河涌水质非线性模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性是水环境中普遍的现象,污染物在水中的迁移、转化等过程容易受各种内部、外部因素的影响。作为城市排污的渠道,城市河涌是一类特殊的水环境,更易受到工业废水、生活污水等污染,某些受严重污染的河段,水体中溶解氧浓度偏低,影响污染物的耗氧降解过程,使污染物耗氧降解过程呈现非线性特征。本文以城市河涌为研究对象,研究河涌水质的非线性特征,并在水质预测、误差非线性补偿、河涌水质非线性建模、水质非线性性态分析、河涌模型存在正解的条件、河流曝气过程的脉冲描述等方面进行了研究,主要成果有:
     1.针对河涌水质预测中出现的误差,提出利用混沌理论分析河涌水质的混沌特性,并利用相空间重构理论确定水质预测误差的相空间,在此基础上,将相空间与神经网络进行对比,确定神经网络单层神经元个数,进而建立误差补偿的神经网络,并与水质模型相结合建立误差补偿水质模型,此方法突破单一类型水质模型在预测中的局限性,通过对河涌检测结果的模拟与仿真,结果表明,模型预测相对误差由2.4%降到1.65%,提高了水质预测精度。
     2.根据城市河涌水体中溶解氧浓度过低这一现象,在分析稳态SP模型假设、Shastry模型假设的基础上,确定河涌水质建模的条件,针对河涌水体中溶解氧不足及BOD沉降等因素,建立了河涌水质非线性微分方程模型。仿真结果得SP模型相对误差Er,sp,=0.8291,Shastry模型相对误差Er,shatry=0.2498,河涌模型相对误差Er,hc=0.2426,即河涌非线性模型具有更高的预测精度。
     3.为了分析河涌水质非线性微分方程模型的性态,借鉴了微分方程定性分析理论,对所建立的城市河涌水质非线性微分方程模型进行稳定性分析,证明了:河涌水质非线性模型在其解空间中具有唯一解,即模型在理论上可用于水质预测;利用数值仿真技术,分析模型参数对模型解的影响,发现模型解的特性(稳定性、正解)依赖于模型参数的选取。
     4.河涌水质非线性模型的应用,通过分析模型参数在实际应用中的取值范围,证明了:当模型参数都大于零时,模型存在正解,即BOD、DO浓度不会出现负值;通过对模型解的渐进性态分析得到:排污稳定时,在距离污染源足够远处,BOD浓度最终将趋于零,而溶解氧浓度(D0)最终将趋于饱和,即河涌水质终将因污染物降解和水体复氧而得到净化。
     5.针对河流治理中常用的曝气过程,分别在SP水质模型、河涌水质非线性微分方程模型的基础上,利用脉冲原理对曝气过程进行描述,建立了基于脉冲的河涌曝气模型,通过模拟与仿真得:当河涌曝气时,水质预测平均相对误差为5.21%,当对河涌不曝气时水质平均相对误差为3.114%,因此河涌曝气过程在近距离上对水质预测精度有一定影响。
     论文主要针对水体中污染物迁移、转化过程之间的非线性行为进行了研究与建模,其中还有一些有待深入研究的问题。
     (1)模型的水质组分需要增加:论文只对BOD、DO两种水质组分进行建模,由于河涌水体中各水质组分之间存在一定的迁移转化关系,如氨碳、磷等,其降解过程会影响水体中溶解氧浓度,在以后的研究中,可根据研究的需要增加相应水质组分,建立基于多水质的河涌水质数学模型。
     (2)在空间上进行拓展:论文所建立的河涌水质模型为一维水质模型,其适应水流速率缓慢的河涌,如果河涌污染在各方向迁移、扩散差异较大,则需要拓展到二维或三维情形。
     (3)由于水环境的复杂性,模型假设还存在可改善的空间,如利用脉冲过程描述河流曝气过程,在近距离上模型预测精度有待进一步提高,在以后的工作中,需进一步研究水体中污染物迁移、转化的规律,对模型进行改善,提高模型的预测精度
Nonlinear is the universal phenomenon about pollution water quality, the migration and transformation of pollutants in water is easy to be affected by a variety of internal or external factors. City river is a special kind of water environment, it is easy to be polluted by city sewage, domestic sewage and other types of pollution, at some polluted section, there is few oxygen in water, the process of pollutant's migration and transformation in water has non-linear characteristic. In this paper, some studies include water quality model of nonlinear compensation, non-linear differential equation water quality model, water quality analysis of low oxygen river, impulse model of river aeration are researched.
