M(Ⅱ)APO分子筛的合成与结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸铝(AlPO)分子筛经过30多年的发展已成为分子筛家族的一个重要组成部分。二价金属离子M~(2+)可以引入到AlPO分子筛的骨架中,形成含二价金属磷酸铝分子筛M(Ⅱ)APO。M~(2+)离子的引入,不仅赋予了AlPO分子筛优异的催化性质、光学性质,同时也能诱导产生新颖的分子筛拓扑结构。因此M(Ⅱ)APO分子筛的合成受到科研工作者的广泛关注。在本论文中,我们合成了一系列M(Ⅱ)APO分子筛,并对其进行了结构分析与性质表征。在三乙烯二胺体系下,详细研究了M~(2+)(M=Co, Zn, Mg和Mn)对最终M(Ⅱ)APO分子筛的影响。本文取得的主要结果如下:
     1.以N-甲基哌嗪为模板剂,在水热条件下合成出两个新颖的M(Ⅱ)APO分子筛M(Ⅱ)APO-CJ62(M=Co, Zn)。M(Ⅱ)APO-CJ62展现了一种新颖的分子筛拓扑结构,于2012年被国际分子筛协会收录,并命名为JSW。M(Ⅱ)APO-CJ62的骨架是由M/AlO4四面体与PO4四面体通过桥氧原子严格交替连接而成,并沿[010]方向具有一维8元环孔道。在M(Ⅱ)APO分子筛中,M~(2+)离子在骨架中大多是无序分布的,而在M(Ⅱ)APO-CJ62中,M~(2+)选择性的占据了结晶学不等价Al3+位置中的两个。ICP分析表明M/Al的摩尔比为1:2。结构优化与扭曲度分析表明,在假想的磷酸铝分子筛AlPO-CJ62中,以Al(1)、Al(2)为中心的AlO4以及AlP4四面体存在严重的扭曲,因此需要引入M~(2+)来释放由于扭曲所带来的张力,进而得到了稳定的M(Ⅱ)APO-CJ62骨架结构,反之仅由磷、铝组成的分子筛AlPO-CJ62无法在实验中被合成出来。
     2.以三乙烯二胺为模板剂,在水热条件下合成了四种M(Ⅱ)APO分子筛:M(Ⅱ)APO-CGF与M(Ⅱ)APO-OSI (M=Co, Zn)。通过进一步调变初始凝胶中二价金属离子的种类与含量,我们详细的研究了M~(2+)在合成M(Ⅱ)APOs中的影响,经过大量实验获得了11种M(Ⅱ)APOs化合物,对应于6种不同的拓扑结构:CGF,OSI, AFN, SOD, LEV以及AFI。我们发现,不同种类金属离子的配位形式的差别对所得产物的结构起到了决定性作用。此外,初始凝胶中二价金属离子的含量也是重要的相选择因素,这与晶化产物的结构优化以及键角方差分析结果一致。
     3.在水热条件下,以2,2’(乙烯二氧)双(乙胺)为模板剂,合成了三个含二价金属离子的开放骨架磷酸铝化合物M(Ⅱ)APO-CJ50(M=Mg, Mn和Fe)。M(Ⅱ)APO-CJ50具有三维交叉的10元环和8元环孔道。2,2’(乙烯二氧)双(乙胺)分子位于交叉孔道中,同时以两个醚氧原子与骨架上的金属杂原子形成双齿配位。这三种化合物与我们之前报道的以咪唑为模板剂合成的含三价金属杂原子的M(ⅡI)APO-CJ50具有类似的骨架拓扑结构。与M(ⅡI)APO-CJ50对比,醚胺模板剂的引入不仅改变了CJ50结构中金属杂原子的氧化态,形成了新颖的配位形式,更改变了金属中心电子的自旋态,从而影响了CJ50的磁学性质。
Over the course of the past30years, aluminophsphates molecular sieves(denoted as AlPOs) have become an important member of zeolite family. Metal ionscan be introduced into the frameworks of AlPOs to form a metal-containing AlPOs(named as M(Ⅱ)APOs). The introduction of the metal ions, not only gives theM(Ⅱ)APOs excellent catalytic and optical properties, but also can induce novelzeolite topologies. Therefore, the synthesis of M(Ⅱ)APOs has attracted extensiveattention. In this thesis, we have synthesized a series of M(Ⅱ)APOs, and theirstructures and properties have been characterized in detail. Meanwhile, we studiedthe effect of M~(2+)ions (M=Co, Zn, Mg and Mn) on the final products of M(Ⅱ)APOsin the triethylene diamine system. The main results in this thesis are as follows:
     1. Two divalent-metal-containing aluminophosphates: M(Ⅱ)APO-CJ62;(M=Co,Zn), have been hydrothermally synthesized by using N-methylpiperazine as thestructure directing agent. Both of these compounds exhibit a new zeolite frameworktopology, which has been assigned a three-letter code JSW by international zeoliteassociation (IZA). All the M/Al and P atoms are tetrahedrally coordinated andalternately connected to each other through bridging O atoms. This new zeoliteframework contains1-dimensional8-ring channels running along the [010] direction.The M~(2+)ions in M(Ⅱ)APO-CJ62selectively occupy two of the three possiblecrystallographically distinct positions. Inductively coupled plasma (ICP) analysisshows that the molar ratio of M:Al in M(Ⅱ)APO-CJ62is1:2. Structural optimizationand distortion analysis reveal that serious distortions exist in Al(1) andAl(2)-centered tetrahedra in the hypothetical framework of AlPO-CJ62. To releasethe stress generated at these two sites, incorporation of M~(2+)ions appears to benecessary to form flexible M-centered tetrahedra instead of rigid Al-centeredtetrahedra. The introduction of M~(2+)becomes a favorable factor for the formation ofM(Ⅱ)APO-CJ62. A pure aluminophosphate analogue of M(Ⅱ)APO-CJ62, denoted as AlPO-CJ62, has not been obtained in experiment so far.
