典型城市生活垃圾基元中温湿分迁移过程动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市生活垃圾水分含量高,其湿分迁移特性对整个垃圾焚烧过程有重要影响,基于垃圾是一种具有含湿多孔介质特性的燃料,因此垃圾的热、质传递是研究干燥过程的热点问题之一。本文主要对典型城市生活垃圾基元中温湿分迁移过程的动力学特性进行了实验和模拟研究。本文完成了以下几方面的工作。
     利用马弗炉进行垃圾基元中温湿分迁移特性的实验研究,得到了温度、垃圾基元种类和块状垃圾基元几何尺寸等因素对典型城市生活垃圾基元中温湿分迁移特性的影响规律。结果表明,干燥时间和干燥温度之间关系呈t=aT~b的规律,初始含湿量较高的垃圾基元和弱各向异性垃圾基元在较低温度下均有明显的初始段、恒速段和降速段,在较高温度下,只有初始段和降速段,初始含湿量较低的强各向异性垃圾基元在所有温度下只呈现初始段和降速段。
     实验研究结果表明初始含湿量较高的生物质垃圾基元在第一降速段会出现明显的收缩现象,垃圾基元的含湿量、厚度、骨架的移动性以及湿分迁移速率等对其收缩特性均有不同程度的影响,在一定温度下,垃圾基元在第一降速段的收缩率与水分比近似呈线性关系。
     通过在流化床实验台中进行垃圾基元中温湿分迁移过程的实验研究,得到了相关因素对流化床中典型城市生活垃圾基元中温湿分迁移特性的影响规律。分析垃圾基元几何尺寸、干燥温度、床层厚度和风速对流化床中垃圾基元湿分迁移特性的影响程度,并对中温条件下垃圾基元在流化床和马弗炉中的湿分迁移特性进行了比较和分析。
     基于对实验结果的进一步分析,得到了典型城市生活垃圾基元中温湿分迁移过程的动力学参数。研究发现温度对垃圾基元湿分迁移过程有效湿分扩散系数的影响均可以用Arrhenius方程描述,典型垃圾基元中温湿分迁移过程所需表观活化能较小,可以在较低的温度下进行干燥。
     对垃圾基元在马弗炉中的中温湿分迁移过程进行了数值模拟,用收缩模型模拟初始含湿量较高生物质垃圾基元的湿分迁移过程,用不收缩模型模拟非生物质垃圾基元的湿分迁移过程,计算结果与实验结果吻合较好。研究结果表明当考虑高水分生物质垃圾基元的收缩特性时,计算误差会大大减少,高水分生物质垃圾基元收缩特性增大了垃圾基元表面的传热性质。
     本文的研究成果对进一步深入认识高水分城市生活垃圾湿分迁移特性、改进或设计新型焚烧炉适应我国高水分、低热值的固体废弃物焚烧技术提供参考。
High moisture in MSW leads to low heat value , low combustion efficiency, and frequent and serious erosion during incinerating. As a crucial treatment for incineration, MSW should be dried first. Due to its extreme complicated components and microstructure, the drying of MSW is quite dififerent from normal cases. Particularly, the moisture migration would be a highly coupled heat and mass transfer under transient conditions. It is of critical importance to investigate the drying efficiency and key factors for the development or design of incinerators to incinerate MSW with high moisture and low heat value in China. The experiments and simulation on kinetics of moisture migration of MSW matrixes at medium temperature were carried out.The main contributions of this dissertation are as follows.
     Experiments on moisture migration of the high moisture MSW at medium temperature were conducted in muffle.The influences of drying temperature, variety of waste matrixes, and dimension of waste matrixes on drying characteristics of waste matrixes in muffle at medium temperature were gained.The results showed that the time required for drying and temperature were inversely with the relationship t = aT~b, the process of moisture migration for waste matrixes with high initial moisture content and weak-anisotropy abiological ones at low temperature can be divided into three phases including initial phase, constant-rate phase and falling-rate phase , without constant-rate phase at high temperature, only initial phase and falling-rate phase at any temperature for strong-anisotropy waste matrixes with low initial moisture content.
     Obvious shrinkage during moisture migration of biological waste matrixes with high initial moisture content can be observed, The results showed that the effects of moisture content and thickness of waste matrixes, mobility of framework and rate of moisture migration on shrinkage, linear relationships between shrinkage and moisture content ratio of waste matrixes during the first falling-rate phase at certain drying temperature were established.
