TA15钛合金高效焊接及补焊工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金具有比强度大、比重量轻、耐高温、加工成型以及焊接性良好等优点,一直被广泛的应用于航天、航空、化工等领域。材料的发展及被广泛应用,离不开良好的焊接方法的支撑,因此,探索出高效的焊接方法能够促进钛合金的发展。同时,钛合金实际焊接生产中焊缝经常出现气孔、夹杂等缺陷,在服役过程中结构件易于磨损,为了延长结构件的使用寿命和降低成本,补焊不失为一种良好的解决问题的方法。
     本课题以此为出发点,针对国内牌号TA15钛合金板材,探索出适合TA15钛合金的高效焊接方法,其中包括激光-TIG复合热源焊接方法和活性化TIG焊接方法。同时对钛合金焊接试件进行补焊,并对补焊焊缝进行了系统的分析。
     研究结果表明,采用激光-TIG复合热源焊接工艺可以实现钛合金的高速焊接,其焊接速度可达普通TIG的3~4倍。通过接头微观组织和力学性能分析,发现激光-TIG复合焊接接头成型良好,焊缝区由上部的柱状晶和下部的等轴晶构成,断口为韧性断裂,焊缝抗拉强度可以达到母材的98%以上。
     采用活性化焊接,在单一活性剂堆焊的基础上,综合考虑熔深及力学性能等方面因素,选取4种活性剂分别进行两组3水平3因素的正交试验,试验结果显示,选用理想配比的混合活性剂,在相同参数条件下,熔深可提高到普通TIG焊接熔深的3.46倍。
     对TA15钛合金焊接接头进行多次补焊,发现随着补焊次数的增加,补焊焊缝组织长大,合金元素在母材中与在焊缝中含量不均衡程度加大,接头疲劳循环次数降低,其中初始焊接接头、一次、二次和三次补焊接头变化较小,而三次补焊接头与四次补焊接头的差别则尤为明显。采用涂活性剂补焊,可以在焊缝缺陷处直接进行填丝补焊,并且补焊焊缝熔合良好,补焊焊缝组织不发生长大现象。
Titanium alloys are widely used in the fields of aviation, spaceflight and chemical industry due to their excellent properties such as excellent specific strength, low specific gravity, strong resistance to elevated temperatures, good design ability and good weldability. The developments and applications of materials can not go along without good welding means. Thus it will accelerate the developments of titanium alloys to explore the high efficient welding methods. However, the defects such as porosity, impurity, faulty fusion are always found in the titanium alloy welding joints, additionally the welding joints are liable to be worn out when in using, thus it make the service life of structures reduce. It will be large economic losses that exchange the structures. Thus, repaired welding is a good method to prolong the service life of the structures.For the plate of TA15 titanium alloy, the high efficient welding methods have been explored concluding laser-TIG hybrid welding method and active TIG method. Meanwhile the weldment has been repaired welded and the repaired welding joints have been analyzed sysmeticly.The results show that by laser-TIG hybrid welding it can actualize welding titanium plate method in high speed which is 300-400% of TIG method. Through the analyzing the microstructures and properties of the joint, it can be found that welded seam of titanium alloys, forming well and regularly is made up of columnar crystals above and equiaxed crystals below. The tensile strength achieves 98% of base metal and the fracture of samples proves to be gliding fracture.TA15 titanium alloy is bead welded by active TIG with single flux firstly. Based on penetrations and properties, 4 species of fluxes are selected and the orthogonal test with 3 factors and 3 indexes are carried out. The result show that in the same parameters, weld penetration can be 3.46 times deep of TIG with ideal match mixed fluxes.TA15 titanium alloy weld joints are repaired welded with multiple times. It found that with the repaired welding times increase, the microstructures of the repaired weld seams grow up. Alloy elements between the base metal and the weld bead distribute more unevenly. Fatigue circles reduce and the amplitude of reduction augments especially from 3rd time repaired weld joint to 4th time repaired weld joint. When the weld joints are repaired welded with flux, it can be repaired at the defect place straightly without drilling out the defects. Further, the repaired weld seam forms well and the structures do not grow up.
引文
[1] 中国机械工程学会焊接学会.焊接手册:材料的焊接.北京:机械工业出版社,2001.
    [2] 董宝明,郭德伦,张田仓.钛合金焊接结构在先进飞机中的应用及发展[J].航空材料学报,2003,23(增刊):239-243.
    [3] Boyer R. R. An overview on the use of titanium in the aerospace industry. Materials Science and Engineering, 1996, A213: 103-114.
    [4] 宁兴龙.俄罗斯航空用钛合金.钛工业进展,1999.4:19-25.
    [5] 李梁,孙健科,孟祥军.钛合金的应用现状及发展前景.钛工业进展,2004,21(5):19-24.
    [6] Brun M. Ya, Shakhanova G. V. Titanium Alloy Structure and Parameters Defining Its Diversity. Titanium Scientific Technical Journal, 1993, 1(3): 24-29.
    [7] Evans W. J. Optimising Mechanical Properties in Alpha + Beta Titanium Alloys. Mat Sci Eng, 1998, A243: 89-96.