     2. Four M~(2+)-containing aluminophosphate molecular sieves, M(Ⅱ)APO-CGFand M(Ⅱ)APO-OSI (M=Co and Zn) have been synthesized hydrothermally in thepresence of DABCO as the SDA. By varying the types and the amounts of M~(2+)ions,we have further studied the role of M~(2+)ions in the synthesis of M(Ⅱ)APOs. ElevenM(Ⅱ)APOs with the CGF, OSI, AFN, SOD, LEV and AFI topologies are obtained.The result shows that the types of M~(2+)ions play an important role in directing thefinal crystalline products, due to the different coordination geometry of M~(2+)ions. Inaddition, more than one structure can be produced by altering the amounts of M~(2+)ions. Structural optimization and bond angle variances analysis reveal that thedistortions of AlO4tetrahedra in the structures are AlPO-OSI      3. Three divalent-metal-containing open-framework aluminophosphates,designated M(Ⅱ)APO-CJ50,(M=Mg, Mn and Fe), have been hydrothermallysynthesized by using2,2’(Ethylenedioxy)bis(ethylamine) as the template. Singlecrystal and powder X-ray diffraction analyses show that their structures are similar tothose of trivalent-metal-containing aluminophosphates M(ⅡI)APO-CJ50synthesizedby imidazole. The differences between M(Ⅱ)APO-CJ50and M(ⅡI)APO-CJ50are:hetero-metal-atoms in M(Ⅱ)APO-CJ50have lower oxidation states owing to theusage of ether amine; in M(Ⅱ)APO-CJ50, hetero-metal-atoms are coordinated to thetwo O atoms in each ether amine molecule, whereas in M(ⅡI)APO-CJ50hetero-metal-atoms are coordinated to pairs of imidazole molecules through single Natoms. Moreover, magnetic measurements reveal that the hetero-metal-atoms inM(Ⅱ)APO-CJ50are high-spin whereas those in M(ⅡI)APO-CJ50are low-spin owingto the differences in oxidation states and ligand molecules.
引文
[1] VENUTO P B. Organic catalysis over zeolites: A perspective on reaction pathswithin micropores[J]. Microporous Materials,1994.2(5):297-411.
    [2] CORMA A. State of the art and future challenges of zeolites as catalysts[J].Journal of Catalysis,2003.216(1):298-312.
    [3] CORMA A. Inorganic Solid Acids and Their Use in Acid-CatalyzedHydrocarbon Reactions[J]. Chemical Reviews,1995.95(3):559-614.
    [4] IUP A. Manual of Symbols and Terminology for Physico-chemical Quantitiesand Units, Appendix II, Part I, Definitions, Terminology and Symbols inColloid and Surface Chemistry[J]. Pure and Applied Chemistry,1972.31:579.
    [5] BAERLOCHER C, MCCUSKER L B. Database of Zeolite Structures[DB/OL]:http://www.iza-structure.org/databases/
    [6] MCCUSKER L B, LIEBAU F, ENGELHARDT G. Nomenclature of structuraland compositional characteristics of ordered microporous and mesoporousmaterials with inorganic hosts:(IUPAC recommendations2001)[J].Microporous and Mesoporous Materials,2003.58(1):3-13.
    [7] DAVIS M E, HATHAWAY P E, MONTES C. VPI-5, AlPO4-8, and MCM-9:similarities and differences[J]. Zeolites,1989.9(5):436-439.
    [8] DAVIS M E. The Quest For Extra-Large Pore, Crystalline Molecular Sieves[J].Chemistry–A European Journal,1997.3(11):1745-1750.
    [9] CASCI J L. The preparation and potential applications of ultra-large poremolecular sieves: A review[M]. Elsevier,1994.
    [10] SUN J, BONNEAU C, CANTIN A, et al. The ITQ-37mesoporous chiralzeolite[J]. Nature,2009.458(7242):1154-1157.
    [11] CRONSTEDT A F, VETENSKAPS K. Acad Handle Stockholm[M].1756.
    [12] BURGGRAAF A J, VROON Z A E P, KEIZER K, et al. Permeation of singlegases in thin zeolite MFI membranes[J]. Journal of Membrane Science,1998.144(1–2):77-86.
    [13] LEONARD R J. The hydrothermal alteration of certain silicate minerals[J].Economic Geology,1927.22(1):18-43.
    [14] PAULING L. The structure of analcite (NaAlSi2O6·H2O)[J]. ZeitschriftfürKristallographie,1930.74:213-225.
    [15] MCBAIN J W. The Sorption of Gases and Vapors by Solid[M]. London:Rutledge and Sons,1932.
    [16] ARGAUER R J, KENSINGTON M, LANDOLT G R. Crystalline zeoliteZSM-5and method of preparing the same US,3702866[P].1967-4-14.
    [17] KOKOTAILO G, CHU P, LAWTON S, et al. Synthesis and structure ofsynthetic zeolite ZSM-11[J]. Nature,1978.275:119-120
    [18] LAPIERRE R, ROHRMAN A, SCHLENKER J, et al. The frameworktopology of ZSM-12: a high-silica zeolite[J]. Zeolites,1985.5(6):346-348.
    [19] BARRI S, SMITH G, WHITE D, et al. Structure of Theta-1, the firstunidimensional medium-pore high-silica zeolite[J]. Nature,1984.312:533-534.
    [20] ROHRMAN A, LAPIERRE R, SCHLENKER J, et al. The frameworktopology of ZSM-23: A high silica zeolite[J]. Zeolites,1985.5(6):352-354.
    [21] SCHLENKER J, ROHRBAUGH W, CHU P, et al. The framework topology ofZSM-48: A high silica zeolite[J]. Zeolites,1985.5(6):355-358.
    [22] SCHLENKER J, HIGGINS J, VALYOCSIK E. The framework topology ofZSM-57: A new synthetic zeolite[J]. Zeolites,1990.10(4):293-296.
    [23] BRISCOE N, JOHNSON D, SHANNON M, et al. The framework topology ofzeolite EU-1[J]. Zeolites,1988.8(1):74-76.
    [24] KOKOTAILO G, CHU P, LAWTON S, et al. Structure of the2-DimensionalMedium-Pore High-Silica Zeolite NU-87[J]. Nature,1991.353:417-420.
    [25] OLSON D, KOKOTAILO G, LAWTON S, et al. Crystal structure andstructure-related properties of ZSM-5[J]. The Journal of Physical Chemistry,1981.85(15):2238-2243.
    [26] DOMKE K F, DAY J P R, RAGO G, et al. Host–Guest Geometry in Pores ofZeolite ZSM‐5Spatially Resolved with Multiplex CARSSpectromicroscopy[J]. Angewandte Chemie International Edition,2012.51(6):1343-1347.
    [27] LAURIDANT N, DAOU T J, ARNOLD G, et al. Key steps influencing theformation of ZSM-5films on aluminum substrates[J]. Microporous andMesoporous Materials,2012.152(0):1-8.
    [28] MEUNIER F C, VERBOEKEND D, GILSON J P, et al. Influence of crystalsize and probe molecule on diffusion in hierarchical ZSM-5zeolites preparedby desilication[J]. Microporous and Mesoporous Materials,2012.148(1):115-121.
    [29] YOO W C, ZHANG X, TSAPATSIS M, et al. Synthesis of mesoporous ZSM-5zeolites through desilication and re-assembly processes[J]. Microporous andMesoporous Materials,2012.149(1):147-157.