     Experiments on moisture migration of the high moisture MSW at medium temperature were conducted in a fluidized bed . The influences of correlation factors on characteristics of moisture migration of waste matrixes in fluidized bed were analyzed. The influences of drying temperature, dimension of waste matrixes and wind speed on drying characteristics of waste matrixes were gained; rate of moisture migration in muffle is much higher than one in fluidized bed.
     Based on experimental results, the kinetics parameters of moisture migration of waste matrixes at medium temperature were gained. The results showed that effect of drying temperature on effective moisture diffusivity can be described with Arrhenius equation, and low energy is needed for completely drying of waste matrixes.
     Characteristics of moisture migration of typical MSW matrixes at medium temperature in muffle were simulated. Characteristics of moisture migration of biological waste matrixes were simulated using shrinkage model, characteristics of moisture migration of abiological waste matrixes were simulated using non-shrinkage model. The results show good agreement with experiment values. The shrinkage of biological waste matrixes can enhance surface heat transfer of matrixes.
     It provides theory fundament for realize the drying characteristics of MSW in incinerator, and scientific reference for design and improve of incinerator.
引文
[1]张衍国,李清海,康建斌.垃圾清洁焚烧发电技术.北京:中国水利水电出版社.2004:1-50
    [2]陈勇.垃圾焚烧中镉、铅迁移转化特性研究.[清华大学博士论文],2008:1-4
    [3]世界银行东亚基础设施部.中国固体废弃物管理:问题和建议.城市发展工作报告,2005:8-163
    [4]中华人民共和国统计局编.中国统计年鉴.北京:中国统计出版社.2004:438-439
    [5]中华人民共和国统计局编.中国统计年鉴.北京:中国统计出版社.2005:411-412
    [6]中华人民共和国统计局编.中国统计年鉴.北京:中国统计出版社.2006:428-429
    [7]中华人民共和国统计局编.中国统计年鉴.北京:中国统计出版社.2007:428-429
    [8]中华人民共和国统计局编。中国统计年鉴.北京:中国统计出版社.2008:409-410
    [9]邓黛青.城市垃圾焚烧厂垃圾储坑渗滤液生物处理技术研究.[同济大学博士论文],2006:1-2
    [10]S.C.Dong,W.T.Kurt,Y.P.Wu.Municipal solid waste management in China:using commercial management to solve a growing problem.Utilities policy,2001,10(1):7-11
    [11]刘克鑫.国内外城市生活垃圾处理概况及发展趋势.软科学,2000,(1):30-32
    [12]黄建华.垃圾处理欠费九千万[N/OL].北京青年报,2000-08-30(3)
    [13]孙海东.本市力争5年实现垃圾零增长[N].2000.北京晚报,11-30(1)
    [14]杜吴鹏,高庆先,张恩琛,等.中国城市生活垃圾排放现状及成分分析.环境科学研究,2006,19(5):85-90
    [15]李红,高平.城市生活垃圾污染危害防治与利用.黑龙江环境通报,2005,29(2):81-82
    [16]逢磊,倪桂才,闫光绪.城市生活垃圾的危害及污染综合防治对策.环境科学动态,2004,(2):15-16
    [17]尚谦,袁兴中.城市生活垃圾的危害及特性分析.黑龙江环境通报,2001,25(2):27-31
    [18]朱兰保,盛蒂.我国城市生活垃圾处理现状及其对策.环境卫生工程,2006,14(3):35-37
