CD20在慢性淋巴细胞白血病细胞中低表达机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     CD20表达比例和强度在慢性淋巴细胞白血病中的预后价值
     目的:慢性淋巴细胞白血病(Chronic lymphocytic leukemia,CLL)患者CD20表达水平存在异质性,本项研究旨在探讨CD20表达水平在CLL患者的预后价值。
     方法:2003年1月至2011年12月在我院住院的172例初诊CLL患者。患者外周血标本均进行流式细胞术(Flow cytometry,FCM)检测,分析CD19+细胞的CD20、CD38和ZAP-70表达水平。间期荧光原位杂交(Fluorescence in situhybridization,FISH)检测细胞遗传学异常。聚合酶链式反应(Polymerase chainreaction, PCR)结合DNA测序检测p53基因和免疫球蛋白重链可变区(Immunoglobulin variable heavy chain,IGHV)基因突变。
     结果:172例CLL患者,CD20在CD19+细胞中位表达比例为97.82%(0~100%),中位平均荧光强度(Mean fluorescence intensity,MFI)为731.45(0~9071.90)。IGHV突变组CD20平均表达比例高于IGHV无突变组,分别为92.10%和80.40%(P<0.001),CD20MFI在各预后指标组间均无明显差异(如IGHV突变状态等)。采用受试者工作特征曲线(Receiver operating characteristic curve,ROC)确定CD20表达比例在预测CLL患者IGHV突变的最佳临界值,曲线下面积(Area under thecurve,AUC)为0.661(95%CI:0.569~0.753)。CD20表达比例在IGHV突变预测的最佳临界值为60.30%,敏感性和特异性分别为90.00%和38.46%。CD20表达比例高于60.30%组无治疗生成时间(Treatment-free survival,TFS)比CD20表达比例低于60.30%组长(HR=0.452,95%CI:0.232~0.884,P=0.020),多变量Cox回归分析显示CD20表达比例和MFI均与TFS无相关性(P<0.05)。
     结论:CD20表达水平为CLL的预后指标之一,且高表达水平患者预后优于低表达患者,但不是独立性的预后因素。
     第二部分
     CD20单核苷酸多态性与慢性淋巴细胞白血病细胞CD20低表达相关性研究
     目的:利妥昔单抗(Rituximab,RTX)现已在临床中广泛应用,部分CLL患者存在对其原发或继发耐药,但具体机制仍未明确。本项研究以CD20低表达为研究重点,探讨CD20蛋白编码区是否存在突变进而影响CD20表达量。
     方法:针对CD20基因编码区Exon3~8分别设计6对引物,通过PCR扩增技术检测92例初诊CLL患者及200例正常对照样本CD20基因,后行基因序列检测。同时提取CLL患者外周血标本总RNA行CD20mRNA相对定量分析。FCM检测CLL细胞CD20表达比例和MFI。
     结果:3.26%(3/92)初诊CLL患者存在Exon-3c.246C>T (rs17155019);8.69%(8/92)初诊CLL患者存在Exon-4c.632C>T (rs2070770),其余外显子均未发现任何异常。CLL人群rs17155019和rs2070770两个单核苷酸多态性(Single nucleotidepolymorphism,SNP)位点C/C基因型频率明显高于正常对照人群,分别为96.74%和93%;91.31%和81.00%,且具有统计学差异(P<0.01);提示两SNP的C/C基因型可能为CLL的易感基因型。两个SNP位点的不同基因型间CD20mRNA水平、CD20表达比例和MFI均无明显统计学差异(P<0.05)。
     结论:CLL患者CD20低表达与CD20基因编码区SNP无相关性。
     第三部分
     microRNA与慢性淋巴细胞白血病细胞CD20低表达相关性研究
     目的: microRNA(miRNA)在生物体发育、细胞凋亡、增殖及分化等生命活动中发挥重要作用。它主要通过与靶标基因3’UTR的完全或不完全配对,降解靶标基因mRNA或抑制其翻译。本实验目的为研究miRNA与CD20表达调控之间的关系。
     方法:分别检索三个数据库预测可能调节CD20的miRNA,包括hsa-miR-1、hsa-miR-221、hsa-miR-499-3p、hsa-miR-576-5p、hsa-miR-632和hsa-miR-708等。体外化学合成6个miRNA mimics,应用lipofectamine2000体外转染13例初诊CLL患者原代细胞,培养24h,通过RT-PCR检测CD20mRNA表达水平;FCM检测CD20表达比例和CD20MFI的变化。
     结果:通过RT-PCR方法分别检测hsa-miR-1、hsa-miR-221、hsa-miR-499-3p、hsa-miR-576-5p、hsa-miR-632和hsa-miR-708表达水平,提示转染效率可。对6组转染miRNAmimic和阴性对照(Negative control,NC)组分别检测CD20mRNA和蛋白水平,与对照组比较提示无明显统计学差异(P<0.05)。
     结论:提示hsa-miR-1、hsa-miR-221、 hsa-miR-499-3p、hsa-miR-576-5p、hsa-miR-632和hsa-miR-708的靶基因不包括CD20,CLL细胞CD20的低表达量可能与其不相关。
     第四部分
     CD20基因启动子甲基化水平与慢性淋巴细胞白血病细胞CD20低表达相关性研究
     目的:表观遗传学在肿瘤的病理过程中发挥重要的作用。CLL细胞CD20低表达可能与表观遗传学的调控相关。本研究拟探讨组蛋白乙酰化与启动子甲基化与CD20表达之间的关系。
     方法:分别以1mM、2mM和4mM的组蛋白去乙酰化酶抑制剂(Histonedeacetylase inhibitors,HDACI)丙戊酸(Valproic acid,VPA)处理CLL原代细胞,培养24h和48h后通过RT-PCR和FCM检测CD20mRNA和蛋白水平变化;DNA甲基转移酶抑制剂5-氮-2’-脱氧胞苷(5-Aza-dC)(100μM)处理CLL原代细胞,分别培养24h、48h和96h后收集细胞,通过RT-PCR和FCM检测CD20mRNA和蛋白水平变化。生物信息学软件分析CD20启动子区;亚硫酸氢盐测序法(Bisulfite genomic sequencing,BSP)对CLL细胞CD20启动子区行甲基化分析,包括:用重亚硫酸盐处理基因组DNA;分别设计3对引物,对CD20启动子区6个CpG行PCR扩增;PCR产物割胶纯化后TA克隆,挑取10个克隆测序。
     结果: VPA1mM培养24h CD20mRNA水平增加明显,但CD20蛋白水平未见明显增加;5-Aza-dC处理24h后可明显提高CD20mRNA水平、处理48h后可明显提高蛋白水平。BSP结果显示6个CpG均存在部分甲基化,分别为28%(14/50)、24%(12/50)、8%(4/50)、20%(10/50)、6%(3/50)和16%(8/50)。CD20表达量明显增高的患者其CD20启动子总的甲基化比例仅为11.67%(7/60)。CD20表达比例和强度与CD20启动子甲基化比例无明显相关性。
     结论:表观遗传学机制可能与CLL的CD20低表达相关;去甲基化药物可提高CLL细胞CD20表达。
Part Ⅰ
     The prognostic value of CD20percent and fluorescence intensity inchronic lymphocytic leukemia
     Objectives: Heterogeneity of CD20expression was existed in chronic lymphocyticleukemia (CLL), so we explore the prognostic significance of CD20expression inChinese patients with CLL.