    [30] RASOULI M, YAGHOBI N, CHITSAZAN S, et al. Influence of monovalentcations ion-exchange on zeolite ZSM-5in separation of para-xylene fromxylene mixture[J]. Microporous and Mesoporous Materials,2012.150(0):47-54.
    [31] NASKAR M K, KUNDU D, CHATTERJEE M. Synthesis of ZSM-5ZeoliteParticles Using Triethanol Amine as Structure-Directing Agent[J]. Journal ofthe American Ceramic Society,2012.95(2):449-452.
    [32] REN L, WU Q, YANG C, et al. Solvent-Free Synthesis of Zeolites from SolidRaw Materials[J]. Journal of the American chemical society,2012.134(37):15173-15176.
    [33]徐如人,庞文琴,于吉红.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [34] LI H, YAGHI O M. Transformation of Germanium Dioxide to MicroporousGermanate4-Connected Nets[J]. Journal of the American chemical society,1998.120(40):10569-10570.
    [35] CONRADSSON T, DADACHOV M S, ZOU X D. Synthesis and structure of(Me3N)6[Ge32O64](H2O)4.5, a thermally stable novel zeotype with3Dinterconnected12-ring channels[J]. Microporous and Mesoporous Materials,2000.41(1-3):183-191.
    [36] BLASCO T, CORMA A, DíAZ-CABA AS M J, et al. Preferential Location ofGe in the Double Four-Membered Ring Units of ITQ-7Zeolite[J]. The Journalof Physical Chemistry B,2002.106(10):2634-2642.
    [37] CORMA A, DíAZ-CABA AS M J, FORNéS V. Synthesis, Characterization,and Catalytic Activity of a Large-Pore Tridirectional Zeolite, H-ITQ-7[J].Angewandte Chemie,2000.112(13):2436-2439.
    [38] VILLAESCUSA L A, BARRETT P A, CAMBLOR M A. ITQ-7: A New PureSilica Polymorph with a Three-Dimensional System of Large Pore Channels[J].Angewandte Chemie International Edition,1999.38(13-14):1997-2000.
    [39] PAILLAUD J-L, HARBUZARU B, PATARIN J, et al. Extra-large-poreZeolites with Two-dimensional Channels Formed by14and12Rings[J].Science,2004.304(5673):990-992.
    [40] JIANG J, JORDA J L, DIAZ‐C ABANAS M J, et al. The Synthesis of anExtra-Large-Pore Zeolite with Double Three-Ring Building Units and a LowFramework Density[J]. Angewandte Chemie International Edition,2010.49(29):4986-4988.
    [41] NEWSAM J M, VAUGHAN D E W. Structural Studies of GallosilicateZeolites[M]. Elsevier,1986.
    [42] COWLEY A R, CHIPPINDALE A M. CGS: cobalt and zinc gallophosphateswith a new open-framework topology[J]. Microporous and MesoporousMaterials,1999.28(1):163-172.
    [43] STROHMAIER K G, VAUGHAN D E. Structure of the first silicate molecularsieve with18-ring pore openings, ECR-34[J]. Journal of the Americanchemical society,2003.125(51):16035-16039.
    [44] LOBO R F, DAVIS M E. CIT-1: A new molecular sieve with intersecting poresbounded by10-and12-rings[J]. Journal of the American chemical society,1995.117(13):3766-3779.
    [45] VORTMANN S, MARLER B, GIES H, et al. Synthesis and crystal structure ofthe new borosilicate zeolite RUB-13[J]. Microporous Materials,1995.4(2):111-121.
    [46] GIES H, RIUS J. Ab-initio structure determination of zeolite RUB-10from lowresolution X-ray powder diffraction data[J]. Zeitschrift für Kristallographie,1995.210(7):475-480.
    [47] DOUGLAS L, KENNEDY G J. Crystal structure of MCM-70: A microporousmaterial with high framework density[J]. The Journal of Physical Chemistry B,2005.109(29):13891-13898.
    [48] WAGNER P, TERASAKI O, RITSCH S, et al. Electron diffraction structuresolution of a nanocrystalline zeolite at atomic resolution[J]. The Journal ofPhysical Chemistry B,1999.103(39):8245-8250.
    [49] BURTON A, ELOMARI S, MEDRUD R C, et al. The synthesis,characterization, and structure solution of SSZ-58: A novel two-dimensional10-ring pore zeolite with previously unseen double5-ring subunits[J]. Journalof the American chemical society,2003.125(6):1633-1642.
    [50] BURTON A, ELOMARI S, CHEN C Y, et al. SSZ-53and SSZ-59: Two NovelExtra-Large Pore Zeolites[J]. Chemistry-A European Journal,2003.9(23):5737-5748.
    [51] ELOMARI S, BURTON A, MEDRUD R C, et al. The synthesis,characterization, and structure solution of SSZ-56: An extreme example ofisomer specificity in the structure direction of zeolites[J]. Microporous andMesoporous Materials,2009.118(1):325-333.
    [52] LI Y, ZOU X. SU‐16: A Three‐D imensional Open‐FrameworkBorogermanate with a Novel Zeolite Topology[J]. Angewandte Chemie,2005.117(13):2048-2051.
    [53] ELOMARI S, BURTON A W, ONG K, et al. Synthesis and structure solutionof zeolite SSZ-65[J]. Chemistry of Materials,2007.19(23):5485-5492.
    [54] BURTON A, ELOMARI S. SSZ-60: a new large-pore zeolite related toZSM-23[J]. Chem. Commun.,2004(22):2618-2619.
    [55] FREYHARDT C C, LOBO R F, KHODABANDEH S, et al. VPI-8: ahigh-silica molecular sieve with a novel “pinwheel” building unit and itsimplications for the synthesis of extra-large pore molecular sieves[J]. Journalof the American chemical society,1996.118(31):7299-7310.
    [56] MCCUSKER L B, GROSSE-KUNSTLEVE R, BAERLOCHER C, et al.Synthesis optimization and structure analysis of the zincosilicate molecularsieve VPI-9[J]. Microporous Materials,1996.6(5):295-309.
    [57] R HRIG C, GIES H. A New Zincosilicate Zeolite with Nine-Ring Channels[J].Angewandte Chemie International Edition in English,2003.34(1):63-65.
    [58] CHEETHAM A, FJELLVG H, GIER T, et al. Very open microporous materials:from concept to reality[J]. Studies in Surface Science and Catalysis,2001.135:158.
    [59] PARK S H, DANIELS P, GIES H. RUB-23: a new microporous lithosilicatecontaining spiro-5building units[J]. Microporous and Mesoporous Materials,2000.37(1–2):129-143.