    [19]张益.我国生活垃圾处理技术的现状和展望.环境卫生工程,2000,8(2):81-84
    [20]黄生琪,周菊华.谈城市生活垃圾焚烧发电技术现状及发展.应用能源技术,2007,3:42-45
    [21]徐淼.生活垃圾焚烧发电.节能与环保,2007,(5):27-29
    [22]张景欣,霍寅龙.城市生活垃圾的焚烧发电处理技术.黑龙江环境通报,2007,31(1):89-90
    [23]陈彤.城市生活垃圾焚烧过程中二噁英的形成机理及控制技术研究.[浙江大学博士学位论文].2006:1-3
    [24]张东平.城市生活垃圾流化床焚烧过程酸性气体排放及其人工神经网络预测.[浙江大学博士学位论文].2003:1-18
    [25]曹玉春.流化床垃圾焚烧炉内流动和燃烧污染物生成数值模拟研究.[浙江大学博士学位论文].2005:1-5
    [26]宋立杰.生活垃圾焚烧炉渣特性及其在废水处理中的应用研究.[同济大学博士学位论文].2006:5-6
    [27]王学涛.城市生活垃圾焚烧飞灰熔融特性及重金属赋存迁移规律的研究.[东南大学博士学位论文].2005:1-2
    [28]王海瑞.密闭式城市生活垃圾直接气化熔融焚烧过程控制策略研究.[昆明理工大学博士学位论文].2007:1-11
    [29]顾捷,陈蕾,夏顺阳.论生活垃圾处理与污染防治技术.污染防治技术,2006,19(1):34-37
    [30]聂永丰,刘富强,王进军.我国城市垃圾焚烧技术发展方向探讨.环境科学研究,2000,13(3):20-23
    [31]简瑞民.城市生活垃圾燃烧特性及逆推式焚烧炉中燃烧过程模型研究.[同济大学博士论文],1993:
    [32]聂永丰.我国生活垃圾处理技术现状及发展方向探讨.环境经济杂志,2005,(22):30-35
    [33]李清海.层燃-流化复合垃圾焚烧炉燃烧与排放研究.[清华大学博士论文],2007:1-4
    [34]Y.S.Liu,Y.S.Liu.Novel incineration technology integrated with drying,pyrolysis,gasification,and combustion of MSW and ashes vitrification.Environmental Science and Technology,2005,39(10):3855-3863
    [35]卢苇,马一太.垃圾焚烧的发展趋势分析.太阳能学报,2002,6(23):799-804
    [36]陈允轩.焚烧炉条件下典型城市生活垃圾干燥过程的试验研究.[北京交通大学硕士论文],2006:9-14
    [37]L.G.Liang,R.Sun,J.Fei,et al.Experimental study on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed.Bioresource Technology,2008,99:7238-7246
    [38]罗春鹏,池涌,刘渊源,等.流化床垃圾焚烧有害气体排放特性研究.锅炉技术,2003,34(6):75-78
    [39]Y.R.Goh,R.G.Siddall,V.Nasserzadeh,et al.Mathematical modeling of the burning bed of a waste incinerator.Journal of the institute of energy.1998,71(6):110-118.
    [40]Y.R.Goh,Y.B.Yang,R.Zakaria,et al.Development of an incinerator bed model for municipal solid waste incineration.Combustion science and technology,2001,162:37-58.
    [41]S.Patumsawad,K.R.Cliffe.Experimental study on fluidized bed combustion of high moisture municipal solid waste.Energy conversion and management,2002,43:2329-2340.
    [42]M.Saito,K.Amagai,G.Ogiwara,et al.Combustion characteristics of waste material containing high moisture.Fuel,2001,80:1201-1209.
    [43]金余其.城市生活垃圾燃烧特性及新型流化床焚烧技术的研究.[浙江大学博士学位论文].2002:69-71
    [44]Y.B.Yang,V.N.Sharifi,J.Swithenbank.Effect of air flow rate and fuel moisture on the burning behaviours ofbiomass and simulated municipal solid wastes in packed beds.Fuel,2004,83:1553-1562
    [45]陈勇,马晓茜,李海滨,等.固体废弃物能源利用.广州:华南理工大学出版社.2002:125-138
    [46]孙振刚,马晓茜,芦苇.农产品加工剩余物焚烧过程的干燥热解特性研究.农业机械学报,2001,32(2):49-52
    [47]Y.B.Yang,Y.R.Goh,R.Zakaria,et al.Mathematical modeling of MSW incineration on a traveling bed.Waste management,2002,22:369-380.