     1. According to prediction errors of water quality, chaos theory alwalys to be used to analysis water quality, the errors is reconstructed to a new phase space with chaos theory, and neuron number of neural network layer is given by the phase space, base on it, an error compensation model of the neural network is established, that's breakthrough a single water quality model limitations, the results show that, the relative prediction error is reduced from2.4%to1.65%, it show that the neural network error compensation model is effective.
     2. According to low dissolved oxygen phenomenon of urban heavy polluted river, the assumptions of SP model and Shastry model are analyzed, on the base of it, assumptions is modified to establish a new nonlinear differential equation model, and the results is Ersp=0.829, Er,shastry,=0.2498Er,hc=0.2426by simulate with Matlab, it show that the new model has more effectivly.
     3. In order to analyze the state of nonlinear water quality differential equation, methed of differential equations has used to analysis the behavior of City river nonlinear differential equation model, and some results are given, firstly, the City river water quality model has a unique solution in its solution space, it means the model can be used for water quality's prediction. Secondly, the stability of the City river model is dependent on its parameters.
     4. On the application of City river water quality model, positive solution should be proved to avoid negative phenomenon of the water quality prediction, so the existence of positive solutions of a model condition is discussed in the paper, the conclusion is that the City river water quality model has positive solutions when the model parameter is greater than zero, it means BOD, DO concentration will not be negative, it also means that the model is effectively in water quality prediction; the other conclusion is that the concentration of BOD will eventually approach to zero, and oxygen (DO) will eventually approach to saturation when there is enough distance, it means that the water will self-purification by itself ability of purification.
     5. On the management of River aeration process, impulse models base on the SP model and City river model have been established to describe aeration process, its average relative error is5.21%by simulated with practical rive data, it means that the describe is validity; at the same time, SP model's average relative error is3.114%(less than5.21%), it means that the prediction accuracy of water quality will be influenced by impulse process.
     In this paper, a new nonlinear model has been established about nonlinear characteristic of pollutant migration, conversion in City river,but there is also some questions to be studied in the further.
     (1) Components of City river model should to be increased, in the paper, only BOD and DO has been studied, in the future more components water quality model should be studied if it necessed.
     (2) In the pape, only one-dimensional water quality model has been established on City river water quality, in the future, the two-dimensional or three-dimensional City river water quality model should been studied.
     (3) Due to the complex of water environment, there is many assumptions should be revised, such as the description of river aeration process, the assumptions of water quality model, the migration and transformation of pollutants in water and so on, all of it will improve model's prediction accuracy.
引文
[1]U.S.EPA. Selected Case Studies in Watershed Management in Protecting Sources of Drinking Water.1999. internet address:http://www.epa.gov/safewater.
    [2]J.Alan Roberson, P.E. and Kevin M. Morley. Cotamination Warning Systems for Water:an Approach Providing Actionable Information to Decision Makers. U.S. American Water Works Association.2005:1-10.
    [3]Gullick et al., Design of Early Warning Monitoring Systems for Source Waters. AWWA[J],2003.95(11):58-72.
    [4]新华网专题 松花江发生重大水污染[EB/QL].2006-4-11.
    [5]刘洋,张声,张晓健.溶气气浮工艺处理密云水库水的研究[J].工业用水与废水.2004,35(6):17-20.
    [6]季民,吴吕敏,贾霞珍等.生物接触氧化法对引水滦水中藻类的去除[J].中国给水排水.2003,19(8):56-58.