     Methods: One hundred and seventy-two consecutive Chinese patients with CLLwere enrolled from January2003to December2011. Blood samples collected atdiagnosis were available for CD20, ZAP-70and CD38analyses.Multi-parameter flowcytometry was used to detect the expression of CD20on CD19+cells. Molecularcytogenetic aberrations were detected by florescence in situ hybridization (FISH).p53mutation and immunoglobulin variable heavy chain (IGHV) mutation status wereanalyzed by polymerase chain reaction (PCR) and direct sequencing.
     Results: In172CLL patients, the median expression percent of CD20was97.82%(range,0–100), and the median mean fluorescence intensity (MFI) of CD20on CLLcells was731.45(rang,0–9071.90). The percentage of CD20+cells in cases of IGHVmutated groups was higher than unmutated groups (mean,92.1%vs.80.4%,P<0.001). There were no difference in the MFI of CD20+cells in cases of eachprognostic factor group. The data of percentage of CD20using a receiver operatingcharacteristic plot (ROC) reflects separation between the two IGHV groups, with anarea under the curve (AUC) of0.661(95%CI:0.569to0.753). At the cutoff value ofpredicting IGHV mutation is60.30%of CD20percentage, the sensitivity and thespecificity were90.00%and38.46%. Patients whose percentage of CD20antigen above60.30%had a better treatment free survival (TFS)[Hazard Ratio (HR),0.452,95%CI:0.232to0.884, P=0.020]. Percentage and MFI of CD20were the variablesnot associated with TFS by multivariate Cox regression analysis (P<0.05).
     Conclusions: Expression levels of CD20is one of the prognostic markers of CLL,high level of CD20expression in CLL appears to be associated with a good prognosis,but not independent prognostic factor.
     PartⅡ
     Study on the relation between single nucleotide polymorphisms ofCD20and low expression of CD20in chronic lymphocytic leukemiacells
     Objectives: Rituximab (RTX) is now widely used in clinical practice. Some CLLpatients with primary or secondary resistance to the drug, the mechanism was not yetclear. This research focused on the relationship between CD20coding regionmutations with CD20expression.
     Methods: Primers were designed for the CD20gene coding region.CD20wasamplified by PCR in92cases of newly diagnosed CLL patients and200healthydonors. Relative quantitative analysis of CD20mRNA was conducted in peripheralblood specimens of CLL patients. Proportions of CD20expression and fluorescenceintensity were detected by flow cytometry.
     Results: Exon-3c.246C>T (rs17155019) was present in3.26%(3/92) of newlydiagnosed CLL patients. Exon-4c.632C>T (rs2070770) was present in8.69%(8/92) of newly diagnosed CLL patients. There were not found of any abnormal in theremaining exons. The frequency of C/C genotype of rs17155019and rs2070770wassignificantly higher than the normal control population,96.74%and93%;91.31%and81.00%, respectively (P<0.01). C/C genotype of two SNP may be susceptiblegenotype of CLL. No statistically significant difference in the CD20mRNA,proportion and intensity of CD20expression was found in the different genotypes oftwo polymorphic loci (P<0.05).
     Conclusions: There was no correlation between low expression of the CD20andmutation of CD20gene coding region.
     Part Ⅲ
     Study on the relationship between microRNA and low expression ofCD20in chronic lymphocytic leukemia cells
     Objectives: microRNA has been shown to play an important role in the development,apoptosis, proliferation and differentiation of organisms. It is mainly through thecomplete or incomplete matching with3'UTR of the target gene, which leaded to thedegradation of the target gene mRNA or inhibiting its translation. The purpose of thisexperiment was to study the relationship between miRNA and CD20expression.
     Methods: To found potential miRNA which might regulate CD20expression, threedatabases, hsa-miR-1, hsa-miR-221, hsa-miR-499-3p, hsa-miR-576-5p, hsa-miR-632and hsa-miR-708were chosen. In vitro chemical synthesis of six miRNA mimicswere transfected to primary cells of13patients with newly diagnosed CLL bylipofectamine2000and cultured24h. Relative quantitative analysis of CD20mRNA was conducted in peripheral blood specimens of CLL patients. Proportions of CD20expression and fluorescence intensity were analysed by flow cytometry.
     Results: The expression levels of hsa-miR-1, hsa-miR-221, hsa-miR-499-3p,hsa-miR-576-5p, hsa-miR-632and hsa-miR-708were detected by RT-PCR,suggesting transfection efficiency was acceptable. CD20transcriptome and proteinlevels were detected in transfected with miRNA mimic and negative control (NC)group, respectively. No statistically significant difference was found between miRNAmimic groups and control group (P<0.05).
