thin slicing rhizosphere soil[J]. Plant and Soil, 1982,68:391-394
    Schaller G. and Fischer W.R., pH changes in the rhizosphere of peanut
    
    
    and maize roots [J]. J. of plant nutrition and soil science, 1985, 148(3): 306-320
    Schaller G. and Fischer W R., The influnce of potassium and nitrate nutrition on pH changes in the rhizosphere [J]. J. of plant nutrition and soil science, 1985, 148(3): 349-355
    Baghda N.H., Ksommer Z., J. of plant nutrition and soil science, 1990, 153: 323-326