    [7]王宝林,钟惠芳.藻类对城市给水处理的影响及可能采取的对策[J].天津建设科技.1998,29(1):37-40.
    [8]徐立,孙芳,陈文革等.武汉市饮用水原水藻类污染及影响因素[J].中国公共卫生.2005,21(3):348-349.
    [9]余梅,卢文汉.昆明第五自来水厂常规工艺除藻效果的研究[M].中国给水五十年回顾,1999,9.
    [10]邓风.南京某自备水厂除藻对策[J].青岛建筑工程学院学报.2005,26(1):52-54.
    [11]黄敏如,李一丹,盛丽娜等.福州市饮用水第2水源藻类污染与控制对策探讨[J].海峡预防医学杂志.2003,9(5):66-67
    [12]陈杰,刘虎生,黄智等.沈阳市供水系统藻类分布与氯毒性研究[J].中国预防医学杂志.2004,5(2):129-130.
    [13]方云英,杨肖娥,濮陪民等.。宁波力洋水库富营养化现状及生态治理对策[J].水土保持学报.2004,18(6):186-187.
    [14]肖羽堂,许建华.姚江饮用水源生化工艺除污染总结[J].中国给水排 水.1998,14(2):8-11.
    [15]朱延彬,张秋云,郭周义等.珠江员村河段的水质监测管理[J].生态科学.1997.16(2):87-90
    [16]徐祖信,张锦平,廖振良等.苏州河底泥对上复水水质污染影响[J].城市环境与城市生态.2005.18(6):1-3
    [17]蒋忠锦,王继微.天然河流一维水质模型的研究与改进[J].湖南大学学报.1997.24(6):90-94
    [18]罗英明,罗麟,程香菊,Dobbins-Camp水质模型的修改[J],环境科学学报,2003.23(2):273-275
    [19]徐祖信,尹海龙.黄浦江二维水质数学模型研究[J].水动力学研究与进展.2003.18(3):261-265
    [20]万幼川,林开愚,李植生.二维水质扩散模型的建立及应用[J].武汉测绘科技大学学报.1995.20(1):28-34
    [21]申满斌,陈永烂,刘昭伟.岸边排放污染物浓度场三维浑水水质模型研究[J].水力发电学报.2005.24(3):93-98
    [22]李莹,邹经湘,张宇羽,蔡楠,张新政.自适应神经网络在水质预测建模中的应用[J].系统工程.2001,19(1):89-93
    [23]Giri, B.S., Karimi, I.A. and Ray, M.B.. Modeling and Monte Carlo simulation of TCDD transport in a riber[J]. Water research,2001,35(5):1263-1279.
    [24]Jain, S.K.. Development of Integrate Sediment Rating Curves Using ANNs[J]. Journal of Hydraulic Engineering,2001,36(1):356-362
    [25]Beck, M.B.. Water Quality Modeling:a Review of Analysis of Uncertainty[J]. Water Resources Research,1987,23(8):1393-1442.
    [26]Vandenberghe, V., Bauwens, W., Vanrolleghem, P.A.. Evaluation of Uncertainty Propagation River Water Quality Predictions to Guide Future Monitoring Campaingns[J]. Environmental Modeling & Software,2006,1-8.
    [27]Uhlenbrook, S., Siever, A.. On the Value of Experimental Data to Reduce the Prediction Uncertainty of a Process-oriented Catchments Model[J]. Environmental Modeling Software,2005,20:29-32.
    [28]张国坤,李恒达,河流水质模型的分析及其研究意义,吉林师范大学学报(自 然科学版),No.3 Aug.2004
    [29]汪家权,陈众,武君,河流水质模型及其发展趋势,安徽师范大学学报(自然科学版)V01.27 No.3 Sep.2004.