     Conclusions: The target of hsa-miR-1, hsa-miR-221, hsa-miR-499-3p,hsa-miR-576-5p, hsa-miR-632and hsa-miR-708does not include CD20. Lowexpression levels of CD20in CLL cells may not be regulated by microRNA.
     Part Ⅳ
     Study on the relations between methylation levels of CD20promoterand low expression of CD20in chronic lymphocytic leukemia cells
     Objectives: Epigenetics has a pivotal role in many pathological processes of cancer.Low expression of the CD20antigen in CLL may be associated with epigeneticregulation. This study focused on the relationship between histone acetylation,promoter methylation and expression of CD20.
     Methods: Primary CLL cells were treated with1mM,2mM, and4mM of VPA(Valproic acid), which was histone deacetylase inhibitors. After cultured24h and48h, relative quantitative analysis of CD20mRNA was conducted by PCR; Proportion of CD20expression and fluorescence intensity were detected by flow cytometry. ForCLL primary cells treated with5-Aza-dC (100μM) for24h,48h and96h, relativequantitative analysis of CD20mRNA was conducted by PCR; Proportion of CD20expression and fluorescence intensity were detected by flow cytometry. CD20promoter region was analysed by bioinformatics software. Methylation analysis ofCD20promoter region in CLL cells by Bisulfite genomic sequencing (BSP),including: genomic DNA with treated by bisulfite; Three pairs of primers weredesigned,6CpG in CD20promoter region were amplified by PCR.; Tapping andpurification of PCR products, TA cloning, picking10clones for sequencing.
     Results: CLL cells were treated with1mM VPA for24h, CD20mRNA levelsincreased significantly, but no significant increase in the level of CD20protein. CD20mRNA level can obviously increase after24h of5-Aza-dC treatment; The proteinlevel can obviously increase after48h. There were partially methylated in six CpGby BSP,28%(14/50),24%(12/50),8%(4/50),20%(10/50),6%(3/50) and16%(8/50), respectively. In one patient, the CD20expression was significantly increased by5-Aza-dC, the CD20promoter methylation ratio was11.67%(7/60). No significantcorrelation between the proportion and intensity of CD20expression and promotermethylation was detected.
     Conclusions: Epigenetic mechanisms may be associated with low CD20expressionin CLL; Demethylation drugs can increase the expression of CD20in CLL cells.
引文
[1] Taylor RP, Lindorfer MA. Antigenic modulation and rituximab resistance. SeminHematol,2010,47(2):124-132
    [2] Hainsworth JD, Litchy S, Barton JH, Houston GA, Hermann RC, Bradof JE, GrecoFA, Minnie Pearl Cancer Research N. Single-agent rituximab as first-line andmaintenance treatment for patients with chronic lymphocytic leukemia or smalllymphocytic lymphoma: a phase II trial of the Minnie Pearl Cancer ResearchNetwork. J Clin Oncol,2003,21(9):1746-1751
    [3] Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, Hensel M,Hopfinger G, Hess G, von Grunhagen U, Bergmann M, Catalano J, Zinzani PL,Caligaris-Cappio F, Seymour JF, Berrebi A, Jager U, Cazin B, Trneny M,Westermann A, Wendtner CM, Eichhorst BF, Staib P, Buhler A, Winkler D, Zenz T,Bottcher S, Ritgen M, Mendila M, Kneba M, Dohner H, Stilgenbauer S. Addition ofrituximab to fludarabine and cyclophosphamide in patients with chronic lymphocyticleukaemia: a randomised, open-label, phase3trial. Lancet,2010,376(9747):1164-1174
    [4] Fischer K, Bahlo J, Fink A-M, Busch R, Bottcher S, Mayer J, Dreger P, Maurer C,Engelke A, Kneba M, Dohner H, Eichhorst BF, Wendtner C-M, Stilgenbauer S,Hallek M. Extended Follow up of the CLL8Protocol, a Randomized Phase-III Trialof the German CLL Study Group (GCLLSG) Comparing Fludarabine andCyclophosphamide (FC) to FC Plus Rituximab (FCR) for Previously UntreatedPatients with Chronic Lymphocytic Leukemia (CLL): Results On Survival,Progression-Free Survival, Delayed Neutropenias and Secondary MalignanciesConfirm Superiority of the FCR Regimen. ASH Annual Meeting Abstracts,2012,120(21):435
    [5] Hiraga J, Tomita A, Sugimoto T, Shimada K, Ito M, Nakamura S, Kiyoi H, KinoshitaT, Naoe T. Down-regulation of CD20expression in B-cell lymphoma cells aftertreatment with rituximab-containing combination chemotherapies: its prevalence andclinical significance. Blood,2009,113(20):4885-4893
    [6] Terui Y, Mishima Y, Sugimura N, Kojima K, Sakurai T, Kuniyoshi R, Taniyama A,Yokoyama M, Sakajiri S, Takeuchi K, Watanabe C, Takahashi S, Ito Y, Hatake K.Identification of CD20C-terminal deletion mutations associated with loss of CD20expression in non-Hodgkin's lymphoma.Clin Cancer Res,2009,15(7):2523-2530
    [7] Henry C, Deschamps M, Rohrlich PS, Pallandre JR, Remy-Martin JP, Callanan M,Traverse-Glehen A, GrandClement C, Garnache-Ottou F, Gressin R, Deconinck E,Salles G, Robinet E, Tiberghien P, Borg C, Ferrand C. Identification of an alternativeCD20transcript variant in B-cell malignancies coding for a novel protein associatedto rituximab resistance. Blood,2010,115(12):2420-2429
    [8] Bonavida B. Rituximab-induced inhibition of antiapoptotic cell survival pathways:implications in chemo/immunoresistance, rituximab unresponsiveness, prognosticand novel therapeutic interventions. Oncogene,2007,26(25):3629-3636