    [60] PARK S-H, PARISE J B, GIES H, et al. A New Porous Lithosilicate with aHigh Ionic Conductivity and Ion-Exchange Capacity[J]. Journal of theAmerican chemical society,2000.122(44):11023-11024.
    [61] WILSON S T, LOK B M, MESSINA C A, et al. Aluminophosphate molecularsieves: a new class of microporous crystalline inorganic solids[J]. Journal ofthe American Chemical Society,1982.104(4):1146-1147.
    [62] LOK B M, MESSINA C A, PATTON R L, et al. Silicoaluminophosphatemolecular sieves: another new class of microporous crystalline inorganicsolids[J]. Journal of the American chemical society,1984.106(20):6092-6093.
    [63] AFEWORKI M, DORSET D, KENNEDY G, et al. Synthesis and structure ofECR-40: An ordered sapo having the MEI framework[J]. Studies in SurfaceScience and Catalysis,2004.154:1274-1281.
    [64] BENNETT J M, COHEN J P, FLANIGEN EDITH M, et al. Crystal Structureof Tetrapropylammonium Hydroxide-Aluminum Phosphate Number5[J]. ACSSymposium Series,1983.218:109-118.
    [65] MARTENS J A, MERTENS M, GROBET P J, et al. Synthesis andCharacterisation of Silicon-Rich Sapo-5[M]. Elsevier,1988.
    [66] DAVIS M E, SALDARRIAGA C, MONTES C, et al. A molecular sieve witheighteen-membered rings[J]. Nature,1988.331:698-699.
    [67] DEROUANE E G, MAISTRIAU L, GABELICA Z, et al. Synthesis andcharacterization of the very large pore molecular Sieve MCM-9[J]. Appliedcatalysis,1989.51(1): L13-L20.
    [68] WEI Y, TIAN Z, GIES H, et al. Ionothermal Synthesis of an AluminophosphateMolecular Sieve with20-Ring Pore Openings[J]. Angewandte Chemie,2010.122(31):5495-5498.
    [69] MARTíNEZ-FRANCO R, MOLINER M, YUN Y, et al. Synthesis of anextra-large molecular sieve using proton sponges as organic structure-directingagents[J]. Proceedings of the National Academy of Sciences,2013.110(10):3749-3754.
    [70] LEE Y-J, BAEK S-C, JUN K-W. Methanol conversion on SAPO-34catalystsprepared by mixed template method[J]. Applied Catalysis A: General,2007.329:130-136.
    [71] ZHU Z, HARTMANN M, KEVAN L. Catalytic Conversion of Methanol toOlefins on SAPO-n (n=11,34, and35), CrAPSO-n, and Cr-SAPO-n MolecularSieves[J]. Chemistry of Materials,2000.12(9):2781-2787.
    [72] WILSON S, BARGER P. The characteristics of SAPO-34which influence theconversion of methanol to light olefins[J]. Microporous and MesoporousMaterials,1999.29(1):117-126.
    [73] SCHMIDT F, PAASCH S, BRUNNER E, et al. Carbon templated SAPO-34with improved adsorption kinetics and catalytic performance in theMTO-reaction[J]. Microporous and Mesoporous Materials,2012.164(1):214-221.
    [74] CHEN D, MOLJORD K, HOLMEN A. A methanol to olefins review:Diffusion, coke formation and deactivation on SAPO type catalysts[J].Microporous and Mesoporous Materials,2012.164(0):239-250.
    [75] SMITH J, RINALDI F, GLASSER L D. Crystal structures with a chabaziteframework. II. hydrated Ca-chabazite at room temperature[J]. ActaCrystallographica,1963.16(1):45-53.
    [76] LIANG J, LI H, ZHAO S, et al. Characteristics and performance of SAPO-34catalyst for methanol-to-olefin conversion[J]. Applied catalysis,1990.64:31-40.
    [77] LI J, QI Y, LIU Z, et al. Co-reaction of Ethene and Methylation Agents overSAPO-34and ZSM-22[J]. Catalysis letters,2008.121(3):303-310.
    [78] WEI Y, LI J, YUAN C, et al. Generation of diamondoid hydrocarbons asconfined compounds in SAPO-34catalyst in the conversion of methanol[J].Chemical Communications,2012.48(25):3082-3084.
    [79] YU J H, XU R R, LI J Y. Structural diversity of a family of aluminophosphateswith Al:P ratio of non-unity[J]. Solid State Sciences,2000.2:181-192.
    [80] YU J, XU R. Rich structure chemistry in the aluminophosphate family[J].Accounts of chemical research,2003.36(7):481-490.
    [81] LI Y, YU J, XU R. AlPO Database[DB/OL]: http://mezeopor.jlu.edu.cn/
    [82] HUO Q, XU R, LI S, et al. Synthesis and characterization of a novel extra largering of aluminophosphate JDF-20[J]. J. Chem. Soc., Chem. Commun.,1992(12):875-876.
    [83] YAN W, YU J, XU R, et al.[Al12P13O52][(CH2)6N4H3]: An AnionicAluminophosphate Molecular Sieve with Br nsted Acidity[J]. Chemistry ofMaterials,2000.12(9):2517-2519.
    [84] XING H, LI J, YAN W, et al. Cotemplating Ionothermal Synthesis of a NewOpen-Framework Aluminophosphate with Unique Al/P Ratio of6/7[J].Chemistry of Materials,2008.20(13):4179-4181.
    [85] HARTMANN M, KEVAN L. Transition-metal ions in aluminophosphate andsilicoaluminophosphate molecular sieves: Location, interaction with adsorbatesand catalytic properties[J]. Chemical Reviews,1999.99(3):635-663.
    [86] THOMAS J M, RAJA R, SANKAR G, et al. Molecular-sieve catalysts for theselective oxidation of linear alkanes by molecular oxygen[J]. Nature,1999.398(6724):227-230.
    [87] FENG P. Photoluminescence of open-framework phosphates and germanates[J].Chemical Communications,2001(17):1668-1669.
    [88] FLANIGEN E, PATTON R, WILSON S. Innovation in zeolite materialsscience[M]. Amsterdam: Elsevier,1988.
    [89] MARTENS J, JACOBS P. Crystalline Microporous Phosphates: A Family ofVersatile Catalysts and Adsorbents[J]. Studies in Surface Science and Catalysis,1994.85:653-685.
    [90] WECKHUYSEN B M, RAO R R, MARTENS J A, et al. Transition metal ionsin microporous crystalline aluminophosphates: Isomorphous substitution[J].European journal of inorganic chemistry,1999:565-577.