    [30]郭劲松,李胜海,龙腾锐,水质模型及其应用研究进展,重庆建筑大学学报,Vol.24 No.2 Apr.2002
    [31]徐祖信,水质数学模型研究的发展阶段与空间层次,上海环境科学,2003,22(2)。
    [32]李云生,刘伟江,吴悦颖,王东,美国水质模型研究进展综述,水利水电技术第37卷 2006年第2期。
    [33]Brown L C, Barnwell T O. The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS, EPA/600/3-87-007[R], U.S. Environmental Protection Agency, Athens,CA,1987.
    [34]Chapra S C, Pelletier G J. QUAL2K; A Modeling Framework for Simulating River and Stream Water Quality, Documentation and User's Manual [Z], Civil and Environmental Research Lab US EPA,1993.
    [35]雒文生,宋星原..水环境分析与预测[M].武汉大学出版社.2004:198-199
    [36]陈美丹,姚琪,徐爱兰,WASP水质模型及其研究进展,水利科学与经济,Vol.12No.7 Jul.,2006
    [37]Tim A, Wool Robert B. Ambrose, James L. Martin, Water Quality Analysis Simulation Program (WASP) Version 6.0 DRAFT, User's Manual[Z]. US Environmental Protection Agency-Region Atlanta, Tech.2001.
    [38]US Army Corps of Engineers, Waterways Experiment Station. CE-QUAL-W2, A Numercal Two-Dimensional, Laterally Averaged Model of Hydrodynamics and Water Quality, User's manual[z]. Vicksburg Misissippi; Environmental and Hydraulice Laboratory,1986.
    [39]Better Assessment Science Integrating Point and Nonpoint Sources, BASINS Version3.0, User's Manual[R]. US Environmental Protection Agency,2001.
    [40]刘维屏.水环境科学与工程中的数学问题[M].北京:高等教育出版社,2002.
    [41]李锦秀,廖文根,黄真理.三峡水库整体一维水质数学模拟研究[J].水利学报,2002,(12):7-10.
    [42]彭虹,张万顺,夏军等.河流综合水质生态数值模型[J].武汉大学学报,2002, 35(4):56-59.
    [43]彭虹,郭生练.汉江F游河段水质生态模型及数值模拟[J].长江流域资源与环境,2002,11(4):363-369.
    [44]徐祖信,尹海龙.黄浦江三维水质数学模型研究[J].同济大学学报,2003,18(3):261-26.
    [45]龚春生,姚琪,赵棣华等.浅水湖泊平面二维水流水质底泥污染模型研究[J].水科学进展.2006 17(4):496-501.
    [46]王艳,彭虹,张万顺等.浅水水体生态修复的数值模拟[J].人民长江,2007,38(1):98-100.
    [47]沈永明,郑永红,吴修厂.近岸海域污染物迁移转化的三维水质动力学模型[J].自然科学进展,2004,14(6):694-699.
    [48]Shen Y M, Murphy D G. Pollution of Coastal Environment[J]. Oxfordshire: Hydraulics Research. Wallingford, UK,1994.
    [49]杨具瑞,方泽.湖泊暴雨径流水质模拟研究[J].环境科学学报,1999,19(1):37-41.
    [50]韩龙喜.三峡大坝施一期水环境三维数值预测方法[J].水科学进展,2002,13(4):427-432.
    [51]廖振良,徐祖信.苏州河干流水质模型的开发研究[J],上海环境科学,2002年第21卷第3期.
    [52]COX B A. A Review of Currently Available in Stream Water Qquality Models and Applicability for Simulating Dissolved Oxygen in Lowland Rivers [J]. The Science of the Total Environment,2003,314 (1):335-377.
    [53]Ganoulis J G. Engineering Risk Analysis of Water Pollution[M]. New York: VCH,1994.
    [54]Tung Y K,Hathom W E. Probability Distribution for Critical DO Location in Streams[J]. Ecological Modelling,1988,(42):61-66.
    [55]Loucks D P, Lynn W R. Probabilistic Model s for Predicting Stream Quality[J] Water Resources Research,1996,(3):593-605.
    [56]Tabios G Q. Nonlinear Stochastic Modeling of River Dissolved Oxygen[D]. Colorado State University,1984.
