小兴安岭沼泽甲烷排放及其对人为干扰的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小兴安岭是我国主要山区湿地分布区之一,区内有草丛沼泽、灌丛沼泽和森林沼泽等多种沼泽湿地类型,因此,在我国湿地研究中占有重要地位。本文以小兴安岭山区7种沼泽湿地类型:苔草(Carex schmidtii)沼泽、灌丛(Betula ovalifolia)沼泽、毛赤杨(Alnus sibirica)沼泽、白桦(Betula platyphylla)沼泽、落叶松(Larix gmelinii)-苔草沼泽、落叶松-藓类(moss)沼泽和落叶松-泥炭藓(Sphagnum spp.)沼泽为研究对象,利用静态暗箱-气相色谱法,研究两个生长季内沼泽湿地在自然状态下甲烷排放通量的时间和空间变化规律及其主要影响因素,以及草丛和灌丛沼泽在排水造林干扰、森林沼泽在采伐干扰方式下,沼泽甲烷通量的变化。结果表明:
     (1)小兴安岭沼泽甲烷通量无统一的日变化规律,且与温度和水位这两个环境因子的相关性较弱。7个沼泽类型中,仅毛赤杨沼泽和白桦沼泽甲烷通量峰值在不同季节出现时间大致相同,且都为单峰曲线;苔草沼泽、灌丛沼泽和落叶松-泥炭藓沼泽甲烷通量的峰值在不同季节出现的时间不同,多数为单峰曲线;落叶松-苔草沼泽和落叶松-藓类沼泽甲烷通量速率较小,多数时间吸收甲烷,没有明显的日变化规律。
     (2)小兴安岭沼泽甲烷通量的季节排放峰值基本都出现在夏季和秋季,而在春季和秋末,甲烷通量始终较低。温度对沼泽甲烷通量季节变化影响较大,但受到水位的限制,水位较高的沼泽类型甲烷通量的季节变化与温度相关性较好,而水位较低的沼泽类型甲烷通量的季节变化与温度相关性不好。
     (3)苔草沼泽、灌丛沼泽、毛赤杨沼泽和白桦沼泽的甲烷通量在两个生长季之间的差异较大,2008年生长季平均甲烷通量(19.88-820.22mg·m~(-2)·d~(-1))是2007年(0.64-44.56mg·m~(-2)·d~(-1))的5-31倍;落叶松-泥炭藓沼泽2007年为大气甲烷的较大排放源(56.08mg·m~(-2)·d~(-1)),而2008年为大气甲烷的汇(-0.19mg·m~(-2)·d~(-1));而落叶松-苔草沼泽和落叶松-藓类沼泽在两个生长季之间没有显著差异。年际间平均水位的差异,以及年际间水位季节波动的差异,是小兴安岭沼泽甲烷通量年际间差异的主要影响因素。
     (4)小兴安岭沼泽甲烷通量的空间变异性非常大,苔草沼泽和毛赤杨沼泽为较高的甲烷排放源,落叶松-泥炭藓沼泽、白桦沼泽和灌丛沼泽为较低的甲烷排放源,而落叶松-苔草沼泽和落叶松-藓类沼泽为大气甲烷的弱汇,两个生长季的平均通量依次为:456.63mg·m~(-2)·d~(-1)、239.39mg·m~(-2)·d~(-1)、26.19mg·m~(-2)·d~(-1)、10.86mg·m~(-2)·d~(-1)、6.49mg·m~(-2)·d~(-1)、-0.69mg·m~(-2)·d~(-1)和-1.42mg·m~(-2)·d~(-1)。水位和草本植物生物量的差异共同导致小兴安岭沼泽甲烷通量的空间变异性,水位和草本植物生物量较高的地点甲烷通量也较高,相反,水位和草本植物生物量很低的类型甲烷通量较低。温度可能也会对沼泽甲烷空间变化有一定的影响,但作用小于水位和植被。此外,爆发式通量对沼泽甲烷通量空间变化的影响也很大。用草本植物生物量预测不同沼泽类型间甲烷通量的差异,比用乔木和灌木生物量预测的效果好。
     (5)水位下降时部分沼泽类型(落叶松-泥炭藓沼泽)会产生爆发式通量现象,这对沼泽甲烷通量的日变化、季节变化、年际变化以及空间变化都有较大的影响,同时,也会影响沼泽甲烷通量时空变化规律与环境因子的相关性,因此在观测和估计甲烷通量时不能将其忽略。
     (6)东北山区沼泽生长季甲烷排放量和年甲烷排放总量分别为1.49 Tg和1.56Tg,为我国天然沼泽甲烷排放量最大的区域。
     (7)天然沼泽排水造林后,甲烷通量大大降低。天然苔草沼泽和灌丛沼泽为大气甲烷排放源,10年的落叶松人工林仍为甲烷的排放源,但排放量相对较低,为天然灌丛沼泽的约1/3,仅为天然苔草沼泽的约1/50,而20年的落叶松人工林转变为甲烷的汇。人工林内排水沟仍为甲烷排放源,但排放通量大大降低,而造林垄台仅有微弱甲烷排放或转变为甲烷的汇。沼泽排水造林引起的水位下降和维管植物减少是导致甲烷排放量减少的主要原因。排水沟相对面积减少也会导致人工林甲烷排放速率降低。
     (8)择伐和皆伐都导致3个类型的森林沼泽作为大气甲烷汇的功能降低,或者由大气甲烷的汇转变为甲烷的源。这主要是由于采伐后温度和水位发生变化,二者的共同作用导致采伐后森林沼泽甲烷通量的变化。在有必要对森林沼泽的树木资源进行利用时,为减少甲烷气体的排放,应该尽量避免进行皆伐,只能进行适当的择伐。
Wetlands in Xiaoxing'an Mountains, which one of the main mountainous wetlands distribution areas, play an important role of the wetlands study in China, because of the diversity wetland types including marshes, thicket swamps and forested swamps. We observed the methane fluxes from seven types of wetlands in Xiaoxing'an Mountains including a marsh (M), a thicket swamp (TS), a Alnus sibirica swamp (FS-1), a Betula platyphylla swamp (FS-2), a Larix gmelinii - Carex schmidtii swamp (FS-3), a Larix gmelinii - moss swamp (FF) and a Larix gmelinii - Sphagnum spp. swamp (FB), their spatial and temporal variations of methane fluxes and the affecting factors, in the growing seasons of 2007 and 2008 using the static opaque chamber and gas chromatography technique. Also the methane fluxes under the anthropogenic disturbances of draining for forestation, and cutting were measured. Results showed that:
     (1) No common diurnal variations were found in all the wetlands, and the diurnal patterns were weakly correlated to temperatures and water tables. FS-1 and FS-2 have the same pattern of diurnal fluxes with unique peaks at the same time in difference seasons. M, TS and FB have the patterns of diurnal fluxes with unique peaks at different time in difference seasons. No apparent diurnal variations were observed in FS-3 and FF because of the low flux rates.