    [9] Jilani I, O'Brien S, Manshuri T, Thomas DA, Thomazy VA, Imam M, Naeem S,Verstovsek S, Kantarjian H, Giles F, Keating M, Albitar M. Transientdown-modulation of CD20by rituximab in patients with chronic lymphocyticleukemia. Blood,2003,102(10):3514-3520
    [10] Mankai A, Bordron A, Renaudineau Y, Martins-Carvalho C, Takahashi S, Ghedira I,Berthou C, Youinou P. Purine-rich box-1-mediated reduced expression of CD20alters rituximab-induced lysis of chronic lymphocytic leukemia B cells. Cancer Res,2008,68(18):7512-7519
    [11] Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Annu Rev Med,2009,60:167-179
    [12] Ward BP, Tsongalis GJ, Kaur P. MicroRNAs in chronic lymphocytic leukemia. ExpMol Pathol,2011,90(2):173-178
    [13] Taby R, Issa JP. Cancer epigenetics. CA Cancer J Clin,2010,60(6):376-392
    [14] Tomita A, Hiraga J, Kiyoi H, Ninomiya M, Sugimoto T, Ito M, Kinoshita T, Naoe T.Epigenetic regulation of CD20protein expression in a novel B-cell lymphoma cellline, RRBL1, established from a patient treated repeatedly with rituximab-containingchemotherapy. Int J Hematol,2007,86(1):49-57
    [15] Eichhorst B, Dreyling M, Robak T, Montserrat E, Hallek M. Chronic lymphocyticleukemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.Ann Oncol,2011,22Suppl6:vi50-54
    [16] Hamblin TJ. Searching for surrogates for IGHV mutations in chronic lymphocyticleukemia. Leuk Res,2011,35(11):1432-1435
    [17] Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S. From pathogenesis totreatment of chronic lymphocytic leukaemia. Nat Rev Cancer,2010,10(1):37-50
    [18] Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38andchronic lymphocytic leukemia: a decade later. Blood,2011,118(13):3470-3478
    [19] Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG, Neuberg DS, FlinnIW, Rai KR, Byrd JC, Kay NE, Greaves A, Weiss A, Kipps TJ. ZAP-70comparedwith immunoglobulin heavy-chain gene mutation status as a predictor of diseaseprogression in chronic lymphocytic leukemia. N Engl J Med,2004,351(9):893-901
    [20] Tam CS, Otero-Palacios J, Abruzzo LV, Jorgensen JL, Ferrajoli A, Wierda WG,Lerner S, O'Brien S, Keating MJ. Chronic lymphocytic leukaemia CD20expressionis dependent on the genetic subtype: a study of quantitative flow cytometry andfluorescent in-situ hybridization in510patients. Br J Haematol,2008,141(1):36-40
    [21] Hsi ED, Kopecky KJ, Appelbaum FR, Boldt D, Frey T, Loftus M, Hussein MA.Prognostic significance of CD38and CD20expression as assessed by quantitativeflow cytometry in chronic lymphocytic leukaemia. Br J Haematol,2003,120(6):1017-1025
    [22] Borowitz MJ, Shuster J, Carroll AJ, Nash M, Look AT, Camitta B, Mahoney D, LauerSJ, Pullen DJ. Prognostic significance of fluorescence intensity of surface markerexpression in childhood B-precursor acute lymphoblastic leukemia. A PediatricOncology Group Study. Blood,1997,89(11):3960-3966
    [23] Jeha S, Behm F, Pei D, Sandlund JT, Ribeiro RC, Razzouk BI, Rubnitz JE, Hijiya N,Howard SC, Cheng C, Pui CH. Prognostic significance of CD20expression inchildhood B-cell precursor acute lymphoblastic leukemia. Blood,2006,108(10):3302-3304
    [24] Maury S, Huguet F, Leguay T, Lacombe F, MaynadiéM, Girard S, De Labarthe A,Kuhlein E, Raffoux E, Thomas X. Adverse prognostic significance of CD20expression in adults with Philadelphia chromosome-negative B-cell precursor acutelymphoblastic leukemia. Haematologica,2010,95(2):324-328
    [25] Thomas DA, O'Brien S, Jorgensen JL, Cortes J, Faderl S, Garcia-Manero G,Verstovsek S, Koller C, Pierce S, Huh Y. Prognostic significance of CD20expressionin adults with de novo precursor B-lineage acute lymphoblastic leukemia. Blood,2009,113(25):6330-6337
    [26] Suzuki Y, Yoshida T, Wang G, Togano T, Miyamoto S, Miyazaki K, Iwabuchi K,Nakayama M, Horie R, Niitsu N, Sato Y, Nakamura N. Association of CD20levelswith clinicopathological parameters and its prognostic significance for patients withDLBCL. Ann Hemato,2012,91(7):997-1005
    [27] Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H,Hillmen P, Keating MJ, Montserrat E, Rai KR, Kipps TJ. Guidelines for the diagnosisand treatment of chronic lymphocytic leukemia: a report from the InternationalWorkshop on Chronic Lymphocytic Leukemia updating the National CancerInstitute-Working Group1996guidelines. Blood,2008,111(12):5446-5456
    [28] Binet JL, Auquier A, Dighiero G, Chastang C, Piguet H, Goasguen J, Vaugier G,Potron G, Colona P, Oberling F, Thomas M, Tchernia G, Jacquillat C, Boivin P, LestyC, Duault MT, Monconduit M, Belabbes S, Gremy F. A new prognostic classificationof chronic lymphocytic leukemia derived from a multivariate survival analysis.Cancer,1981,48(1):198-206
    [29] Sarro SM, Unruh TL, Zuccolo J, Sanyal R, Luider JM, Auer-Grzesiak IA, Mansoor A,Deans JP. Quantification of CD20mRNA and protein levels in chronic lymphocyticleukemia suggests a post-transcriptional defect. Leuk Res,2010,34(12):1670-1673
    [30] Ginaldi L, De Martinis M, Matutes E, Farahat N, Morilla R, Catovsky D. Levels ofexpression of CD19and CD20in chronic B cell leukaemias. J Clin Pathol,1998,51(5):364-369
    [31] Musto P, D'Auria F. The clinical and biological role of CD20membrane antigenmodulation under immunotherapy with anti-CD20monoclonal antibody rituximab inlymphoprolipherative neoplastic disorders. Expert Opin Biol Ther,2011,11(5):551-557