    [57]郭天恩,王松,周玉珍.随机水质数学模型研究与发展[J].人民黄河,1996(2):56-60.
    [58]Wendroth O,Rogasik H, Koszinski S. State Spaceprediction of Field Scale Soil Water Content Time Series in Sandy Loam[J]. Soil and Tillage Research 1999,50 (1):85-93.
    [59]Whitehead P,Beck B,O'Connell E. A systems Model of Streamflow and Water Quality in the Bedford Ouse River System-Ⅱ Water Quality Modeling[J]. Water Research,1981,15 (10):1157-1171.
    [60]Finney B A,Bowles D S, Wind Hammp. Random Differential Equations in River Water Quality Modeling [J]. Water Resources Research,1982,18 (1):122-134.
    [61]Hamed M M, Elbesry M Z. Uncertainty Analysis in Dissolved Oxygen Modeling in Streams [J]. Environmental Management,2004,34(2):233-237.
    [62]王超.河流水质随机分析模型及其应用[J].水利学报,1 996(11):62-68
    [63]黄平.河流随机水质模拟的分析与计算[J].武汉水利电力学院学报,1986(6):10-19.
    [64]黄平,陈铣成.河流污染带的随机模拟方法[J].水文,1995(3):8-12.
    [65]郭琳,蔡固平,曾光明.二维随机水质模型在模拟污染带中的应用[J].中南大学学报,2004,35(4):573-576.
    [66]何理,曾光明.考虑随机扰动因素的水环境风险模型研究[J].水科学进展,2002,13(2):197-200.
    [67]徐敏,曾光明,黄国河,等.非线性随机水环境风险模型[J].水利学报,2005(1):56-61.
    [68]金明.一维稳态河流水质的随机微分方程模型[J].水利学报,1991(2):19-25.
    [69]宋星原,雒文生.河流水质过程的随机模拟研究[J].武汉水利电力大学学报,1993,26(6):690-697.
    [70]雒文生,宋星原.用耦合模型法进行水质随机模拟的研究[J].水利学报,1995(3):12-20,27.
    [71]Sharad KJ. Development of Integrated Sediment Rating Curves Using ANNs [J] Journal of Hydraulic Engineering,2001,127(1):30-37.
    [72]Nagy H M,Watanabe M, Hirano M. Prediction of Sediment Load Concentration in Rivers Using Artifical Neural Network Model[J]. Journal of Hydraulic Engineering,2002,128 (6).588-595.
    [73]Huang Wenrui,Foo S. Neural Network Modeling of Salinity Variation in Apalachicola River [J]. Water Research,2002,36(1):356-362.
    [74]Maier H R, Dandy G C. The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters [J].Water Resources Research,1996,32 (4):1013-1022.
    [75]雒文生,宋星原.水环境分析与预测[M].武汉:武汉水利电力大学出版社,2000.
    [76]Baffaut C, Chamean J L. Estimation of Pollutant Loads with Fuzzy Sets [J]. Civil Engineeering Systems,1990,7(1):51-61.
    [77]邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1987.
    [78]刘国东,丁晶.水环境中不确定性方法的研究与展望[J].环境科学进展,1996.4(4):46-52.
    [79]曾光明,蒋益民,卓利等.河流水质灰色模型和模[J].水电能源利学,1999,17(4):62-65.
    [80]Karmakara S.Mujumdar P P. Grey Fuzzy Optimization Model for Water Quality Management of River System[J]. Advances in Water Resources,2006, 29(7):1088-1093
    [81]Karmakara S,Mujumdar P P. An Inexact Optimization Approach for River Water Quality Management[J]. Journal of Environmental Management,2006,81(3) 233-248.
    [82]Grassberge P, Procaccia L. Characterization of Strange Attractor[J]. Physical Review Letters,1983,(50):346-349.