     (2) Most of methane fluxes from wetlands in Xiaoxing'an Mountains in the growing season peaked in summer or autumn, but the rates kept at low levels in spring or late autumn. Seasonal variations of methane fluxes were correlated with temperatures, but the relationships were restricted by water wables. Seasonal variations of methane fluxes were correlated well with temperatures when wetlands water tables were high but the relationships were weak when water tables were low.
     (3) Interannual variations of methane fluxes were large in M, TS, FS-1 and FS-2 in the two growing seasons, mean methane fluxes in the growing season of 2008(19.88-820.22mg·m~(-2)·d~(-1)) were 5-31 times larger than the mean values of 2007(0.64-44.56mg·m~(-2)·d~(-1)). FB was an atmospheric methane source in the growing of 2007(56.08mg·m~(-2)·d~(-1)) but a sink in the same periods of 2008(-0.19mg·m~(-2)·d~(-1)). No significant differences of methane fluxes in the growing season of 2007 and 2008 in FS-3 and FB. Interannual variations of methane fluxes were controlled by the mean annual water table and the variations of water table fluctuations.
     (4) Apparent spatial variations of methane fluxes from wetlands in Xiaoxing'an Mountains were observed. M and FS-1 were big sources of atmospheric methane, FB, FS-2 and TS were small sources, but FS-3 and FF were weak sinks, and the average methane emission rates during the two growing seasons were 456.63mg·m~(-2)·d~(-1), 239.39mg·m~(-2)·d~(-1), 26.19mg·m~(-2)·d~(-1), 10.86mg·m~(-2)·d~(-1), 6.49mg·m~(-2)·d~(-1),-0.69mg·m~(-2)·d~(-1) and -1.42mg·m~(-2)·d~(-1), respectively. Water table and aboveground herb biomass together controlled the spatial variations of methane fluxes. Seasonal average methane fluxes were high with higher water table and herb biomass but low with lower water table and herb biomass. Air temperature may contribute less to the spatial variations of methane fluxes from wetlands than water table and herb biomass. Episodic fluxes may contribute large to the spatial variations of methane fluxes from wetlands.Herbs are better indicators of methen flux rates from a region scale than shrubs or trees.
     (5) Episodic fluxes were detected in FB when water table falling, which greatly influenced the diurnal, seasonal, interannual and spatial variations of methane fluxes, also the correlations of methane fluxes and the affecting factors. It was important to understanding and evaluating the regional methane fluxes, so should not be overlooked.
     (6) Based on the in situ measurement, we preliminarily estimated the budget of methane emissions from wetlands in mountainous regions in Northeast China was 1.49Tg in the growing season and 1.56Tg in the year. Wetlands in mountainous regions of northeast China were likely to be the biggest sources of atmospheric methane from natural wetlands in China.
     (7) Methane fluxes decreased greatly after natural wetlands were drained for forestation. Natural M and TS were atmospheric methane sources, also were 10- years-old plantations, but the flux rates were only 1/3 and 1/50 as those from M and TS, respectively. 20- years-old plantations change to the atmospheric methane sink. Draining ditches in the plantations were atmospheric methane sources, however, flux rates decreased greatly. But planting ridges were weak sources or changed to the sinks. Water table lowering and vascular plants decreasing mainly contributed to the decrease of methane emission rates after wetlands draining for forestation. The decrease of draining ditches area may also cause methane emission rates decreasing in the plantations.
     (8) Three forested swamps after selective and clear cutting uptakes less methane than the natural ones, or changed to the atmospheric methane sinks. Changes in temperature and water table together contributed to the changes of methane fluxes after cutting. If the utilization of trees in forested swamps were necessary, we should choose selective cutting rather than clear cutting to reduce methane emission.