    [48]Y.Jannot,A.Talla,J.Nganhou,et al.Modeling of banana convective drying by the drying characteristic curve(DCC) method.Drying Technology,2004,22(8):1949-1968
    [49]D.Velic,M.Planinic,S.Tomas,et al.influence of airflow velocity on kinetics of convection apple drying.Journal of Food Engineering.2004,64:97-102
    [50]G.Pavon-Melendez,J.A.Hernandez,M.A.Salgado,et al.Dimensionless analysis of the simultaneous heat and mass transfer in food drying.Journal of Food Engineering.2002,51:347-353
    [51]S.K.Chou,M.N.A.Hawlader,K.J.Chua.Identification of the receding evaporation front in convective food drying.Drying Technology,1997,15(5):1353-1367
    [52]B.K.May,A.J.Sinclair,A.L.Halmos,et al.Quantitative analysis of drying behaviour of fruits and vegetables.Drying Technology,1999,17(7 & 8):1441-1448
    [53]M.Cano-Chauca,A.M.Ramos,P.C.Stringheta,et al.Drying curves and water activity evaluation of dried banana,Drying 2004-Proceedings of the 14th International Drying Symposium(IDS 2004)Sao Paulo,Brazil,2004,C:2013-2020
    [54]雷廷宙.秸秆干燥过程的实验研究与理论分析.[大连理工大学博士论文].2006:20-39
    [55]淮秀兰.流化床谷物干燥的实验与理论研究.[北京科技大学博士论文].1997:4-18
    [56]S.Soponronnarit.Drying characteristics of corn in fluidized bed dryer.Drying Technology,1997,15(5):1603-1615
    [57]Z.Y.Yan,M.J.Sousa-Gallagher,F.A.R.Oliveira.Shrinkage and porosity of banana,pineapple and mango slices during air-drying.Journal of Food Engineering.2008,84:430-440
    [58]P.Perre,B.May.The existence of a first drying stage for potato proved by two independent methods.Journal of Food Engineering.2007,78:1134-1140
    [59]B.K.May,P.Perre.The importance of considering exchange surface area reduction to exhibit a constant drying flux period in foodstuffs.Journal of Food Engineering.2002,54:271-282
    [60]B.K.May,A.J.Sinclair,J.G.Hughes,et al.A study of temperature and sample dimension in the drying of potatoes.Drying Technology,2000,18(10):2291-2306
    [61]W.A.M.McMinn,T.R.A.Maere.Air drying kinetics of potato cylinders.Drying Technology,1996,14(9):2025-2040
    [62]N.P.Zogzas,Z.B.Maroulis,D.Marinos-Kouris.Densities,shrinkage and porosity of some vegetables during air drying.Drying Technology,1994,12(7):1653-1666
    [63]A.Mulet,J.Garcia-Reverter,J.Bon,et al.Effect of shape on potato and cauliflower shrinkage during drying.Drying Technology,2000,18(6):1201-1219
    [64]W.C.Chiang,J.N.Petersen.Experimental measurement of temperature and moisture profiles during apple drying.Drying Technology,1987,5(1):25-49
    [65]M.G.A.Vieira,L.Estrella,M.A.Silva,et al.Shrinkage of recycled paper sheet during drying.Drying Technology,2006,24(4):465-474
    [66]M.E.T.Prado,L.F.T.Alonso,K.J.Park,et al.Shdnkage of dates(Phoenix Dactilyfera L.)during drying.Drying Technology,2000,18(1 & 2):295-310
    [67]M.R.Ochoa,A.G.Kesseler,B.N.Pirone,et al.Volume and area shrinkage of whole sour cherry fruits(prunus cerasus) during dehydration.Drying Technology,2002,20(1):147-156
    [68]L.D.S.Arrieche,D.J.M.Sartori.Dependence analysis of the shrinkage and shape evolution of a gel system with the forced convection drying periods.Drying 2000-Proceedings of the 14th International Drying Symposium(IDS 2004),Sao Paulo,Brazil,2004,A:152-160
    [69]M.E.Katekawa,M.A.Silva.Study of porosity behavior in convective drying of bananas,Drying 2000 -Proceedings of the 14th International Drying Symposium(IDS 2004),Sao Paulo,Brazil,2004,B:1427-1434
    [70]P.Perre,B.May.The existence of a first drying stage for potato proved by two independent experimental evidences.Drying 2004 -Proceedings of the 14th International Drying Symposium(IDS 2004),Sao Paulo,Brazil,2004,C:1820-1827