    [91] HARTMANN M, KEVAN L. Substitution of transition metal ions intoaluminophosphates and silicoaluminophosphates: characterization and relationto catalysis[J]. Research on Chemical Intermediates,2002.28(7-9):625-695.
    [92] BARRIE P J, KLINOWSKI J. Ordering in the framework of a magnesiumaluminophosphate molecular sieve[J]. The Journal of Physical Chemistry,1989.93(16):5972-5974.
    [93] AKOLEKAR D B, HOWE R. NMR investigation of substitutedaluminophosphate AEL, ATS, ATN, AFS, AFY and GIS molecular sieves[J]. J.Chem. Soc., Faraday Trans.,1997.93(17):3263-3268.
    [94] PRASAD S, BARICH D H, HAW J F. Probing acid sites in MAPO-36by solidstate NMR[J]. Catalysis letters,1996.39(3):141-146.
    [95] AKOLEKAR D, HUANG M, KALIAGUINE S. Basic sites on acidic SAPO-5,MAPO-5, and MAPO-36molecular sieves[J]. Zeolites,1994.14(7):519-522.
    [96] RAJI N, STOJAKOVI D, HO EVAR S, et al. On the possibility ofincorporating Mn(II) and Cr(III) in SAPO-34in the presence ofisopropylamine as a template[J]. Zeolites,1993.13(5):384-387.
    [97] MODéN B, OLIVIERO L, DAKKA J, et al. Structural and FunctionalCharacterization of Redox Mn and Co Sites in AlPO Materials and Their Rolein Alkane Oxidation Catalysis[J]. The Journal of Physical Chemistry B,2004.108(18):5552-5563.
    [98] NARDIN G, RANDACCIO L, KAUCIC V, et al. The structure of CoSAPO-34,containing i-propylamine as a template[J]. Zeolites,1991.11(2):192-194.
    [99] BENNETT J M, MARCUS B K. The Crystal Structures of Several MetalAluminophosphate Molecular Sieves[M]. Elsevier,1988.
    [100] RAJIC N, STOJAKOVIC D, KAUCIC V. Preparation and Properties ofSodalite-Type Aluminophosphates Containing Silicon, Cobalt and Zinc[J].Australian Journal of Chemistry,1991.44(4):543-553.
    [101] VERBERCKMOES A A, UYTTERHOEVEN M G, SCHOONHEYDT R A.Framework and extra-framework Co2+in CoAPO-5by diffuse reflectancespectroscopy[J]. Zeolites,1997.19(2–3):180-189.
    [102] VERBERCKMOES A A, WECKHUYSEN B M, SCHOONHEYDT R A.Spectroscopy and coordination chemistry of cobalt in molecular sieves[J].Microporous and Mesoporous Materials,1998.22(1–3):165-178.
    [103] LOHSE U, BERTRAM R, JANCKE K, et al. Acidity of aluminophosphatestructures. Part2.—Incorporation of cobalt into CHA and AFI by microwavesynthesis[J]. Journal of the Chemical Society, Faraday Transactions,1995.91(7):1163-1172.
    [104] THOMSON S, LUCA V, HOWE R. Framework Co(II) in CoAPO-5[J]. Phys.Chem. Chem. Phys.,1999.1(4):615-619.
    [105] RAJI N, STOJAKOVI D, KAU I V. Preparation of aluminophosphatemolecular sieves in the presence of nickel(II) and copper(II)[J]. Zeolites,1991.11(6):612-616.
    [106] HARTMANN M, AZUMA N, KEVAN L. Electron Spin Resonance andElectron Spin Echo Modulation Study of Ni(I) in Silicoaluminophosphate Type5: Adsorbate Interactions and Evidence for the Framework Incorporation of Ni(I)[J]. The Journal of Physical Chemistry,1995.99(27):10988-10994.
    [107] AZUMA N, LEE C W, KEVAN L. Electron Spin Resonance Study of Ni(I) inSilicoaluminophosphate Type11: Adsorbate Interactions and Evidence forFramework Incorporation of Ni(I)[J]. The Journal of Physical Chemistry,1994.98(4):1217-1221.
    [108] DJIEUGOUE M-A, PRAKASH A, KEVAN L. Electron Spin Resonance andElectron Spin-Echo Modulation Studies of Synthesized NiAPSO-34MolecularSieve and Comparison with Ion-Exchanged NiH-SAPO-34Molecular Sieve[J].The Journal of Physical Chemistry B,1999.103(5):804-811.
    [109] PRAKASH A, HARTMANN M, KEVAN L. Synthesis, electron paramagneticresonance and electron spinecho modulation studies on synthesizedNiAPSO-41molecular sieve andcomparison with ion-exchangedNiH-SAPO-41molecularsieve[J]. J. Chem. Soc., Faraday Trans.,1997.93(6):1233-1241.
    [110] DJIEUGOUE M-A, PRAKASH A, KEVAN L. Catalytic study ofmethanol-to-olefins conversion in four small-pore silicoaluminophosphatemolecular sieves: Influence of the structural type, nickel incorporation, nickellocation, and nickel concentration[J]. The Journal of Physical Chemistry B,2000.104(27):6452-6461.
    [111] TUEL A, AR ON I, TU AR N N, et al. EXAFS and NMR investigation ofzinc, manganese and cobalt substituted aluminophosphates with the chabazitestructure[J]. Microporous Materials,1996.7(5):271-284.
    [112] TU AR N N, KAU I V, GEREMIA S, et al. A zinc-rich CHA-typealuminophosphate[J]. Zeolites,1995.15(8):708-713.
    [113] GONZáLEZ G, PI A C, JACAS A, et al. Synthesis and characterization ofZnAPO-34molecular sieve with CHA structure type[J]. Microporous andMesoporous Materials,1998.25(1-3):103-108.
    [114] LOUREN O J P, RIBEIRO M F, RAM A RIBEIRO F, et al. Synthesis,characterization, and catalytic properties of AlPO4-40, CoAPO-40, andZnAPO-40[J]. Zeolites,1997.18(5–6):398-407.
    [115] SIERRA L, PATARIN J, GUTH J L. Synthesis of new aluminophosphatematerials with the FAU and AFR structure-types[J]. Microporous Materials,1997.11(1–2):19-35.
    [116] GONZáLEZ J G N, ALCAZ J D L C, RUIZ-SALVADOR A R, et al.Computational study of substitution of Al by Fe3+in the AlPO4-5framework[J].Microporous and Mesoporous Materials,1999.29(3):361-367.
    [117] HSU B-Y, CHENG S. Pinacol rearrangement over metal-substitutedaluminophosphate molecular sieves[J]. Microporous and MesoporousMaterials,1998.21(4-6):505-515.