    [83]Scherlzer D,I Tchiguirinskaia,S Loveioy. Chaos in the Rainfall Run of Process,A Discussion on " Evidence of Chaos in the Rainfall Run of Process " by Sivakumar et al.[J].Hydrol SciJ.2002,47(1):139-147
    [84]Kosim K, Levent S, Orhan S. Nonlinear Time Series Prediction of Concentration in Istanbul[J]. Atmosphere Environment,2000,(34):1267-1271.
    [85]Sivakumar B, Liong S-Y. Evidence of Chaotic Behavior in Singapore Rainfall [J]. Water Resources Research.1998,34(2):301-310.
    [86]Geldof G D. Adaptive Water Management Integrated Water Management on the Edge of Chaos [J]. Water Science Technology,1995,32 (1):7-13.
    [87]Zaldivar J M, Gutirrez E. Forecasting High Waters at Venice Lagoon Using Chaotic Time Series Analysis and Nonlinear Neural Networks [J].Journal of Hydroinformatics,2000,(2):61-84.
    [88]Hense A.On the Possible Existence of a Strange Attrator for the Southern OsciIlation[J].Beitr Phys Atmos,1987,60(1):34-47.
    [89]Sogoyomi T B, Abarbanel.Noninear Dynamics of the Great Salt Lake:Dimension Estimation[J]. Water Resour,1996,32(1):149-159.
    [90]Liu Q,S Islam,I Rodriguez-Iturbe.Phase Space Analysis of Daily Stiream Flow: Characterization and Prediction[J].Water Resour,1998,(21):463-475.
    [90]Sivahnnar BS, Liong,C.Singaopre Rainfall Behavior Chaotic [J]. Journal of Hydro Eng,ASCE,1999,4(1):38-48.
    [92]丁品,邓育仁,傅军.洪水相空间预测[J].成都科技大学学报,1995,(85):7-11.
    [93]刘勇健,沈军.城市需水量预测的混沌神经网络模型[J].水电能源科学,2005,23(1):15-18.
    [94]赵永龙,丁晶,邓育仁.相空间小波网络模型及其在水文中长期预测中的应用[J].水科学进展,1998,9(3):252257.
    [95]蒋传文,侯志俭,李涛,等.基于小波分解的径流非线性预测[J].上海交通大学学报,2002,36(7):1053-1056.
    [96]丁涛,周惠成,黄健辉.混沌水文时间序列区间预测研究[J].水利学报,2004,(12):15-20.
    [97]詹世平,周集体.河流水质模型及存在问题[J],浙江水利科学,2004年第4期.
    [98]Andrews K. Takyi and Barbara J. Lence, Surface Water Quality Management Using a Multiple Realization Chance Constrained Method[J].Water Resources Research. 1999,35(5):1657-1669.
    [99]门宝辉,赵樊京.梁川,长江上游川中地区降水时间序列的混沌分析[J],长江科学院院报.VOL.21 No.1 Feb.2004
    [100]石教智,陈晓宏,林汝颜,东江流域降水时间序列的混沌特征分析[J],中山大学学报(自然科学版),VOL.45 No.4 Ju1.2006
    [101]魏一鸣,孙国栋,胡平昭,李俊华,金菊良,九江年降水时间序列的混沌特性[J],江西科学1998年9月第16卷第3期.
    [102]丁涛,周惠成,黄健辉,混沌水文时间序列区间预测研究[J],水利学报,2004年12月第12期.
    [103]张利平,王德智,夏军,牛存稳,混沌相空间相似模型在中长期水文预报中的应用[J],水力发电,2004年11月第30卷第11期.
    [104]马惠群,孙秀玲,曹升乐,张丽静,基于Lyapunov指数λ的混沌预测及其在水文中的应用.
    [105]蒋传文,陈实,混沌分析在水文径流预报中的应用[J],系统工程,1999年11月第17卷第6期.
    [106]叶常明.环境科学的非线性理论及其意义[J].环境科学.1995,16(3):79-83.