    [71]赵耀华,鹤田隆治,张春平.多孔介质体干燥过程中含水率分布的可视化研究.工程热物理学报,2003,24(2):280-282
    [72]薛巨峰.木材干燥含水率测试及水分迁移特征的研究.[东北林业大学硕士学位论文].2006:5-8
    [73]J.Eriksson,H.Johansson,J.Danvind.A mass transport model for drying wood under isothermal conditions.Drying Technology,2007,25(3):433-439
    [74]T.Theppaya,S.Prasertsan.Optimization of rubber wood drying by response surface method and multiple contour plots.Drying Technology,2004,22(7) 1637-1660
    [75]T.Theppaya,S.Prasertsan.Parameters influencing drying behavior of rubber wood(hevea Brazilliensis) as determined from desorption experiment..Drying Technology,2002,20(2):507-525
    [76]P.Bengtsson.Experimental analysis of low-temperature bed drying of wooden biomass particles.Drying Technology,2008,26(5):602-610
    [77]T.D.Yun,G.L.Bai,L.Bin,et al.Modeling and on-line measurement of drying stress of pinus massoniana board.Drying Technology,2007,25(3):441-448
    [78]M.N.A.Hawlader,C.O.Perera,M.Tian,et al.Drying of guava and papaya:impact of different drying methods.Drying Technology,2006,24(1):77-87
    [79]I.Bialobrzewski,M.Markowski.Mass transfer in the celery slice:effects of temperature,moisture content,and density on water diffusivity.Drying Technology,2004,22(7):1777-1789
    [80]G.H.Kanevce,L.P.Kanevce,V.B.Mitrevski,et al.Inverse approaches to drying of thin bodies with significant shrinkage effects.Journal of Heat Transfer.2007,129:379-386
    [81]Z.Y.Li,N.Kobayashi.Determination of moisture diffusivity by thermo-gravimetric analysis under non-isothermal condition.Drying Technology,2005,23(6):1331-1342
    [82]L.Hassini,S.Azzouz,R.Peczalski,et al.Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage.Journal of Food Engineering 2007,79:47-56
    [83]J.Srikiatden,J.S.Roberts.Measuring moisture diffusivity of potato and carrot(core and cortex) during convective hot air and isothermal drying.Journal of Food Engineering.2006,74:143-152
    [84]J.F.Nicoleti,J.Telis-Romero,V.R.N.Telis.Air-drying of fresh and osmotically pre-treated pineapple slices:fixed air temperature versus fixed slice temperature drying kinetics.Drying Technology,2001,19(9):2175-2191
    [85]H.Feng,J.Tang,S.J.Dixon-Warren.Determination of moisture diffusivity of red delicious apple tissues by thermogravimetric analysis.Drying Technology,2000,18(6):1183-1199
    [86]N.P.Zogzas,Z.B.Maroulis.Effective moisture diffusivity estimation from drying data:a comparison between various methods of analysis.Drying Technology,1996,14(7 &8):1543-1573
    [87]O.Corzo,N.Bracho,C.Alvarez.Water effective diffusion coefficient of mango slices at different maturity stages during air drying.Journal of Food Engineering,2008,87:479-484
    [88]N.P.Zogzas,Z.B.Maroulis,D.Marinos-Kouris.Moisture diffusivity data compilation in foodstuffs.Drying Technology,1996,14(10):2225-2253
    [89]I.I.Ruiz-Lopez,M.A.Garcia-Alvarado.Analytical solution for food-drying kinetics considering shrinkage and variable diffusivity,Journal of Food Engineering,2007,79:208-216
    [90]D.SETH,A.SARKAR.A lumped parameter model for effective moisture diffusivity in air drying of foods.Food and Bioproducts Processing,2004,82(C3):183-192,
    [91]W.Senadeera,B.R.Bhandari,G.Young,et al.Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying.Journal of Food Engineering,2003,58:277-283
    [92]E.A.F.Araujo,Suezilde,C.A.Ribeiro,et al.Drying kinetics of nectarine(Prunus persica)with and without shrinkage.Drying 2004-Proceedings of the 14th International Drying Symposium(IDS 2004),S(?)o Paulo,Brazil,2004,C:2189-2194