    [118] RAJA R, SANKAR G, THOMAS J M. Powerful redox molecular sievecatalysts for the selective oxidation of cyclohexane in air[J]. Journal of theAmerican chemical society,1999.121(50):11926-11927.
    [119] THOMAS J M. Design, Synthesis, and In Situ Characterization of New SolidCatalysts[J]. Angewandte Chemie International Edition,1999.38(24):3588-3628.
    [120] THOMAS J M, HERNANDEZ-GARRIDO J C, RAJA R, et al. Nanoporousoxidic solids: the confluence of heterogeneous and homogeneous catalysis[J].Phys. Chem. Chem. Phys.,2009.11(16):2799-2825.
    [121] THOMAS J M, RAJA R. The role of the Jilin-DFRL collaboration in theemergence of open-structure single-site solid catalysts[J]. Microporous andMesoporous Materials,2007.105(1–2):5-9.
    [122] THOMAS J M, RAJA R. Exploiting Nanospace for Asymmetric Catalysis:Confinement of Immobilized, Single-Site Chiral Catalysts EnhancesEnantioselectivity[J]. Accounts of Chemical Research,2008.41(6):708-720.
    [123] THOMAS J M, RAJA R, LEWIS D W. Single‐Site HeterogeneousCatalysts[J]. Angewandte Chemie International Edition,2005.44(40):6456-6482.
    [124] THOMAS J M, RAJA R, SANKAR G, et al. Molecular sieve catalysts for theregioselective and shape-selective oxyfunctionalization of alkanes in air[J].Accounts of chemical research,2001.34(3):191-200.
    [125] LI Y-X, ZHANG H-T, LI Y-Z, et al. Hydrothermal synthesis andcharacterization of magnesium substituted aluminophosphate with uniqueintersecting12-membered ring channels in three dimensions[J]. Microporousand Mesoporous Materials,2006.97(1–3):1-8.
    [126] GóMEZ-HORTIGüELA L, LóPEZ-ARBELOA F, CORàF, et al.Supramolecular Chemistry in the Structure Direction of Microporous Materialsfrom Aromatic Structure-Directing Agents[J]. Journal of the Americanchemical society,2008.130(40):13274-13284.
    [127] FENG P, BU X, STUCKY G D. Hydrothermal syntheses and structuralcharacterization of zeolite analogue compounds based on cobalt phosphate[J].Nature,1997.388(6644):735-741.
    [128] BU X, FENG P, STUCKY G D. Large-cage zeolite structures withmultidimensional12-ring channels[J]. Science,1997.278(5346):2080-2085.
    [129] LI J, YU J, XU R. Progress in heteroatom-containing aluminophosphatemolecular sieves[J]. Proceedings of the Royal Society A: Mathematical,Physical and Engineering Science,2012.468(2143):1955-1967.
    [130] SHAO L, LI Y, YU J, et al. Divalent-metal-stabilized aluminophosphatesexhibiting a new zeolite framework topology[J]. Inorganic chemistry,2012.51(1):225-229.
    [131] SONG X, LI Y, GAN L, et al. Heteroatom-Stabilized Chiral Framework ofAluminophosphate Molecular Sieves[J]. Angewandte Chemie-InternationalEdition,2009.48(2):314-317.
    [132]段芳正.过渡金属磷酸铝微孔化合物的合成与表征[D].长春:吉林大学,2009.
    [133] LIU Z, SONG X, LI J, et al.|(C4NH12)4|[M4Al12P16O64](M=Co, Zn): NewHeteroatom-Containing Aluminophosphate Molecular Sieves with TwoIntersecting8-Ring Channels[J]. Inorganic chemistry,2012.51(3):1969-1974.
    [134] HELLIWELL M, KAUCIC V, CHEETHAM G, et al. Structure determinationfrom small crystals of two aluminophosphates CrAPO-14and SAPO-43[J].Acta Crystallographica Section B: Structural Science,1993.49(3):413-420.
    [135] DEO G, TUREK A M, WACHS I E, et al. Characterization of titaniasilicalites[J]. Zeolites,1993.13(5):365-373.
    [136] TOZZOLA G, MANTEGAZZA M, RANGHINO G, et al. On the structure ofthe active site of Ti-silicalite in reactions with hydrogen peroxide: A vibrationaland computational study[J]. Journal of Catalysis,1998.179(1):64-71.
    [137] TUEL A. Synthesis, characterization, and catalytic properties of titaniumsilicoaluminophosphate TAPSO-5[J]. Zeolites,1995.15(3):228-235.
    [138] ZAHEDI-NIAKI M H, ZAIDI S M J, KALIAGUINE S. Acid properties oftitanium aluminophosphate molecular sieves[J]. Microporous and MesoporousMaterials,1999.32(3):251-255.
    [139] LOHSE U, BRüCKNER A, KINTSCHER K, et al. Synthesis andcharacterization of VAPSO-44and VAPSO-5[J]. Journal of the ChemicalSociety, Faraday Transactions,1995.91(7):1173-1178.
    [140] BEDIOUI F, BRIOT E, DEVYNCK J, et al. Electrochemical characterizationof vanadium molecular sieve, VAPO-5[J]. Inorganica chimica acta,1997.254(1):151-155.
    [1] WILSON S T, LOK B M, MESSINA C A, et al. Aluminophosphate molecularsieves: a new class of microporous crystalline inorganic solids[J]. Journal ofthe American Chemical Society,1982.104(4):1146-1147.
    [2] BENNETT J M, COHEN J P, FLANIGEN EDITH M, et al. Crystal Structureof Tetrapropylammonium Hydroxide-Aluminum Phosphate Number5[J].ACS Symposium Series,1983.218:109-118.
    [3] DAVIS M E, SALDARRIAGA C, MONTES C, et al. A molecular sieve witheighteen-membered rings[J]. Nature,1988.331(6158):698-699.
    [4] ZONES S, OLMSTEAD M, SANTILLI D. Guest/host relationships in thesynthesis of large pore zeolite SSZ-26from a propellane quaternaryammonium compound[J]. Journal of the American chemical society,1992.114(11):4195-4201.
    [5] YU J, XU R. Rich Structure Chemistry in the Aluminophosphate Family[J].Accounts of Chemical Research,2003.36(7):481-490.
    [6] YU J, XU R. Insight into the construction of open-frameworkaluminophosphates[J]. Chemical Society Reviews,2006.35(7):593-604.
    [7] BAERLOCHER C, MCCUSKER L B. Database of ZeoliteStructures[DB/OL]: http://www.iza-structure.org/databases/
    [8] FENG P, BU X, STUCKY G D. Hydrothermal syntheses and structuralcharacterization of zeolite analogue compounds based on cobalt phosphate[J].Nature,1997.388(6644):735-741.