引文
[1]Intergovernmental Panel on Climate Change(IPCC)(2001).Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change.In:Houghton,JT,Ding Y,Griggs DJ,Noguer M,PJ van der Linden,Dai X,Maskell K,and Johnson CA eds.Climate Change 2001:The Scientific Basis.Cambridge University Press,Cambridge,UK.2001:241~266
    [2]Lelieveld,J.,P.Crutzen,F.J.Dentener.Changing concentration,lifetime and climate forcing of atmospheric methane.Tellus,1998,50B(2):128-150
    [3]Forster,P.,V.Ramaswamy,P.Artaxo,T.Berntsen,R.Betts,D.W.Fahey,J.Haywood,J.Lean,D.C.Lowe,G Myhre,J.Nganga,R.Prinn,G Raga,M.Schulz and R.Van Dorland.Changes in Atmospheric Constituents and in Radiative Forcing.In:Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[Solomon,S.,D.Qin,M.Manning,Z.Chen,M.Marquis,K.B.Averyt,M.Tignor and H.L.Miller(eds.)].Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA.2007:140~143
    [4]Spahni,R.,J.Chappellaz,T.F.Stocker,L.Loulergue,G.Hausammann,K.Kawamura,J.Fluckiger,J.Schwander,D.Raynaud,V.Massin-Delmotte,J.Jouzel.Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores.Science,2005,310:1317~1321
    [5]Gorham,E..Northern peatlands:role in the carbon cycle and probable responses to climatic warming.Ecological Applications,1991,1:182~195
    [6]Bridgham,S.D.,J.P.Megonigal,J.K.Keller,N.B.Bliss,C.Trettin.The carbon balance of North American wetlands.Wetlands,2006,26:889~916
    [7]Gorham,E..The biogeochemistry of northern peatlands and its possible responses to global warming.In:Woodwell,GM.,Mackenzie,F.T.(Eds.),Biotic Feedback in the Global Climate System:Will the Warming Feed the Warming?Oxford University Press,New York,1995:169~186
    [8]Whiting,GJ.,J.P.Chanton.Primary production control of methane emission from wetlands.Nature,1993,364:794~795
    [9]Mathews,E.,I.Fung.Methane emission from Natural Wetlands:Global distribution,area and environmental characteristics of sources.Global Biogeochemical Cycles,1987,1:61~86
    [10]Aselmamn,I.,P.J.Cruzen.Global distribution of natural freshwater wetlands and rice paddies,their primary productivity,seasonality and possible methane emissions.Journal of Atmospheric Chemistry,1989,8:307~358
    [11]Bubier,J.L.,T.R.Moore.An ecological perspective on methane emissions from northern wetlands. Trends in Ecology and Evolution, 1994, 9:460-464
    [12] Moore, T.R., N.T. Roulet. Methane flux: water table relations in northern wetlands. Geophysical Research Letters, 1993, 20(7):587-590
    [13]丁维新,蔡祖聪.土壤有机质和外源有机物对甲烷产生的影响.生态学报,2002,22(10):1672-1679
    [14]Segers, R.. Methane production and methane consumption-a review of processes underlying wetland methane fluxes. Biogeochemistry, 1998, 41:23-51
    [15]段晓男,王效科,欧阳志云.维管植物对自然湿地甲烷排放的影响.生态学报,2005,25(12):3374-3382
    [16]Bellisario, L.M., J.L. Bubier, T.R. Moore, J.P. Chanton. Controls on CH4 emissions from a northern peatland. Global Biogeochemical Cycles, 1999,13(1):81-91
    [17]丁维新,蔡祖聪.沼泽产甲烷能力和途径差异的机制.农村生态环境,2002,18(2):53-57
    [18]Avery, GB., R.D. Shannon, J.R. White, C.S. Martens, M.J. Alperin. Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO_2 reduction. Biogeochemistry, 2003, 62:19-37
    [19]McKenzie, C, S. Schiff, R. Aravena, C. Kelly, V. St. Louis. Effect of temperature on production of CH4 and CO_2 from peat in a natural and flooded boreal forest wetland. Climatic Change, 1998, 40:247-266
    [20] Fiedler, S., B.S. H(?)11, H.F. Jungkunst. Methane Budget of a Black Forest Spruce Ecosystem Considering Soil Pattern. Biogeochemistry, 2005, 76:1-20
    [21]Bridgham S.D., K. Updegraff, J. Pastor. Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology, 1998, 79(5):1545-1561
    [22] Updegraff, K., J. Pastor, S. D. Bridgham, and C. A. Johnston. Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecological Applications, 1995, 5:151-163
    [23]Yavitt, J. B., C. J. Williams, and R. K. Wieder. Production of methane and carbon dioxide in peatland ecosystems across North America: Effects of temperature, aeration, and organic chemistry of the peat. Geomicrobiology Journal, 1997,14:299-316
    [24] Bergman I., M. Klarqvist, M. Nilsson. Seasonal variation in rates of methane production from peat of various botanical origins effects of temperature and substrate quality.FEMS Microbiology Ecology, 2000, 33:181-189
    [25] Megonigal, J.P., W.H. Schlesinger. Methane-limited methanotrophy in tidal freshwater swamps. Global Biogeochemical Cycles, 2002,16(4):1088-1098
    [26] King, GM.. Regulation by light of methane emission from a wetland. Nature, 1990, 345:513-515
    [27]Frenzel P, E. Karofeld. CH4 emission from a hollow-ridge complex in a raised bog: The role of CH_4 production and oxidation. Biogeochemistry, 2000, 51:91-112
    [28]Brix, H., B.K. Sorrell, B. Lorenzen. Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany, 2001, 69:313-324
    [29] Freeman, C, GB. Nevison, H. Kang, S. Hughes, B. Reynolds, J.A. Hudson. Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland. Soil Biology and Biochemistry, 2002,34:61-67