    [32] SH S, E C, NL H, ES J, SA P, H S, Jüregen T, JW V (2008) WHO Classification ofTumours of Haematopoietic and Lymphoid Tissues (4th ed). IARC Press, Lyon,France
    [33] Johnson NA, Boyle M, Bashashati A, Leach S, Brooks-Wilson A, Sehn LH,Chhanabhai M, Brinkman RR, Connors JM, Weng AP, Gascoyne RD. Diffuse largeB-cell lymphoma: reduced CD20expression is associated with an inferior survival.Blood,2009,113(16):3773-3780
    [34] Johnson NA, Leach S, Woolcock B, deLeeuw RJ, Bashashati A, Sehn LH, ConnorsJM, Chhanabhai M, Brooks-Wilson A, Gascoyne RD. CD20mutations involving therituximab epitope are rare in diffuse large B-cell lymphomas and are not a significantcause of R-CHOP failure. Haematologica,2009,94(3):423-427
    [35] Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptionalregulation by microRNAs: are the answers in sight? Nat Rev Genet,2008,9(2):102-114
    [36] Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV,Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R,Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, CroceCM. A MicroRNA signature associated with prognosis and progression in chroniclymphocytic leukemia. N Engl J Med,2005,353(17):1793-1801
    [37] Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F, Sampath D, Fabbri M,Lerner S, Barron LL, Rassenti LZ, Jiang L, Xiao L, Hu J, Secchiero P, Zauli G,Volinia S, Negrini M, Wierda W, Kipps TJ, Plunkett W, Coombes KR, Abruzzo LV,Keating MJ, Calin GA. microRNA fingerprinting of CLL patients with chromosome17p deletion identify a miR-21score that stratifies early survival. Blood,2010,116(6):945-952
    [38] Asslaber D, Pinon JD, Seyfried I, Desch P, Stocher M, Tinhofer I, Egle A, Merkel O,Greil R. microRNA-34a expression correlates with MDM2SNP309polymorphismand treatment-free survival in chronic lymphocytic leukemia. Blood,2010,115(21):4191-4197
    [39] Stamatopoulos B, Meuleman N, Haibe-Kains B, Saussoy P, Van Den Neste E,Michaux L, Heimann P, Martiat P, Bron D, Lagneaux L. microRNA-29c andmicroRNA-223down-regulation has in vivo significance in chronic lymphocyticleukemia and improves disease risk stratification. Blood,2009,113(21):5237-5245
    [40] Zhu DX, Zhu W, Fang C, Fan L, Zou ZJ, Wang YH, Liu P, Hong M, Miao KR, Xu W,Li JY. miR-181a/b significantly enhances drug sensitivity in chronic lymphocyticleukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis,2012,33(7):1294-1301
    [41] Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D'Urso L,Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R. ThemiR-15a-miR-16-1cluster controls prostate cancer by targeting multiple oncogenicactivities. Nat Med,2008,14(11):1271-1277
    [42] Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S,Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequentdeletions and down-regulation of micro-RNA genes miR15and miR16at13q14inchronic lymphocytic leukemia. Proc Natl Acad Sci U S A,2002,99(24):15524–15529
    [43] Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29regulates Mcl-1proteinexpression and apoptosis. Oncogene,2007,26(42):6133-6140
    [44] Zhu DX, Miao KR, Fang C, Fan L, Zhu W, Zhu HY, Zhuang Y, Hong M, Liu P, Xu W,Li JY. Aberrant microRNA expression in Chinese patients with chronic lymphocyticleukemia. Leuk Res,2011,35(6):730-734
    [45] Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V,Volinia S, Alder H, Liu CG, Rassenti L, Calin GA, Hagan JP, Kipps T, Croce CM.Tcl1expression in chronic lymphocytic leukemia is regulated by miR-29andmiR-181. Cancer Res,2006,66(24):11590-11593
    [46] Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34ainduces senescence-like growth arrest through modulation of the E2F pathway inhuman colon cancer cells. Proc Natl Acad Sci U S A,2007,104(39):15472-15477
    [47] Fulci V, Chiaretti S, Goldoni M, Azzalin G, Carucci N, Tavolaro S, Castellano L,Magrelli A, Citarella F, Messina M, Maggio R, Peragine N, Santangelo S, Mauro FR,Landgraf P, Tuschl T, Weir DB, Chien M, Russo JJ, Ju J, Sheridan R, Sander C,Zavolan M, Guarini A, Foa R, Macino G. Quantitative technologies establish a novelmicroRNA profile of chronic lymphocytic leukemia. Blood,2007,109(11):4944-4951
    [48] Sampath D, Calin GA. miRs: fine-tuning prognosis in CLL. Blood,2009,113(21):5035-5036
    [49] Zenz T, Mohr J, Eldering E, Kater AP, Buhler A, Kienle D, Winkler D, Durig J, vanOers MH, Mertens D, Dohner H, Stilgenbauer S. miR-34a as part of the resistancenetwork in chronic lymphocytic leukemia. Blood,2009,113(16):3801-3808
    [50] Shimizu R, Kikuchi J, Wada T, Ozawa K, Kano Y, Furukawa Y. HDAC inhibitorsaugment cytotoxic activity of rituximab by upregulating CD20expression onlymphoma cells. Leukemia,2010,24(10):1760-1768
    [51] Grant S. New agents for AML and MDS. Best Pract Res Clin Haematol,2009,22(4):501-507
    [52] Zhang S, Huang WC, Li P, Guo H, Poh SB, Brady SW, Xiong Y, Tseng LM, Li SH,Ding Z, Sahin AA, Esteva FJ, Hortobagyi GN, Yu D. Combating trastuzumabresistance by targeting SRC, a common node downstream of multiple resistancepathways. Nat Med,2011,17(4):461-469
    [1] Stashenko P, Nadler LM, Hardy R, Schlossman SF. Characterization of a human Blymphocyte-specific antigen. J Immunol,1980,125(4):1678-1685.