    [9] SONG X, LI Y, GAN L, et al. Heteroatom-Stabilized Chiral Framework ofAluminophosphate Molecular Sieves[J]. Angewandte Chemie InternationalEdition,2009.48(2):314-317.
    [10] BU X, FENG P, STUCKY G D. Large-Cage Zeolite Structures withMultidimensional12-Ring Channels[J]. Science,1997.278(5346):2080-2085.
    [11] THOMAS J M, RAJA R, LEWIS D W. Single-Site HeterogeneousCatalysts[J]. Angewandte Chemie International Edition,2005.44(40):6456-6482.
    [12] THOMAS J M, RAJA R. The role of the Jilin-DFRL collaboration in theemergence of open-structure single-site solid catalysts[J]. Microporous andMesoporous Materials,2007.105(1–2):5-9.
    [13] THOMAS J M, RAJA R, SANKAR G, et al. Molecular-sieve catalysts for theselective oxidation of linear alkanes by molecular oxygen[J]. Nature,1999.398(6724):227-230.
    [14] THOMAS J M, RAJA R, SANKAR G, et al. Molecular Sieve Catalysts for theRegioselective and Shape-Selective Oxyfunctionalization of Alkanes in Air[J].Accounts of Chemical Research,2001.34(3):191-200.
    [15] THOMAS J M, RAJA R. Exploiting Nanospace for Asymmetric Catalysis:Confinement of Immobilized, Single-Site Chiral Catalysts EnhancesEnantioselectivity[J]. Accounts of Chemical Research,2008.41(6):708-720.
    [16]王梅,李激扬,李乙, et al.新型层状氟化磷酸铝[C4H12N2][Al2(PO4)2(H2O)2F2]的水热合成与表征[J].高等学校化学学报,2005.26(6):1027-1029.
    [17] NAKAGAWA Y. US,5,271,921[P].1993.
    [18] CORMA A, DíAZ-CABA AS M J, MARTíNEZ-TRIGUERO J, et al. Alarge-cavity zeolite with wide pore windows and potential as an oil refiningcatalyst[J]. Nature,2002.418(6897):514-517.
    [19] VERBERCKMOES A A, WECKHUYSEN B M, SCHOONHEYDT R A.Spectroscopy and coordination chemistry of cobalt in molecular sieves[J].Microporous and Mesoporous Materials,1998.22(1–3):165-178.
    [20] OLIVER S, KUPERMAN A, LOUGH A, et al. AluminophosphateChain-to-Layer Transformation[J]. Chemistry of Materials,1996.8(9):2391-2398.
    [21] OLIVER S, KUPERMAN A, LOUGH A, et al. The synthesis and structure oftwo novel layered aluminophosphates containing interlamellarcyclohexylammonium[J]. Chemical Communications,1996(15):1761-1762.
    [22] BLATOV V A, DELGADO-FRIEDRICHS O, O'KEEFFE M, et al.Three-periodic nets and tilings: natural tilings for nets[J]. ActaCrystallographica Section A,2007.63(5):418-425.
    [23] GALE J D, HENSON N J. Derivation of interatomic potentials formicroporous aluminophosphates from the structure and properties ofberlinite[J]. Journal of the Chemical Society, Faraday Transactions,1994.90(20):3175-3179.
    [24] GALE J D, ROHL A L. The General Utility Lattice Program[J]. Mol Simul,2003.29(5):291-341.
    [25] PINSKY M, AVNIR D. Continuous Symmetry Measures.5. The ClassicalPolyhedra[J]. Inorganic Chemistry,1998.37(21):5575-5582.
    [26] CASTA EDA R, CORMA A, FORNéS V, et al. Synthesis of a new zeolite
    structure ITQ-24, with intersecting10-and12-membered ring pores[J].
    Journal of the American chemical society,2003.125(26):7820-7821.
    [1] WILSON S T, LOK B M, MESSINA C A, et al. Aluminophosphate molecularsieves: a new class of microporous crystalline inorganic solids[J]. Journal ofthe American Chemical Society,1982.104(4):1146-1147.
    [2] YU J, XU R. Insight into the construction of open-frameworkaluminophosphates[J]. Chemical Society Reviews,2006.35(7):593-604.
    [3] BAERLOCHER C, MCCUSKER L B. Database of ZeoliteStructures[DB/OL]: http://www.iza-structure.org/databases/
    [4] THOMAS J M, RAJA R. The role of the Jilin-DFRL collaboration in theemergence of open-structure single-site solid catalysts[J]. Microporous andMesoporous Materials,2007.105(1–2):5-9.
    [5] THOMAS J M, RAJA R. Exploiting Nanospace for Asymmetric Catalysis:Confinement of Immobilized, Single-Site Chiral Catalysts EnhancesEnantioselectivity[J]. Accounts of Chemical Research,2008.41(6):708-720.
    [6] THOMAS J M, RAJA R, LEWIS D W. Single-Site HeterogeneousCatalysts[J]. Angewandte Chemie International Edition,2005.44(40):6456-6482.
    [7] THOMAS J M, RAJA R, SANKAR G, et al. Molecular-sieve catalysts for theselective oxidation of linear alkanes by molecular oxygen[J]. Nature,1999.398(6724):227-230.
    [8] THOMAS J M, RAJA R, SANKAR G, et al. Molecular Sieve Catalysts for theRegioselective and Shape-Selective Oxyfunctionalization of Alkanes in Air[J].Accounts of Chemical Research,2001.34(3):191-200.
    [9] NOBLE G W, WRIGHT P A, LIGHTFOOT P, et al. Microporous MagnesiumAluminophosphate STA-1: Synthesis with a Rationally Designed Templateand Structure Elucidation by Microcrystal Diffraction[J]. Angewandte ChemieInternational Edition in English,1997.36(1-2):81-83.
    [10] W. NOBLE G, A. WRIGHT P, KVICK A. The templated synthesis andstructure determination by synchrotron microcrystal diffraction of the novelsmall pore magnesium aluminophosphate STA-2[J]. Journal of the ChemicalSociety, Dalton Transactions,1997.0(23):4485-4490.
    [11] BU X, FENG P, STUCKY G D. Large-cage zeolite structures withmultidimensional12-ring channels[J]. Science,1997.278(5346):2080-2085.
    [12] SONG X, LI Y, GAN L, et al. Heteroatom-Stabilized Chiral Framework ofAluminophosphate Molecular Sieves[J]. Angewandte Chemie-InternationalEdition,2009.48(2):314-317.
    [13] SHAO L, LI Y, YU J, et al. Divalent-metal-stabilized aluminophosphatesexhibiting a new zeolite framework topology[J]. Inorganic chemistry,2012.51(1):225-229.