    [30] Teh, Y.A., W.L. Silver, M.E. Conrad. Oxygen effects on methane production and oxidation in humid tropical forest soils. Global Change Biology, 2005,11:1283-1297
    [31]Van der Pol-van Dasselaar A., M.L. van Beusichem, O. Oenema. Determinants of spatial variability of methane emissions from wet grasslands on peat soil. Biogeochemistry, 1999, 44:221-237
    [32] Ding, W.X., Z.C. Cai, H. Tsuruta. Summertime variation of methane oxidation in the rhizosphere of a Carex dominated freshwater marsh. Atmospheric Environment, 2004, 38:4165-4173
    [33]宋长春.湿地生态系统甲烷排放研究进展.生态环境,2004,13(1):69-73
    [34] Whiting, GJ., J.P. Chanton. Control of the diurnal pattern of methane emission from emergent aquatic macrophytes by gas transport mechanisms. Aquatic Botany, 1996, 54:237-253
    [35] Wang, Z.P., X.G Han. Diurnal variation in methane emissions in relation to plants and environmental variables in the Inner Mongolia marshes. Atmospheric Environment, 2005, 39:6295-6305
    [36] Ding, W.X., Z.C. Cai, H. Tsuruta. Diel variation in methane emissions from the stands of Carex lasiocarpa and Deyeuxia angustifolia in a cool temperate freshwater marsh. Atmospheric Environment, 2004, 38:181-188
    [37] 王毅勇,宋长春,郑循华.三江平原小叶章湿草甸CH_4地-气交换特征.农村生态环境,2004,20(3):1-5
    [38]Hirota, M, Y.H. Tang, Q.W. Hu, S. Hirata, T. Kato, W.H. Mo, GM. Cao, S. Mariko. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biology & Biochemistry, 2004, 36:737-748
    [39]王毅勇,赵志春,宋长春.三江平原毛果苔草湿地CH_4排放研究.湿地科学,2005,3(1):37-41
    [40]王毅勇,赵志春,宋长春.三江平原沼泽湿地CH4排放及贴地层浓度分布特征.云南大学学报(自然科学版),2005,27(5A):239-244
    [41]Duan, X.N., X.K. Wang, Y.J. Mu, Z.Y. Ouyang. Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China. Atmospheric Environment, 2005, 39:4479-4487
    [42]王毅勇,宋长春,郑循华,王德宣,阎百兴,赵志春,娄彦景.三江平原湿地CH_4、N_2O的 地-气交换特征.地理研究,2006,25(3):457-465
    [43] Zhang, L.H., C.C. Song, D.W. Wang, Y.Y. Wang, X.F. Xu. The variation of methane emission from freshwater marshes and response to the exogenous N in Sanjiang Plain Northeast China. Atmospheric Environment, 2007, 41:4063-4072
    [44] Ding, W.X., Z.C. Cai, H. Tsuruta, X.P. Li. Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere, 2003, 51:167-173
    [45] Song, C.C, X.F. Xu, H.Q. Tian, Y.Y. Wang. Ecosystem-atmosphere exchange of CH_4 and N_2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Global Change Biology, 2009, 15:692-705
    [46]MacDonald, J.A., D. Fowler, K.J. Hargreaves, U. Skiba, I.D. Leith, M.B. Murray. Methane emission rates from a northern wetland: response to temperature, water table and transport. Atmospheric Environment, 1998, 32(19):3219-3227
    [47] Van der Pol-van Dasselaar A., M.L. van Beusichem, O. Oenema. Methane emissions from wet grasslands on peat soil in a nature preserve. Biogeochemistry, 1999, 44:205-220
    [48]黄国宏,李玉祥,陈冠雄,杨玉成,赵长伟.环境因素对芦苇湿地CH_4排放的影响.环境科学,2001,22(1):1-5
    [49]黄国宏,肖笃宁,李玉祥,陈冠雄,杨玉成,赵长伟.芦苇湿地温室气体甲烷(CH4)排放研究.生态学报,2001,21(9):1494-1497
    [50]宋长春,阎百兴,王跃思,王毅勇,娄彦景,赵志春.三江平原沼泽湿地C02和CH4通量及影响因子.科学通报,2003,48(23):2473-2477
    [51] Xing, Y.P., P. Xie, H. Yang, L.Y. Ni, Y.S. Wang, K.W. Rong. Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China. Atmospheric Environment, 2005, 39:5532-5540
    [52] Sugimoto, A., N. Fujita. Characteristics of methane emission from different vegetations on a wetland. Tellus, 1997, 49B:382~392
    [53]Rask, H., J. Schoenau, D. Anderson. Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biology & Biochemistry, 2002, 34:435-443
    [54]金会军,吴杰,程国栋,中野智子,孙广友.青藏高原湿地CH_4排放评估.科学通报,1999,44(16):1758-1762
    [55]Kang, H., C. Freeman. The influence of hydrochemistry on methane emissions from two contrasting northern wetlands. Water, Air, and Soil Pollution, 2002,141:263-272
    [56]郝庆菊,王跃思,宋长春,江长胜.垦殖对沼泽湿地CH_4和N2_O排放的影响.生态学报,2007,27(8):3417-3426
    [57] Ding, W.X., Z.C. Cai, D.X. Wang. Preliminary budget of methane emissions from natural wetlands in China. Atmospheric Environment, 2004, 38:751-759
    [58]杨继松,刘景双,王金达,于君宝,孙志高,李新华.三江平原生长季沼泽湿地CH_4、N_2O 排放及其影响因素.植物生态学报,2006,30(3):432-440
    [59] Bubier, J.L., T.R. Moore, K. Savage, and P.M. Crill. A comparison of methane flux in a boreal landscape between a dry and a wet year, Global Biogeochemical Cycles, 2005,19:1-11
    [60] 宋长春,王毅勇,王跃思.季节性冻融期沼泽湿地CO_2、CH_4和N_2O排放动态.环境科学,2005,26(4):7-12
    [61] Hargreaves, K.J., D. Fowler, C.E.R. Pitcairn, M. Aurela. Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements. Theoretical and Applied Climatology, 2001,70:203-213
    [62] Zhang, J.B., C.C. Song, W.Y. Yang. Cold season CH_4, CO_2 and N_2O fluxes from freshwater marshes in northeast China. Chemosphere, 2005, 59:1703-1705
    [63] Song, C.C., Y.S. Wang, Y.Y. Wang, Z.C. Zhao. Emission of CO_2, CH_4 and N_2O from freshwater marsh during freeze-thaw period in Northeast of China. Atmospheric Environment, 2006, 40:6879-6885