    [2] Maloney DG, Grillo-Lopez AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA,Janakiraman N, Foon KA, Liles TM, Dallaire BK, Wey K, Royston I, Davis T, LevyR. IDEC-C2B8(Rituximab) anti-CD20monoclonal antibody therapy in patients withrelapsed low-grade non-Hodgkin's lymphoma. Blood,1997,90(6):2188-2195.
    [3] Binder M, Otto F, Mertelsmann R, Veelken H, Trepel M. The epitope recognized byrituximab. Blood,2006,108(6):1975-1978.
    [4] Ernst JA, Li H, Kim HS, Nakamura GR, Yansura DG, Vandlen RL. Isolation andcharacterization of the B-cell marker CD20. Biochemistry,2005,44(46):15150-15158.
    [5] Einfeld DA, Brown JP, Valentine MA, Clark EA, Ledbetter JA. Molecular cloning ofthe human B cell CD20receptor predicts a hydrophobic protein with multipletransmembrane domains. EMBO J,1988,7(3):711-717.
    [6] Riley JK, Sliwkowski MX. CD20: a gene in search of a function. Semin Oncol,2000,27(6Suppl12):17-24.
    [7] Popoff IJ, Savage JA, Blake J, Johnson P, Deans JP. The association between CD20and Src-family Tyrosine kinases requires an additional factor. Mol Immunol,1998,35(4):207-214.
    [8] Deans JP, Kalt L, Ledbetter JA, Schieven GL, Bolen JB, Johnson P. Association of75/80-kDa phosphoproteins and the tyrosine kinases Lyn, Fyn, and Lck with the Bcell molecule CD20. Evidence against involvement of the cytoplasmic regions ofCD20. J Biol Chem,1995,270(38):22632-22638.
    [9] O'Keefe TL, Williams GT, Davies SL, Neuberger MS. Mice carrying a CD20genedisruption. Immunogenetics,1998,48(2):125-132.
    [10] Rossmann ED, Lundin J, Lenkei R, Mellstedt H, Osterborg A. Variability in B-cellantigen expression: implications for the treatment of B-cell lymphomas andleukemias with monoclonal antibodies. Hematol J,2001,2(5):300-306.
    [11] Deans JP, Robbins SM, Polyak MJ, Savage JA. Rapid redistribution of CD20to alow density detergent-insoluble membrane compartment. J Biol Chem,1998,273(1):344-348.
    [12] Pike LJ. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and CellFunction. J Lipid Res,2006,47(7):1597-1598.
    [13] Meyer zum Buschenfelde C, Feuerstacke Y, Gotze KS, Scholze K, Peschel C. GM1expression of non-Hodgkin's lymphoma determines susceptibility to rituximabtreatment. Cancer Res,2008,68(13):5414-5422.
    [14] Manches O, Lui G, Chaperot L, Gressin R, Molens JP, Jacob MC, Sotto JJ, Leroux D,Bensa JC, Plumas J. In vitro mechanisms of action of rituximab on primarynon-Hodgkin lymphomas. Blood,2003,101(3):949-954.
    [15] Miszlai Z, Czink E, Varga L, Paloczi K, Szegedi G, Fust G, Hollan SR. Repressedclassical complement pathway activities and clinical correlations in chroniclymphocytic leukaemia. Acta Med Hung,1986,43(4):389-395.
    [16] Kennedy AD, Beum PV, Solga MD, DiLillo DJ, Lindorfer MA, Hess CE, DensmoreJJ, Williams ME, Taylor RP. Rituximab infusion promotes rapid complementdepletion and acute CD20loss in chronic lymphocytic leukemia. J Immunol,2004,172(5):3280-3288.
    [17] Klepfish A, Rachmilewitz EA, Kotsianidis I, Patchenko P, Schattner A. Adding freshfrozen plasma to rituximab for the treatment of patients with refractory advancedCLL. QJM,2008,101(9):737-740.
    [18] Bellosillo B, Villamor N, Lopez-Guillermo A, Marce S, Esteve J, Campo E, ColomerD, Montserrat E. Complement-mediated cell death induced by rituximab in B-celllymphoproliferative disorders is mediated in vitro by a caspase-independentmechanism involving the generation of reactive oxygen species. Blood,2001,98(9):2771-2777.
    [19] Williams ME, Densmore JJ, Pawluczkowycz AW, Beum PV, Kennedy AD, LindorferMA, Hamil SH, Eggleton JC, Taylor RP. Thrice-weekly low-dose rituximabdecreases CD20loss via shaving and promotes enhanced targeting in chroniclymphocytic leukemia. J Immunol,2006,177(10):7435-7443.
    [20] Flieger D, Renoth S, Beier I, Sauerbruch T, Schmidt-Wolf I. Mechanism ofcytotoxicity induced by chimeric mouse human monoclonal antibody IDEC-C2B8inCD20-expressing lymphoma cell lines. Cell Immunol,2000,204(1):55-63.
    [21] Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, Tedder TF. Theinnate mononuclear phagocyte network depletes B lymphocytes through Fcreceptor-dependent mechanisms during anti-CD20antibody immunotherapy. J ExpMed,2004,199(12):1659-1669.
    [22] Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M. FcgammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killercell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype.Blood,1997,90(3):1109-1114.
    [23] Kim DH, Jung HD, Kim JG, Lee JJ, Yang DH, Park YH, Do YR, Shin HJ, Kim MK,Hyun MS, Sohn SK. FCGR3A gene polymorphisms may correlate with response tofrontline R-CHOP therapy for diffuse large B-cell lymphoma. Blood,2006,108(8):2720-2725.
    [24] Zhuang Y, Xu W, Shen Y, Li J. Fcgamma receptor polymorphisms and clinicalefficacy of rituximab in non-Hodgkin lymphoma and chronic lymphocytic leukemia.Clin Lymphoma Myeloma Leuk,2010,10(5):347-352.