    [8] 周彦邦.钛合金铸造概论.北京:航空工业出版社,2000.
    [9] 王家淳.HE130合金激光焊接工艺与接头组织性能.北京:北京有色金属研究总院,2001.7.
    [10] 杜鑫,刘黎明,宋刚等.TA15钛合金接头补焊组织特征分析.焊接学报,2005,26(2):45-48.
    [11] 中国机械工程学会焊接学会.焊接手册:焊接方法及设备.北京:机械工业出版社,2001,8.
    [12] 康浩方.国内外钛设备的焊接技术研究现状.钛工业进展,2003,20(4-5):70-73.
    [13] Castro M. B. G, Dos Santos J. F, Quintino. M. L. Plasma arc welding of the super alloys Inconel 625 and 718: parameter areas and mechanical properties. Int. J. for the Joining of Materials, 2003, 15(1/2): 1-8.
    [14] Martikainen. J. K, Moisio. I. J. Investigation of the effect of welding parameters on weld quality of plasma arc keyhole welding of structural steels. Welding Journal, 1993, 7: 329-340.
    [15] Einar H. New applications of plasma keyhole welding. Welding in the World, 1994, 34: 285-291.
    [16] 李志远,钱乙余,张九海等.先进连接方法.北京:机械工业出版社,2000,5.
    [17] Chang E. Low-melting-point titanium-base brazing alloys-Part 2: Characteristics of brazing Ti-21Ni-14Cu on Ti-6Al-4V substrate. J Materials Engin and Perf, 1997, 6(6): 797-803.
    [18] 张秋平,张永寿.钛合金用钎焊材料的工艺发展现状.飞航导弹,2005,7:56-64.
    [19] Jata S. V, Sankaran K. K, Ruschau J. J. Friction stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451. Metallurgical andMaterials Transcations A, 2000, 31A(9): 2181-2192.
    [20] Calegrove P, Threadgil Phlip. Development of the TrivexTM friction stir welding tool. Science and Technology of welding and joining, 2003, 13(2): 18-26.
    [21] Thomas W. M, Nicholas E. D, Smith S. D. Friction stir welding tool developments. The Aluminum Joining Symposium, TWI, 2001: 11-15.
    [22] Mishra R. S, Ma Z. Y. Friction stir welding and processing. Materials Science and Engineering R, 2005, 50(1-2): 1-78.
    [23] 孟兆新.搅拌摩擦焊搅拌头优化及工艺过程仿真:(硕士学位论文).哈尔滨:哈尔滨理工大学,2004.
    [24] 刘凤尧,林三宝,杨春利等.活性剂涂敷量对A-TIG焊熔深影响的研究.材料科学与工艺,2002,10(3):310-313.
    [25] Paton B. E. The weldability steels that have been refined by remelting. Automatic Welding, 1974, 27(6): 1-4.
    [26] Lucas W, Howse D. Activating flux-increasing the performance and productivity of the TIG and plasma processes. Welding and Metal Fabrication, 1996, (1): 11-17.
    [27] Howse D. S, Lucas W. Investigation into arc constriction by active fluxes for tungsten inert gas welding. Science and Techology of Welding and Joining, 2000, 5(3): 189-193.
    [28] 葛小层.A-TIG焊接技术的研究与发展.新技术新工艺,2004,(2):38-40。
    [29] Castner H. R, Lundin C, Paskell T. GTAW flux increases weld joint penetration. Welding Journal, 1997, (4): 57-62.
    [30] Steen W. M. Arc augmented laser processing of materials. Appl. Phys., 1980, 51(11): 5636-5638.
    [31] Diebold T. P, Albright C. E. Laser-GTA welding of aluminium alloy 5052. Welding journal, 1984, 64(1): 18-24.
    [32] 崔旭明,李刘合,张彦华.激光-电弧复合热源焊接.焊接技术,2003,32(2):19-21.
    [33] 刘黎明,王继锋,宋刚.激光电弧复合焊接AZ31B镁合金.中国激光,2004,31(12):1523-1526.
    [34] Denney P. E, Shinn B. W, Fallara P. M. Proceedings of the 15th international off shore and polar engineering conference, 2005, 4: 106-111.
    [35] Liu J, Watanabe I, Yoshida K. Joint strength of laser-welded titanium. Dental Materials, 2002, 18: 143-148.
    [36] Eboo M, Steen W, Clarke J. Proc. 4th Int. Conf. on 'Advances in welding processes'. Abington, 1978: 257-265.
    [37] Page C. J, Devermann T, Biffin J, Blundell N. Plasma augmented laser welding and its applications. Science and Technology of Welding and Joining, 2002, 7(1): 1-10.
    [38] 鲍莉索娃.钛合金金相学.陈石卿.北京:国防工业出版社,1980.
    [39] 陈春和,高灵清.Mo对Ti-Al合金的组织和性能的影响.材料开发与应用,2000,15(3):5-7.
    [40] 曹京霞,方波,黄旭等.微观组织对TA15钛合金力学性能的影响.稀有金属,2004,28(2):362-364.