    [64] Yang, W.Y., C.C. Song, J.B. Zhang. Dynamics of methane emissions from a freshwater marsh of northeast China. Science of the Total Environment, 2006, 371:286-292
    [65] Saarnio, S., T. Saarinen, H. Vasander, J. Silvola. A moderate increase in the annual CH4 efflux by raised CO_2 or NH_4NO_3 supply in a boreal oligotrophic mire. Global Change Biology, 2000, 6:137-144
    [66] Zimov, S.A., Y.V. Voropaev, I.P. SeMiletov, S.P. Davidov, S.F. Prosiannikov, F.S. Chapin Ⅲ, M.C. Chapin, S. Trumbore, S. Tyler. North Siberian lakes: a methane source fueled by Pleistocene carbon. Science, 1997, 277:800-802
    [67] 郝庆菊,王跃思,宋长春,刘广仁,王毅勇,王明星.三江平原湿地CH_4排放通量研究.水土保持学报,2004,18(3):194-199
    [68] Wang, Z.P., X.G Han, L.H. Li. Methane emission patches in riparian marshes of the inner Mongolia. Atmospheric Enviroment, 2006, 40:5528-5532
    [69] Bubier, J.L., T.R. Moore, N.T. Roulet. Methane emissions from wetlands in the midboreal region of northern Ontario, Canada. Ecology, 1993, 74:2240-2254
    [70] Alm, J., L. Schulman, J. Walden, H. Nykanen, P.J. Martikainen, J. Silvola. Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology, 1999, 80(1):161-174
    [71] Waddington, J.M., N.T. Roulet. Carbon balance of a boreal patterned peatland. Global Change Biology, 2000, 6:87-97
    [72] Moore, T.R., R. Knowles. Methane emission from fen, bog and swamp peatlands in Quebec. Biogeochemistry, 1990,11:45-61
    [73] Vann, C.D., J.P. Megoniga. Elevated CO_2 and water depth regulation of methane emissions: Comparison of woody and non-woody wetland plant species. Biogeochemistry, 2003, 63:117-134
    [74] 宋长春,王毅勇,王跃思,赵志春.人类活动影响下淡水沼泽湿地温室气体排放变化.地理科学,2006,26(1):82-86
    [75] Jauhiainen, J., H. Takahashi, J.E.P. Heikkinen, P. Martikainen, H. Vasander. Carbon fluxes from a tropical peat swamp forest floor. Global Change Biology, 2005,11:1788-1797
    [76] Ding, W.X., Z.C. Cai, H. Tsuruta, X.P. li. Effect of standing water depth on methane emissions from freshwater marshes in northeast China. Atmospheric Environment, 2002, 36:5149-5157
    [77] Singh S.N.. Exploring correlation between redox potential and other edaphic factors in field and laboratory conditions in relation to methane efflux. Environment International, 2001, 27:265-274
    [78] Lima, I.B.T.. Biogeochemical distinction of methane releases from two Amazon hydroreservoirs. Chemosphere, 2005, 59:1697-1702
    [79] 卢昌义,叶勇,黄玉山.海南岛东寨港红树林群落甲烷通量研究.植物生态学报,2000,24(1):87-90
    [80] Scott, K.J., C.A. Kelly, J.W.M. Rudd. The importance of floating peat to methane fluxes from flooded peatlands. Biogeochemistry, 1999, 47:187-202
    [81] Van Hulzen J.B., R. Segers, P.M. van Bodegom, et al. Temperature effects on soil methane production: an explanation of observed variability. Soil Biology & Biochemistry, 1999, 31:1919-1929
    [82] 丁维新,蔡祖聪.温度对甲烷产生和氧化的影响.应用生态学报,2003,14(4):604-608
    [83] Zhu, R.B., Y.S. Liu, L.G Sun, H. Xu. Methane emissions from two tundra wetlands in eastern Antarctica. Atmospheric Environment, 2007, 41:4711-4722
    [84] Strom, L., A. Ekberg, M. Mastepanov, T.R. Christensen. The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Global Change Biology, 2003, 9:1185-1192
    [85] Ding, W.X., Z.C. Cai, Tsuruta H. Methane concentration and emission as affected by methane transport capacity of plants in freshwater marsh. Water, Air, and Soil Pollution, 2004, 158:99-111
    [86] Rusch, H., H. Rennenberg. Black alder (Alnus Glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant and Soil, 1998, 201:1-7
    [87] Yavitt, J.B., A.K. Knapp. Aspects of methane flow from sediment through emergent cattail (Typha latifolia) plants. New Phytologist, 1998,139:495-503
    [88] Ding, W.X., Z.C. Cai, H. Tsuruta. Plant species effects on methane emissions from freshwater marshes. Atmospheric Environment, 2005, 39:3199-3207
    [89] Joabsson, A., T.R. Christensen, B. Wallen. Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology and Evolution, 1999,14:385-388
    [90] Martikainen, P.J., H. Nykanen, J. Alm, J. Silvola. Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant and Soil, 1995, 168-169:571-577
    [91]Stanturf, J.A., S.H. Schoenholtz, C.J. Schweitzer, J.P. Shepard. Achieving restoration success: myths in bottomland hardwood forests. Restoration Ecology, 2001,9(2):189-200
    [92] 徐化成.森林生态与生态系统经营.北京:化学工业出版社,2004:396-397
    [93]Nykanen, H., J. Alm, K. L(?)ng, J. Silvola, P.J. Martikainen. Emissions of CH_4, N_2O and CO_2 from a virgin fen and a fen drained for grassland in Finland. Journal of Biogeography, 1995, 22:351-357
    [94]Minkkinen, K., R. Korhonen, I. Savolainen, J. Laine. Carbon balance and radiative forcing of Finnish peatlands 1900-2100- the impact of forestry drainage. Global Change Biology, 2002, 8:785-799
    [95] Ding, W.X., Z.C. Cai, H. Tsuruta. Cultivation, nitrogen fertilization, and set-aside effects on methane uptake in a drained marsh soil in Northeast China. Global Change Biology, 2004, 10:1801-1809.