    [25] Byrd JC, Kitada S, Flinn IW, Aron JL, Pearson M, Lucas D, Reed JC. Themechanism of tumor cell clearance by rituximab in vivo in patients with B-cellchronic lymphocytic leukemia: evidence of caspase activation and apoptosisinduction. Blood,2002,99(3):1038-1043.
    [26] Zhao WL, Daneshpouy ME, Mounier N, Briere J, Leboeuf C, Plassa LF, Turpin E,Cayuela JM, Ameisen JC, Gisselbrecht C, Janin A. Prognostic significance of bcl-xLgene expression and apoptotic cell counts in follicular lymphoma. Blood,2004,103(2):695-697.
    [27] Selenko N, Majdic O, Jager U, Sillaber C, Stockl J, Knapp W. Cross-priming ofcytotoxic T cells promoted by apoptosis-inducing tumor cell reactive antibodies? JClin Immunol,2002,22(3):124-130.
    [28] Selenko N, Maidic O, Draxier S, Berer A, Jager U, Knapp W, Stockl J. CD20antibody (C2B8)-induced apoptosis of lymphoma cells promotes phagocytosis bydendritic cells and cross-priming of CD8+cytotoxic T cells. Leukemia,2001,15(10):1619-1626.
    [29] Goteri G, Olivieri A, Ranaldi R, Lucesole M, Filosa A, Capretti R, Pieramici T, LeoniP, Rubini C, Fabris G, Lo Muzio L. Bone marrow histopathological and molecularchanges of small B-cell lymphomas after rituximab therapy: comparison with clinicalresponse and patients outcome. Int J Immunopathol Pharmacol,2006,19(2):421-431.
    [30] Beers SA, French RR, Chan HT, Lim SH, Jarrett TC, Vidal RM, Wijayaweera SS,Dixon SV, Kim H, Cox KL, Kerr JP, Johnston DA, Johnson PW, Verbeek JS, GlennieMJ, Cragg MS. Antigenic modulation limits the efficacy of anti-CD20antibodies:implications for antibody selection. Blood,2010,115(25):5191-5201.
    [31] Jilani I, O'Brien S, Manshuri T, Thomas DA, Thomazy VA, Imam M, Naeem S,Verstovsek S, Kantarjian H, Giles F, Keating M, Albitar M. Transientdown-modulation of CD20by rituximab in patients with chronic lymphocyticleukemia. Blood,2003,102(10):3514-3520.
    [32] Beum PV, Peek EM, Lindorfer MA, Beurskens FJ, Engelberts PJ, Parren PW, van deWinkel JG, Taylor RP. Loss of CD20and bound CD20antibody from opsonized Bcells occurs more rapidly because of trogocytosis mediated by Fc receptor-expressingeffector cells than direct internalization by the B cells. J Immunol,2011,187(6):3438-3447.
    [33] Pedersen AE, Jungersen MB, Pedersen CD. Monocytes mediate shaving ofB-cell-bound anti-CD20antibodies. Immunology,2011,133(2):239-245.
    [34] Beum PV, Kennedy AD, Williams ME, Lindorfer MA, Taylor RP. The shavingreaction: rituximab/CD20complexes are removed from mantle cell lymphoma andchronic lymphocytic leukemia cells by THP-1monocytes. J Immunol,2006,176(4):2600-2609.
    [35] Kennedy AD, Solga MD, Schuman TA, Chi AW, Lindorfer MA, Sutherland WM,Foley PL, Taylor RP. An anti-C3b(i) mAb enhances complement activation, C3b(i)deposition, and killing of CD20+cells by rituximab. Blood,2003,101(3):1071-1079
    [36] Glennie MJ, French RR, Cragg MS, Taylor RP. Mechanisms of killing by anti-CD20monoclonal antibodies. Mol Immunol,2007,44(16):3823-3837.
    [37] Nadler LM, Ritz J, Hardy R, Pesando JM, Schlossman SF, Stashenko P. A unique cellsurface antigen identifying lymphoid malignancies of B cell origin. J Clin Invest,1981,67(1):134-140.
    [38] Alduaij W, Illidge TM. The future of anti-CD20monoclonal antibodies: are wemaking progress? Blood,2011,117(11):2993-3001.
    [39] Niitsu N, Hagiwara Y, Tanae K, Kohri M, Takahashi N. Prospective analysis ofhepatitis B virus reactivation in patients with diffuse large B-cell lymphoma afterrituximab combination chemotherapy. J Clin Oncol,2010,28(34):5097-5100.
    [40] Ram R, Ben-Bassat I, Shpilberg O, Polliack A, Raanani P. The late adverse events ofrituximab therapy--rare but there! Leuk Lymphoma,2009,50(7):1083-1095.
    [41] Byrd JC, Murphy T, Howard RS, Lucas MS, Goodrich A, Park K, Pearson M,Waselenko JK, Ling G, Grever MR, Grillo-Lopez AJ, Rosenberg J, Kunkel L, FlinnIW. Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocyticleukemia and small lymphocytic lymphoma demonstrates clinical activity andacceptable toxicity. J Clin Oncol,2001,19(8):2153-2164.
    [42] O'Brien SM, Kantarjian H, Thomas DA, Giles FJ, Freireich EJ, Cortes J, Lerner S,Keating MJ. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J ClinOncol,2001,19(8):2165-2170.
    [43] Alas S, Emmanouilides C, Bonavida B. Inhibition of interleukin10by rituximabresults in down-regulation of bcl-2and sensitization of B-cell non-Hodgkin'slymphoma to apoptosis. Clin Cancer Res,2001,7(3):709-723.
    [44] Schulz H, Klein SK, Rehwald U, Reiser M, Hinke A, Knauf WU, Aulitzky WE,Hensel M, Herold M, Huhn D, Hallek M, Diehl V, Engert A, German CLLSG. Phase2study of a combined immunochemotherapy using rituximab and fludarabine inpatients with chronic lymphocytic leukemia. Blood,2002,100(9):3115-3120.