    [93]N.Rahman,S.Kumar.Evaluation of convective heat transfer coefficient during drying of shrinking bodies.Energy Conversion and Management,2006,47:2591-2601
    [94]L.M.Zhou,V.M.Purl,R.C.Anantheswaran.Measurement of coefficients for simultaneous heat and mass transfer in food products.Drying Technology,1994,12(3):607-627
    [95]D.Mukherjee,V.M.Purl,R.C.Anantheswaran.Measurement of coupled heat and moisture transfer coefficients for selected vegetables.Drying Technology,1997,15(1):71-94
    [96]C.J.Nederveen,J.G.M.Finken.Thermal conductivity measurements on wet paper samples at high temperatures.Drying Technology,1992,10(1):189-198
    [97]王海.离心流化床内干燥和传热传质的基础研究.[东南大学博士论文].2002:
    [98]田晓亮.含湿多孔介质在干燥过程中内部传输机理的研究.[天津大学博士论文],1992:1-5
    [99]刘相东.干燥过程原理研究概况.干燥技术与设备.2004,2(3):3-4
    [100]J.lrudayaraj,Y.Wu.Analysis and application of Luikov's heat,mass,and pressure transfer model to a capillary porous media.Drying Technology,1996,14(3 & 4):803-824
    [101]王维,陈国华.固体干燥的物理解释和建模综述.干燥技术与设备.2006,4(4):180-188
    [102]卢涛.毛细多孔介质干燥过程中传热传质模型研究及应用.[大连理工大学博士论文],2003:5-11
    [103]黄晓明.多孔介质相变传热与流动及其若干应用研究.[华中科技大学博士论文],2004:7-20
    [104]E.Purlis,V.O.Salvadori.Bread baking as a moving boundary problem.Part 1:Mathematical modelling.Journal of Food Engineering,2009,91(3):428-433
    [105]E.Purlis,V.O.Salvadori.Bread baking as a moving boundary problem.Part 2:Model validation and numerical simulation.Journal of Food Engineering,2009,91(3):434-442
    [106]M.V.D.Bonis,G.Ruocco.A generalized conjugate model for forced convection drying based on an evaporative kinetics,Journal of Food Engineering,2008,89(2):232-240
    [107]V.Yadav,C.G.Moon.Modelling and experimentation for the fabric-drying process in domestic dryers.Applied Energy,2008,85(5):404-419
    [108]V.Yadav,C.G.Moon.Fabric-drying process in domestic dryers.Applied Energy,2008,85(2-3):143-158
    [109]M.Saudreau,H.Sinoquet,O.Santin.et al.A 3D model for simulating the spatial and temporal distribution of temperature within ellipsoidal fruit.Agricultural and Forest Meteorology,2007,147(1-2):1-15
    [110]李延军.杉小木束干燥特性的研究.[北京林业大学博士学位论文].2005:1-13
    [111]马晓茜,孙振刚,芦苇.焚烧炉内多孔介质状垃圾团块传热分析.工程热物理学报,2002,23(3):157-160
    [112]冉景煜.垃圾洁净燃烧炉内垃圾团非稳态传热特性分析.重庆大学学报,25(10):62-70
    [113]H.F.Oztop,E.K.Akpinar.Numerical and experimental analysis of moisture transfer for convective drying of some products.International Communications in Heat and Mass Transfer,2008,35:169-177
    [114]M.V.D.Bonis,G.Ruocco.A generalized conjugate model for forced convection drying based on an evaporative kinetics.Journal of Food Engineering,2008,89:232-240
    [115]A.Kaya,O.Aydin,I.Dincer.Experimental and numerical investigation of heat and mass transfer during drying of Hayward kiwi fruits(Actinidia Deliciosa Planch).Journal of Food Engineering,2008,88:323-330.
    [116]C.T.Kiranoudis,Z.B.Maroulis,D.Marinos-Kouris.Model selection in air drying of foods.Drying Technology,1992,10(4):1097-1106
    [117]J.Srikiatden,J.S.Roberts.Predicting moisture profiles in potato and carrot during convective hot air drying using isothermally measured effective diffusivity.Journal of Food Engineering,2008,84:516-525
    [118]A.P.Ohara,N.Spogis,J.R.Nunhez.Development of a 3d software for the drying of food using a computational fluid dynamic(CFD) approach.Drying 2004-Proceedings of the 14th International Drying Symposium(IDS 2004),S(?)o Paulo,Brazil,2004,A:374-380