    [96]Roulet, N.T., T.R. Moore. The effect of forestry drainage practices on the emission of methane from northern peatlands. Canada Journal of Forest Research, 1995, 25:491-499
    [97]Melling, L., R. Hatano, J.G. Kah. Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Biology & Biochemistry, 2005, 37:1445-1453
    [98]Inubushi, K., Y. Furukawa, A. Hadi, E. Purnomo, H. Tsuruta. Seasonal changes of CO_2, CH_4 and N_2O fluxes in relation to land-use changes in tropical peatlands located in coastal area of South Kalimantan. Chemosphere, 2003, 52:603-608
    [99]Cui, J.B., C.S. Li, G Sun, C. Trettin. Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested Wetland Ecosystems. Environment Management, 2004, 33(Supplement 1):176-186
    [100]陈槐,高永恒,姚守平,吴宁,王艳芬,罗鹏,田建卿.若尔盖高原湿地甲烷排放的时空异质性.生态学报,2008,28(7):3425-3437
    [101] Wang, Z.P., X.G Han, L.H. Li, Q.S. Chen, Y. Duan, W.X. Cheng. Methane emission from small wetlands and implications for semi-arid region budget. Journal of Geophysical Research, 2005,110, D13304, doi: 10.1029/2004JD005548
    [102]叶勇,卢昌义,黄玉山,谭凤仪,林鹏,崔胜辉,杨素清,李鸾重.海莲林土壤CH_4通量的日变化和滩面差异.厦门大学学报(自然科学版),1997,36(6):925-930
    [103]叶勇,卢昌义,林鹏.海莲红树林土壤CH_4动态研究.土壤与环境,2000,9(2):91-95
    [104]叶勇,卢昌义.海南长宁河口桐花树红树林土壤CH_4动态研究.热带海洋学报,2001,20(4):35-42
    [105]丁维新.沼泽湿地及其不同利用方式下甲烷排放机理研究.中国科学院南京土壤研究所博士学位论文.2003.
    参考文献
    [106]王明星,戴爱国,黄俊,任丽欣,沈壬兴,H.Schutz,H.Renneuberg,W.Seiler,R.A.Rasmussen,M.A.K.Khalil.中国CH_4排放量估算.大气科学,1993,17(1):52-64
    [107]刘兴土,吕宪国,赵魁义.湿地资源及其保育.见:李文华主编.东北地区有关水土资源配制、生态与环境保护和可持续发展的若干战略问题研究-林业卷:东北地区森林与湿地保育及林业发展战略研究.北京:科学出版社,2007:409-449
    [108]郎惠卿.中国湿地植被.北京:科学出版社,1999:35-74
    [109]王德宣,吕宪国,丁维新,蔡祖聪,王毅勇.三江平原沼泽湿地与稻田CH_4排放对比研究.地理科学,2002,22(4):500-503
    [110]宋长春,王毅勇,王跃思,阎百兴,徐晓锋,张金波,杨文燕.沼泽垦殖前后土壤呼吸与CH_4通量变化.土壤通报,2005,36(1):45-49
    [111]王跃思.碳交换的箱法测定.见:陈泮勤主编.地球系统碳循环.北京:科学出版社,2004:130-145
    [112] Kim, J., S.B. Verma, D.P. Billesbach, R.J. Clement. Diel variation in methane emission from midlatitude praivier wetland: Significance of convective though flow in Phagmites australis. Journal of Geophysical Research, 1998,103:28,029-28,039
    [113] Van der Nat F.J.W.A., J.J. Middelburg, D. van Meteren, A. Wielemakers. Diel methane emission patterns from Scirpus lacustris and Phragmites australis. Biogeochemistry, 1998, 41:1-22
    [114] Kaki, T., A. Ojala, P. Kankaala. Diel variation in methane emissions from stands of Phragmites australis (Cav.) Trin. ex Steud. and Typha latifolia L. in a boreal lake. Aquatic Botany, 2001, 71:259-271
    [115] Chanton, J.P., G.J. Whiting, J.D. Happell, G. Gerard. Contrasting rates and diurnal patterns of methane emission from emergent macrophytes. Aquatic Botany, 1993, 46:111-128
    [116] Windsor, J., T.R. Moore, N.T. Roulet. Episodic fluxes of methane from subarctic fens. Canadian Journal of Soil Science, 1992, 72:441-452
    [117] Mikkela, C, I. Sundh, B.H. Svensson, M. Nilsson. Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid Mire. Biogeochemistry, 1995, 28:93-114
    [118] 崔宝山.三江平原沼泽地CH_4排放规律及估算.地理科学,1997,17(1):93-95
    [119] Wilson, J.O., P.M. Crill, K.B. Bartlett, D.I. Sebacher, R.C. Harriss, R.L. Sass. Seasonal variation of methane emission from temperate swamp. Biogeochemistry, 1989, 8:55-71
    [120] Yavitt, J.B., GE. Lang, A.J. Sexstone. Methane fluxes in wetland and forest soils, beaver ponds and low-order stream of a temperate forest ecosystem. Journal of Geophysical Research, 1990, D13:22463-22474
    [121] Pulliam, W.M.. Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecological Monographs, 1993, 63:29-53
    [122] Saarnio, S., J. Alm, J. Silvola, A. Lohila, H. Nykanen, PJ. Martikainen. Seasonal variation in CH_4 emissions and production and oxidation potentials at microsite on an oligotrophic pine fen. Oecologia, 1997,110:414-422
    [123] Bubier, J.L., T.R. Moore, L.M. Bellisario, N.T. Comer, P.M. Crill. Ecological controls on methane emission from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada. Global Biogeochemical Cycles, 1995, 9(4):455-470
    [124] Mattson, M.D., GE. Likens. Air pressure and methane fluxes. Nature, 1990, 347:718-719
    [125] Moore, T.R., N.T. Roulet, R. Knowles. Spatial and temporal variation of methane flux from subarctic/northern boreal fens. Global Biogeochemical Cycles, 1990, 4:29-46
    [126] Christensen, T.R., N. Panikov, M. Mastepanov, A. Joabsson, A. Stewart, M. (O|¨)quist, M. Sommerkom, S. Reynaud, and B. Svensson. Biotic controls on CO_2 and CH_4 exchange in wetlands-A closed environment study. Biogeochemistry, 2003, 64:337-354
    [127] Morrissey, L.A., GP. Livingston. Methane emissions from Alaska arctic tundra: an assessment of local spatial variability. Journal of Geophysical Research, 1992, 97(D15):16661-16670
    [128] Christensen, T.R., A.Ekberg, L. Str(o|¨)m, M. Mastepanov, N. Panikov, M. (?)quist, B.H. Svensson, H. Nykanen, P.J. Martikainen, and H. Oskarsson. Factors controlling large-scale variations in methane emissions from wetlands. Geophysical Research Letters, 2003, 30(7),1414,doi:10.1029/2002GL016848
    [129] Waddington, J.M., N.T. Roulet, R.V. Swanson. Water table control of CH_4 emission enhancement by vascular plants in boreal peatlands. Journal of Geophysical Research, 1996, 101(D17):22,775-22,785
    [130] 杨文燕,宋长春,鸾兆擎,张金波.干旱年份三江平原沼泽甲烷(CH_4)排放及影响因子.生态学杂志,2006,25(4):423-427
    [131] Dise, N.B., E. Gorham, E.S. Verry. Environmental factors controlling methane emissions from peatlands in northern Minnesota. Journal of Geophysical Research, 1993, 98(D6):10583-10594
    [132] Moore, T.R., A. Heyes, N.T. Roulet. Methane emissions from wetlands, southern Hudson Bay Lowlands. Journal of Geophysical Research, 1994, 99(D1):1455-1467
    [133] Kettunen, A., V. Kaitala, J. Alm, J. Silvola, H. Nykanen, P.J. Martikainen. Cross-correlation analysis of the dynamics of methane emissions from a boreal peatland. Global Biogeochemical Cycles, 1996, 10 (3):457-471
    [134] Boon, P.I., A. Mitchell, K. Lee. Effects of wetting and drying on methane emissions from ephemeral floodplain wetlands in south-eastern Australia. Hydrobiologia, 1997, 357:73-87
    [135] Treat, C.C., J.L. Bubier, R.K. Varner, P.M. Crill. Timescale dependence of environmental and plant-mediated controls on CH4 flux in a temperate fen. Journal of Geophysical Research, 2007, 112, G01014, doi:10.1029/2006JG000210.