    [45] Del Poeta G, Del Principe MI, Consalvo MA, Maurillo L, Buccisano F, Venditti A,Mazzone C, Bruno A, Gianni L, Capelli G, Lo Coco F, Cantonetti M, Gattei V,Amadori S. The addition of rituximab to fludarabine improves clinical outcome inuntreated patients with ZAP-70-negative chronic lymphocytic leukemia. Cancer,2005,104(12):2743-2752.
    [46] Byrd JC, Peterson BL, Morrison VA, Park K, Jacobson R, Hoke E, Vardiman JW, RaiK, Schiffer CA, Larson RA. Randomized phase2study of fludarabine withconcurrent versus sequential treatment with rituximab in symptomatic, untreatedpatients with B-cell chronic lymphocytic leukemia: results from Cancer andLeukemia Group B9712(CALGB9712). Blood,2003,101(1):6-14.
    [47] Yamauchi T, Nowak BJ, Keating MJ, Plunkett W. DNA repair initiated in chroniclymphocytic leukemia lymphocytes by4-hydroperoxycyclophosphamide is inhibitedby fludarabine and clofarabine. Clin Cancer Res,2001,7(11):3580-3589.
    [48] Di Gaetano N, Xiao Y, Erba E, Bassan R, Rambaldi A, Golay J, Introna M.Synergism between fludarabine and rituximab revealed in a follicular lymphoma cellline resistant to the cytotoxic activity of either drug alone. Br J Haematol,2001,114(4):800-809.
    [49] Tam CS, O'Brien S, Wierda W, Kantarjian H, Wen S, Do KA, Thomas DA, Cortes J,Lerner S, Keating MJ. Long-term results of the fludarabine, cyclophosphamide, andrituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood,2008,112(4):975-980.
    [50] Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, Hensel M,Hopfinger G, Hess G, von Grunhagen U, Bergmann M, Catalano J, Zinzani PL,Caligaris-Cappio F, Seymour JF, Berrebi A, Jager U, Cazin B, Trneny M,Westermann A, Wendtner CM, Eichhorst BF, Staib P, Buhler A, Winkler D, Zenz T,Bottcher S, Ritgen M, Mendila M, Kneba M, Dohner H, Stilgenbauer S. Addition ofrituximab to fludarabine and cyclophosphamide in patients with chronic lymphocyticleukaemia: a randomised, open-label, phase3trial. Lancet,2010,376(9747):1164-1174.
    [51] Fischer K, Bahlo J, Fink A-M, Busch R, Bottcher S, Mayer J, Dreger P, Maurer C,Engelke A, Kneba M, Dohner H, Eichhorst BF, Wendtner C-M, Stilgenbauer S,Hallek M. Extended Follow up of the CLL8Protocol, a Randomized Phase-III Trialof the German CLL Study Group (GCLLSG) Comparing Fludarabine andCyclophosphamide (FC) to FC Plus Rituximab (FCR) for Previously UntreatedPatients with Chronic Lymphocytic Leukemia (CLL): Results On Survival,Progression-Free Survival, Delayed Neutropenias and Secondary MalignanciesConfirm Superiority of the FCR Regimen. ASH Annual Meeting Abstracts,2012,120(21):435.
    [52] Foon KA, Mehta D, Lentzsch S, Kropf P, Marks S, Lenzner D, Pietragallo L, SuleckiM, Tarhini A, Boyiadzis M. Long-term results of chemoimmunotherapy withlow-dose fludarabine, cyclophosphamide and high-dose rituximab as initial treatmentfor patients with chronic lymphocytic leukemia. Blood,2012,119(13):3184-3185.
    [53] Robak T, Dmoszynska A, Solal-Celigny P, Warzocha K, Loscertales J, Catalano J,Afanasiev BV, Larratt L, Geisler CH, Montillo M, Zyuzgin I, Ganly PS, Dartigeas C,Rosta A, Maurer J, Mendila M, Saville MW, Valente N, Wenger MK, Moiseev SI.Rituximab plus fludarabine and cyclophosphamide prolongs progression-freesurvival compared with fludarabine and cyclophosphamide alone in previouslytreated chronic lymphocytic leukemia. J Clin Oncol,2010,28(10):1756-1765.
    [54] Castro JE, James DF, Sandoval-Sus JD, Jain S, Bole J, Rassenti L, Kipps TJ.Rituximab in combination with high-dose methylprednisolone for the treatment ofchronic lymphocytic leukemia. Leukemia,2009,23(10):1779-1789.
    [55] Smolej L, Doubek M, Panovska A, Simkovic M, Brychtova Y, Belada D, MotyckovaM, Mayer J. Rituximab in combination with high-dose dexamethasone for thetreatment of relapsed/refractory chronic lymphocytic leukemia. Leuk Res,2012,36(10):1278-1282.
    [56] Salles G, Seymour JF, Offner F, Lopez-Guillermo A, Belada D, Xerri L, Feugier P,Bouabdallah R, Catalano JV, Brice P, Caballero D, Haioun C, Pedersen LM, DelmerA, Simpson D, Leppa S, Soubeyran P, Hagenbeek A, Casasnovas O,Intragumtornchai T, Ferme C, da Silva MG, Sebban C, Lister A, Estell JA, Milone G,Sonet A, Mendila M, Coiffier B, Tilly H. Rituximab maintenance for2years inpatients with high tumour burden follicular lymphoma responding to rituximab pluschemotherapy (PRIMA): a phase3, randomised controlled trial. Lancet,2011,377(9759):42-51.
    [57] Bosch F, Abrisqueta P, Villamor N, Terol MJ, Gonzalez-Barca E, Gonzalez M, FerraC, Abella E, Delgado J, Garcia-Marco JA, Gonzalez Y, Carbonell F, Ferrer S, MonzoE, Jarque I, Muntanola A, Constants M, Escoda L, Montserrat E. RituximabMaintenance In Patients with Chronic Lymphocytic Leukemia (CLL) After UpfrontTreatment with Rituximab Plus Fludarabine, Cyclophosphamide, and Mitoxantrone(R-FCM): Final Results of a Multicenter Phase II Trial On Behalf of the Spanish CLLStudy Group (GELLC). ASH Annual Meeting Abstracts,2011,118(21):293.