    [119]B.Hadrich,N.Kechaou.Mathematical modelling and simulation of heat and mass transfer phenomena in a shrinking cylinder during drying.Drying 2004-Proceedings of the 14th International Drying Symposium(IDS 2004),S(?)o Paulo,Brazil,2004,A:533-541
    [120]J.Madiouli,D.Lecomte,T.Nganya,et al.A method for determination of porosity change from shrinkage curves of deformable materials.Drying Technology,2007,25(4):621-628
    [121]Z.Pakowski,A.Adamski.The comparison of two models of convective drying of shrinking materials using apple tissue as an example.Drying Technology,2007,25(7 &8):1139-1147
    [122]A.Talla,J.R.Puiggali,W.Jomaa,et al.Shrinkage and density evolution during drying of tropical fruits application to banana.Journal of Food Engineering,2004,64:103-109
    [123]M.R.Queiroz,S.A.Nebra.Theoretical and experimental analysis of the drying kinetics of bananas.Journal of Food Engineering,2001,47:127-132
    [124]M.M.Hussain,I.Dincer.Two-dimensional heat and moisture transfer analysis of a cylindrical moist object subjected to drying:A finite-difference approach.International Journal of Heat and Mass Transfer,2003,46:4033-4039
    [125]I.B.Obrzewski.Simultaneous heat and mass transfer in shrinkable apple slab during drying.Drying Technology,2006,24(5):551-559
    [126]S.Simal,M.C.Garau,A.Femenia,et al.A diffusional model with a moisture-dependent diffusion coefficient.Drying Technology,2006,24(11):1365-1372
    [127]P.E.Viollaz,C.O.Rovedo.Adrying model for three-dimensional shrinking bodies.Journal of Food Engineering,2002,52:149-153
    [128]M.A.Karim,M.N.A.Hawlader.Drying characteristics of banana theoretical modelling and experimental validation.Journal of Food Engineering,2005,70:35-45
    [129]M.A.Karim,M.N.A.Hawlader.Mathematical modelling and experimental investigation of tropical fruits drying.International Journal of Heat and Mass Transfer,2005,48:4914-4925
    [130]L.Mayor,A.M.Sereno.Modelling shrinkage during convective drying of food materials:a review.Journal of Food Engineering,2004,61:373-386
    [131]S.Curcio,M.Aversa,V.Calabro,et al.Simulation of food drying FEM analysis and experimental validation.Journal of Food Engineering,2008,87:541-553
    [132]A.J.Fusco,J.R.Avanza,R.J.Agnerre,et al.A diffusional model for drying with volume change.Drying Technology,1991,9,(2):397-417
    [133]M.N.A.Hawlader,J.C.Ho,Z.Qing.A mathematical model for drying of shrinking materials.Drying Technology,1999,17(1 & 2):27-47
    [134]李业波,秦玉昌,李业德.土豆干燥过程中内部传热传质的数值模拟.农业工程学报,1996,12(3):52-55
    [135]李业波,于庆龙,赵丽华.土豆干燥过程内部传热传质的实验研究.农业工程学报,1996,12(4):62-65
    [136]H.Yang,N.Sakai,M.Watanabe.Drying model with non-isotropic shrinkage deformation undergoing simultaneous heat and mass transfer.Drying Technology,2001,19(7):1441-1460
    [137]A.Mulet,A.Berna,C.Rossello.Drying of carrots.Ⅰ.drying models.Drying Technology,1989,7(3):537-557
    [138]A.Mulet,A.Berna,C.RossellO,et al.Drying of carrots.Ⅱ.evaluation of drying models,Drying Technology,1989,7(4):641-661
    [139]L.Lagunez-Rivera,I.I.Ruiz-Lopez,M.A.Garcia-Alvarado,et al.Mathematical simulation of the effective diffusivity of water during drying of papaya.Drying Technology,2007,25(10):1633-1638
    [140]L.Hassini,S.Azzouz,A.Belghith.Estimation of the moisture diffusion coefficient of potato during hot-air drying.Drying 2004-Proceedings of the 14th International Drying Symposium(IDS 2004),S(?)o Paulo,Brazil,2004,B:1488-1495
    [141]R.Abalone,A.Gaston,M.A.Lara.Determination of mass diffusivity coefficient of sweet potato.Drying Technology,2000,18(10):2273-2290