    [136] Shannon, R.D., J.R. White. A three-year study of controls of methane emissions from two Michigan peatlands.Biogeochemistry,1994,27:35~60
    [137]Pulliam,W.M.,J.L.Meyer.Methane emissions from floodplain swamps of the Ogeechee River:Long-term patterns and effects of climate change.Biogeochemistry,1992,15:151~174
    [138](O|¨)quist,M.G,B.H.Svensson.Vascular plants as regulators of methane emissions from a subarctic mire ecosystem.Journal of Geophysical Research,2002,107,4580,doi:10.1029/2001JD001030
    [139]Huttunen,J.T.,H.Nyk(a|¨)nen,J.Turunen,P.J.Martikainen.Methane emissions from natural peatlands in the northern boreal zone in Finland,Fennoscandia.Atmospheric Environment,2003,37:147~151
    [140]Crill,P.M.,K.B.Bartlett,R.C.Harriss,E.Gorham,E.S.Verry,D.I.Sebacher,L.Madzer,and W.Sanner.Methane flux from Minnesota peatlands.Global Biogeochemical Cycles,1988,2(4):371~384
    [141]Christensen,T.R.Methane emission from arctic tundra.Biogeochemistry,1993,21:117~139
    [142]Chapman S.J.,M.Thurlow.The influence of climate on CO_2 and CH_4 emissions from organic soils.Agricultural and Forest Meteorology,1996,79:205~217
    [143]Moosavi,S.C,P.M.Crill.Controls on CH_4 and CO_2 emissions along two moisture gradients in the Canadian boreal zone.Journal of Geophysical Research,1997,102(D24):29,261~29,277
    [144]Dise,N.B..Methane emission from Minnesota peatlands:spatial and seasonal variability.Global Biogeochemical Cycles,1993,7:123~142
    [145]Blodau C,Roulet NT,Heitmann T,Stewart H,Beer J,Lafleur P and Moore TR.Belowground carbon turnover in a temperate ombrotrophic bog.Global Biogeochemical cycling,2007,21,GB1021,doi:10.1029/2005GB002659.
    [146]Moosavi,S.C,P.M.Crill,E.R.Pullman,D.W.Funk,and K.M.Peterson.Controls on CH_4,flux from an Alaskan boreal wetland.Global Biogeochemical Cycles,1996,10(2):287~296
    [147]Liblik,L.,T.R.Moore,J.L.Bubier,S.D.Robinson.Methane emissions from wetlands in the zone of discontinuous permafrost:Fort Simpson,NWT,Canada.Global Biogeochemical Cycles,1997,11:485~494
    [148]Joabsson,A.,T.R.Christensen.Methane emissions from wetlands and their relationship with vascular plants:an Arctic example.Global Change Biology,2001,7:919~932
    [149]Singh,S.N.,K.Kulshreshtha,S.Agnihotri.Seasonal dynamics of methane emission from wetlands.Chemosphere:Global Change Science,2000,2:39~46
    [150]Mitsch,W.J.,J.G.Gosselink.Wetlands.3(rd)edition,New York:John Wiley & Sons,Inc.,2000:107-153
    [151]Kellogg,C.H.,S.D.Bridgham,S.A.Leicht.Effects of water level shade and time on germination and growth of freshwater marsh plants along a simulated successional gradient.Journal of Ecology,2003,91:274~282
    [152] Fraser, L.H., J.P. Karnezis. A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water-depth differences. Wetlands, 2005, 25(3):520-530
    [153] 王丽,胡金明,宋长春,杨涛.水位梯度对三江平原典型湿地植物根茎萌发及生长的影响.应用生态学报,2007,18(11):2432-2437
    [154]王丽,胡金明,宋长春,杨涛.水分梯度对三江平原典型湿地植物小叶章地上生物量的影响.草业学报,2008,17(4):19-25
    [155]庄凯勋,侯武才.大兴安岭东部国有林区的湿地资源现状及保护对策.东北林业大学学报,2006,34(1):83-86
    [156]赵魁义.中国沼泽志.北京:科学出版社,1999:144-158
    [157] Ding, W.X., Z.C. Cai. Methane emission from natural wetlands in China: summary of years 1995-2004 studies. Pedosphere, 2007,17:475-486
    [158] Minkkinen, K., J. Laine, H. Nykanen, PJ. Martikainen. Importance of drainage ditches in emissions of methane from mires drained for forestry. Canada Journal of Forest Research, 1997, 27:949-952
    [159] Glenn, S., A. Heyes, T. Moore. Carbon dioxide and methane fluxes from drained peat soils, southern Quebec. Global Biogeochemical Cycles, 1993, 7(2):247-257
    [160] Roulet, N.T., R. Ash, W. Quinton, T.R. Moore. Methane flux from drained northern peatlands: Effect of a persistent water table lowering on flux. Global Biogeochemical Cycles, 1993,7:749-769
    [161] Arnold, K.V., M. Nilsson, B. Hanell, P. Weslien, L. Klemedtsson. Fluxes of CO_2, CH_4 and N_2O from drained organic soils in deciduous forests. Soil Biology & Biochemistry, 2005, 37:1059-1071
    [162] Arnold, K.V., P. Weslien, M. Nilsson, B.H. Svensson, L. Klemedtsson. Fluxes of CO_2, CH_4 and N_2O from drained coniferous forests on organic soils. Forest Ecology and Management, 2005, 210:239-254