    [107]Mackay D., Solubility, Partition Coefficient, Volatility and Evaporation Rate, in the Handbook of Environmental Chemistry, Vol.2, Part A. Edited by O. Hatzinger.Springer-Verlag, Berling,1980.
    [108]David A S and Robert C K. Transport and Remendiation of Surface Contamination, Coloidal, Interfacil and Surfactant Phenomena. ACS Symposium Science,1992.
    [109]Bowden K F,Fundamentals of Dispersion in Mathematical and Hydraulic Modelling of Estuarine Pollution, Edited by A.L. H. Gameson, Majesty Stationery Office. LONDON,1972.
    [110]Mabey W.and Mill T,Critical Review of Hydrolysis of Organic Compounds in Water Under Environmental Conditions, J. Phys. Chem,1978.7:383-415.
    [111]Painter H A and King E F.Biodegradation of Water-Soluble Compounds, in the Handbook of Environmental Chemistry.Edited by O. Hutzinger, Vol.2 Part C, 1985,87-120.
    [112]Zeep R G, Wolfe N L et al.. Singlet Oxygen in Natural Water. Nature,1977. 267(5610):421.
    [113]江富泉.河口水文的非线性特征研究[J].茂名学院学报.2003,13(4):1-6
    [114]徐敏,曾光明,谢更新.混沌优化方法在灰色非线性水环境规划中的应用[J].水电能源科学.2003,21(3):21-23.
    [115]宋华兵,张新政.时滞不确定BOD-DO水质模型研究[J].广东工业大学学报.2008,9(3):66-68.
    [116]宋华兵,张新政.珠江外源污染时序混沌特性[J].水资源与水工程学报.2009,8(4):23-25.
    [117]宋华兵,张新政.混沌在水质不确定性预测中的应用[J].数学的认识与实践.2011,2(3):94-99.
    [118]周志鹏,吴克宏,蔡建安.SP模型缺陷及其改进的研究[J].中国环境检测.2004,20(5):54-57.
    [119]w.金十博.水环境数学模型[M].北京:中国建筑下业出版社,1987.81.
    [120]宋华兵.微氧河涌BOD-DO水质量模型[J].广东农业科学.2010,10:180-182.
    [121]谢荣焕.佛山汾江河水质模型及其在复氧工程规划中的应用[D].湖北:华中科技大学.2005.
    [122]张芷芬.微分方程定性理论[M].北京,科学出版社.1985年5月第一版.
    [123]孙从军,张明旭.河逝曝气技术在河流污染治理中的应用[J].环境保护.2001(4):12-14.
    [124]Marina Campolo,Paolo Andreus, Alfredo Soldati.Water Quality Control in the River[J].Water Research,2002,36:2673-2680.
    [125]Thibodeaux L, Poulin M, Even S. A Model for Enhanced Aeration of Streams by Motor Vessels with Application to the Seine River[J].Journal of Hazardous Materials,1994,37(3):459-473.
    [126]罗刚,刘军,胡和平.生物修复技术在白海面黑臭河涌治理中的应用[J].环境科学与管理.2009,34(2):115-118.
    [127]Wang.Q.J. The Genetic Algorithm and Its Application to Calibration Conceptual Rainfall Runoff Models [J]. Water Research,1991,27(9):2467-2471.
    [128]Mckinney DC, Min DL.Genetic Algorithm Solution of Groundwater Management Models [J], Water Resources Research; 1994,30(6):1897-1906.
    [129]Mulligan A E, Brown L C. Genetic Algorithm for Calibrating Water Quality Models [J].Journal of Environmental Engineering,1998.124(3):202-211.
    [130]Grefenstetee JJ.Optimization of Control Parameters for Genetic Algorithms[J]. IEEE Trans, On Systems, Man and Cybernetics. SMC-16(1):122-128.
    [131]Song HB, Zhang XZ, A Method of Getting the Parameters of Differential Equation Model with Genetic Algorithm Dynamics of Continuous Discrete and Impulsive Systems Series A-Matehmatical Analysis 13:1460-1463 Part 3 Suppl. S DEC 2006.