    [142]R.M.Abalone,M.A.Lara,R.Gaspar-Deceased,et al.Drying of biological products with significant volume variation,experimental and modeling results for potato drying.Drying Technology,1994,12(3):629-647
    [143]胡松涛,刘国丹,廉乐明,余其铮.干燥过程中热质传递交叉效应的研究.哈尔滨工业大学学报,2001,33(1):35-39
    [144]陶斌斌,杨历.多孔介质干燥的非平衡热力学模型.河北工业大学学报,2005,34(1):109-112
    [145]刘正怀,王俊.切片多孔介质对流干燥传质模拟软件开发研究.农机化研究,2006,7:53-56
    [146]王朝晖,涂頡.干燥过程热质传递的简化模型,化工学报,1995,46(5):579-585
    [147]M.A.Silva.A general model for moving boundary problems-application to drying of porous media.Drying Technology,2000,18(3):601-624
    [148]杨小静.流化床干燥玉米的理论研究.[河北工业大学硕士论文].2002:1-10
    [149]王海,王馨,施明恒,等.离心流化床中多孔介质干燥的传热传质研究.上海理工大学学报,2001,23(3):286-288
    [150]D.Mihoubi,F.Zagrouba,J.Vaxelaire,et al.Transfer phenomena during the drying of a shrinkable product:modeling and simulation.Drying Technology,2004,22(1 & 2):91-109
    [151]Z.Pakowski,M.Gbowski,R.Adamski.Modeling of drying of highly shrinking materials using hydrogels as an example.Drying Technology,2006,24(9):1075-1081
    [152]李晓东,陆胜勇,徐旭等.中国部分城市生活垃圾热值的分析.中国环境科学,2001,21(2):156-160
    [153]缪麒.城市生活垃圾筛上物流化床气化特性实验研究.[浙江大学硕士学位论文].2006:1-11
    [154]孙晓杰,徐迪民,李雄,等.上海城市生活垃圾的组成及热值分析.同济大学学报.2008,36(3):356-360
    [155]龚大国,孙冬,谢明,等.城市生活垃圾焚烧和综合处理模式的LCA比较.环境卫生工程.2008,16(4):52-55
    [156]潘永康,王喜忠,刘相东.现代干燥技术.北京:化学工业出版社,第二版,2007:1-88
    [157]K.M.Waananen,J.B.Litchfield,M.R.Okos.Classification of drying models for porous solids.Drying Technology,1993,11(1):1-40
    [158]李友荣.多孔介质对流干燥过程的热力学理论.[重庆大学博士论文].1999:99-100
    [159]李友荣,曾丹苓,吴双应.多孔介质对流干燥外部传热传质的非平衡热力学理论.工程热物理学报.2001,22(1):5-8
    [160]E.U.Schl(u丨¨)nder.Drying of porous material during the constant and the falling rate period:a critical review of existing hypotheses.Drying Technology,2004,22(6):1517-1532
    [161]李友荣.多孔物料干燥过程中的体积收缩特性.重庆大学学报,1994,3(17):15-16
    [162]蔡亮,虞维平,施明恒.生物材料的收缩特性及其对干燥过程的影响.东南大学学报.1998,28(增刊):7-11
    [163]王补宣.工程传热传质学(下册).北京:科学出版社.2002:408-415
    [164]战剑锋,顾继友,蔡英春.落叶松板材干燥过程的结合水扩散系数.南京林业大学学报.2008,32(4):6-10
    [165]徐娓,丁静,赵义,等.香蕉在低温吸附干燥过程的收缩特性.现代食品科技.2007,23(6):17-19,29
    [166]V.Gekas,I.Lamberg.Determination of diffusion coeficients in volume changing systems:application in the case of potato drying.Journal of Food Enginering,1991,14:317-326
    [167]I.Sjoholm,V.Gekas.Apple shrinkage upon drying.Journal of Food Enginering,1995,25:123-130
    [168]D.Mihoubi,S.Timoumi,F.Zagrouba.Modelling of convective drying of carrot slices with IR heat source.Chemical Engineering and Processing:Process Intensification,2009, 48(3):808-815
    [169]A.Yadollahinia,A.Latifi,R.Mahdavi.New method for determination of potato slice shrinkage during drying.Computers and Electronics in Agriculture,2009,65(2):268-274
    [170]刘鉴民.传热传质原理及其在电力科技中的应用分析.北京:中国电力出版社.2006:162-176
    [171]陶文铨.计算传热学的近代进展.北京:科学出版社.2001:19-37
    [172]贾力,方肇洪,钱兴华.高等传热学.北京:高等教育出版社.2003:100-116
    [173]杨世铭,陶文铨.传热学.第三版.北京:高等教育出版社.1998:250-253
    [174]陈艳捷,刘斌,王庆,等.果蔬热物性的研究与比较.保鲜研究.2006,(3):26-28
    [175]M.K.Krokida,N.M.Panagiotou,Z.B.Maroulis,et al.Thermal conductivity:literature data compilation for foodstuffs.International Journal of Food Properties,2001,4(1):111-137
    [176]G.H.Kanevce,L.P.Kanevce,V.B.Mitrevski,et al.Inverse approaches to drying of thin bodies with significant shrinkage effects.Journal of Heat Transfer,2007,129:379-386
    [177]R.M.Abalone,M.A.Lara,R.Gaspar-Deceascd,et al.Experimental and modeling results for potato drying.Drying Technology,1994,12(3):629-647
    [178]林瑞泰.多孔介质传热传质引论.北京:科学出版社.1995:117-119