    [163] Strack, M.J., M. Waddington, E.S. Tuittila. The effect of water table drawdown on northern peatland methane dynamics: Implications for climate change. Global Biogeochemical Cycles, 2004,18,GB4003, doi:10.1029/ 2003GB002209
    [164] Nykanen, H., J. Alm, J. Silvola, K. Tolonen, PJ. Martikainen.. Methane fluxes on boreal peat lands of different fertility and the effect of long term experimental lowering of the watertable on flux rates. Global Biogeochemical Cycles, 1998,12:53-69
    [165] Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele, P.J. Fraser. Three-dimensional model synthesis of the global methane cycle. Journal of Geophysical Research, 1991, 96:13,033-13,065
    [166] Trettin, C.C., M.F. Jurgensen, D.F. Grigal, M.R. Gale, J.K. Jeglum. Northern Forested Wetlands: Ecology and Management. Boca Raton: CRC Press Inc., 1997:12-14
    [167] Dub(?), S., A.P. Plamondon, R.L. Rothwell. Watering up after clear-cutting on forested wetlands of the St. Lawrence lowland. Water Resources Research, 1995, 31(7):1741-1750
    [168] Sun, G., H. Riekerk, L.V. Kornhak. Ground-water-table rise after forest harvesting on cypress-pine flatwoods in Florida. Wetlands, 2000, 20(1):101-112
    [169] Sun, G., S.G McNulty, J.P. Shepard, D.M. Amatya, H. Riekerk, N.B. Comerford, W. Skaggs, L. SwiftJr. Effects of timber management on the hydrology of wetland forests in the southern United States. Forest Ecology and Management, 2001,143:227-236
    [170] Shepard, J.P.. Effects of forest management on surface water quality in wetland forests. Wetlands, 1994,14(1):18-26
    [171] Lockaby, B.G., R.G Clawson, K. Flynn, R. Rummer, S. Meadows, B. Stokes, J. Stanturf. Influence of harvesting on biogeochemical exchange in sheetflow and soil processes in a eutrophic floodplain forest. Forest Ecology and Management, 1997, 90:187-194
    [172] Rapp, J., T. Shear, D. Robison. Soil, groundwater, and floristics of a southeastern United States blackwater swamp 8 years after clearcutting with helicopter and skidder extraction of the timber. Forest Ecology and Management, 2001,149:241-252
    [173] Zerva, A., M. Mencuccini. Short-term effects of clearfelling on soil CO_2,CH_4, and N_2O fluxes in a Sitka spruce plantation. Soil Biology & Biochemistry, 2005, 37:2025-2036
    [174] Funk, D.W., E.R. Pullman, K.M. Peterson, P.M. Crill, W.D. Billings. Influence of Water Table on Carbon Dioxide, Carbon Monoxide, and Methane Fluxes From Taiga Bog Microcosms. Global Biogeochemical Cycles, 1994, 8(3):271-278
    [175] Huttunen, J.T., H. Nykanen, P.J. Martikainen, M. Nieminen. Fluxes of nitrous oxide and methane from drained peatlands following forest clear-felling in southern Finland. Plant and Soil, 2003, 255:457-462
    [176] Yashiro, Y., W.R. Kadir, T. Okuda, H. Koizumi. The effects of logging on soil greenhouse gas (CO_2, CH_4, N_2O) flux in a tropical rain forest, Peninsular Malaysia. Agricultural and Forest Meteorology, 2008,148:799-806
    [177] 谷家存,王政权,韩有志,王向荣,梅莉,张秀娟,程云环.采伐干扰对帽儿山地区天然次生林土壤表层温度空间异质性的影响.应用生态学报,2006,17(12):2248-2254
    [178] Roy, V., J. Ruel, A.P. Plamondon. Establishment, growth and survival of natural regeneration after clearcutting and drainage on forested wetlands. Forest Ecology and Management, 2000, 129:253-267
    [179] Moore, T.R., M. Dalva. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biology & Biochemistry, 1997, 29:1157-1164
    [180] Castro, M.S., H.L. Gholz, K.L. Clark, P.A. Steudler. Effects of forest harvesting on soil methane fluxes in Florida slash pine plantations.Canadian Journal of Forest Research,2000,30:1534~1542
    [181]Dunfield,P.,R.Knowles,R.Dumont,T.R.Moor.Methane production and consumption in temperature and subarctic peat soils:Response to temperature and pH.Soil Biology & Biochemistry,1993,25(3):321~326
    [182]Bradford,M.A.,P.Ineson,P.A.Wookey,H.M.Lappin-Scott.Soil CH_4 oxidation:response to forest clearcutting and thinning.Soil Biology & Biochemistry,2000,32:1035~1038
    [183]Dannenmann,M.,R.Gasche,A.Ledebuhr,T.Hoist,H.Mayer,H.Papen.The effect of forest management on trace gas exchange at the pedosphere-atmosphere interface in beech(Fagus sylvatica L.)forests stocking on calcareous soils.European Journal of Forest Research,2007,126:331~346