    [14] CHIPPINDALE A M, COWLEY A R. CoGaPO-5: Synthesis and crystalstructure of (C6N2H14)2[Co4Ga5P9O36], a microporous cobalt-galliumphosphate with a novel framework topology[J]. Zeolites,1997.18(2–3):176-181.
    [15] SAINT[CP/DK]: Bruker AXS Inc.,5465East Cheryl Parkway, Madison, WI53711-5373, USA.2000.
    [16] SHELXTL[CP/DK]: Bruker AXS Inc.,5465East Cheryl Parkway, Madison,WI53711-5373.2000.
    [17] AKPORIAYE D E, FJELLVAG H, HALVORSEN E N, et al. UiO-6: a novel12-ring AlPO4, made in an inorganic-organic cation system[J]. ChemicalCommunications,1996.0(13):1553-1554.
    [18] BROACH R W, WILSON S T, KIRCHNER R M. Corrected crystallographictables and figure for as-synthesized AlPO4-14[J]. Microporous andMesoporous Materials,2003.57(2):211-214.
    [19] LIU Z, SONG X, LI J, et al.|(C4NH12)4|[M4Al12P16O64](M=Co, Zn): NewHeteroatom-Containing Aluminophosphate Molecular Sieves with TwoIntersecting8-Ring Channels[J]. Inorganic Chemistry,2012.51(3):1969-1974.
    [20] YAN W, YU J, SHI Z, et al. An anionic framework aluminophosphate|(CH2)6N4H3·H2O|[Al11P12O48] and computer simulation of the templatepositions[J]. Microporous and Mesoporous Materials,2001.50(2–3):151-158.
    [21] SHI L, LI J, YU J, et al.[C6N2H14]0.5·[MnAl3(PO4)4(H2O)2]: AManganese(II)-Substituted Aluminophosphate with AFN Topology[J].Inorganic Chemistry,2004.43(8):2703-2707.
    [22] RAJI N Z. Open-framework aluminophosphates: synthesis, characterizationand transition metal modifications[J]. Journal of the Serbian Chemical Society,2005.70(3):371-391.
    [23] BARRETT P, JONES R. Evidence for ordering of cobalt ions in themicroporous solid acid catalyst CoDAF-4by single crystal X-ray diffractionand resonant X-ray powder diffraction[J]. Phys. Chem. Chem. Phys.,2000.2(3):407-412.
    [24] GALE J D, ROHL A L. The General Utility Lattice Program[J]. Mol Simul,2003.29(5):291-341.
    [25] ROBINSON K, GIBBS G V, RIBBE P H. Quadratic elongation: a quantitativemeasure of distortion in coordination polyhedra[J]. Science,1971.172(3983):567-570.
    [1] WILSON S T, LOK B M, MESSINA C A, et al. Aluminophosphate molecularsieves: a new class of microporous crystalline inorganic solids[J]. Journal ofthe American Chemical Society,1982.104(4):1146-1147.
    [2] YU J, XU R. Rich Structure Chemistry in the Aluminophosphate Family[J].Accounts of Chemical Research,2003.36(7):481-490.
    [3] YU J, XU R. Insight into the construction of open-frameworkaluminophosphates[J]. Chemical Society Reviews,2006.35(7):593-604.
    [4] BAERLOCHER C, MCCUSKER L B. Database of ZeoliteStructures[DB/OL]: http://www.iza-structure.org/databases/
    [5] THOMAS J M, RAJA R. The role of the Jilin-DFRL collaboration in theemergence of open-structure single-site solid catalysts[J]. Microporous andMesoporous Materials,2007.105(1–2):5-9.
    [6] THOMAS J M, RAJA R. Exploiting Nanospace for Asymmetric Catalysis:Confinement of Immobilized, Single-Site Chiral Catalysts EnhancesEnantioselectivity[J]. Accounts of Chemical Research,2008.41(6):708-720.
    [7] THOMAS J M, RAJA R, LEWIS D W. Single-Site HeterogeneousCatalysts[J]. Angewandte Chemie International Edition,2005.44(40):6456-6482.
    [8] THOMAS J M, RAJA R, SANKAR G, et al. Molecular-sieve catalysts for theselective oxidation of linear alkanes by molecular oxygen[J]. Nature,1999.398(6724):227-230.
    [9] THOMAS J M, RAJA R, SANKAR G, et al. Molecular Sieve Catalysts for theRegioselective and Shape-Selective Oxyfunctionalization of Alkanes in Air[J].Accounts of Chemical Research,2001.34(3):191-200.
    [10] BU X, FENG P, STUCKY G D. Large-cage zeolite structures withmultidimensional12-ring channels[J]. Science,1997.278(5346):2080-2085.
    [11] FENG P, BU X, STUCKY G D. Hydrothermal syntheses and structuralcharacterization of zeolite analogue compounds based on cobalt phosphate[J].Nature,1997.388(6644):735-741.
    [12] SONG X, LI Y, GAN L, et al. Heteroatom-Stabilized Chiral Framework ofAluminophosphate Molecular Sieves[J]. Angewandte Chemie-InternationalEdition,2009.48(2):314-317.
    [13] SHAO L, LI Y, YU J, et al. Divalent-metal-stabilized aluminophosphatesexhibiting a new zeolite framework topology[J]. Inorganic chemistry,2012.51(1):225-229.
    [14] GUO Y, SONG X, LI J, et al. Syntheses and characterizations ofheteroatom-containing open-framework aluminophosphates[J]. DaltonTransactions,2011.40(36):9289-9294.
    [15] SAINT[CP/DK]: Bruker AXS Inc.,5465East Cheryl Parkway, Madison, WI53711-5373, USA.2000.
    [16] SHELXTL[CP/DK]: Bruker AXS Inc.,5465East Cheryl Parkway, Madison,WI53711-5373.2000.
    [17] YANG M, YU J, DI J, et al. Syntheses, Structures, Ionic Conductivities, andMagnetic Properties of Three New Transition-Metal Borophosphates Na5(H3O){MII3[B3O3(OH)]3(PO4)6}·2H2O (MII=Mn, Co, Ni)[J]. Inorganicchemistry,2006.45(9):3588-3593.
    [18] SHI L, LI J, DUAN F, et al.[C3N2H12][MnAl3P4O17][H3O]: A manganese(II)-substituted aluminophosphate with zeotype AFN topology[J].Microporous and Mesoporous Materials,2005.85(3):252-259.
    [19] SHI L, LI J, YU J, et al.[C6N2H14]0.5·[MnAl3(PO4)4(H2O)2]: AManganese(II)-Substituted Aluminophosphate with AFN Topology[J].Inorganic Chemistry,2004.43(8):2703-2707.