介孔MCM-41与有机发光分子的组装和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为三部分,分别为MCM-41与8-羟基喹啉铝复合发光材料的制备、MCM-41与苯甲酸铕无机-有机杂化材料的合成、MCM-41与激光染料的组装,通过采用XRD、IR、N_2吸附-脱附、荧光光谱等测试方法对合成样品进行表征,着重对样品的光谱性能进行了研究。
     1、室温条件下合成出高度有序的介孔材料MCM-41,并将有机发光小分子8-羟基喹啉铝(Alq3)组装进介孔MCM-41中,测试结果表明组装体保持了有序的介孔骨架结构,主客体之间存在较强的结合力,并且组装体具有优异的发光性能。
     2、将稀土有机配合物Eu(BA)_3组装进介孔MCM-41中,得到有机-无机杂化介孔材料Eu(BA)_3-MCM-41。结果表明,孔道中引入的Eu(BA)_3充当了二次模板剂的作用,并且Eu(BA)_3与-OH在介孔孔道中成键,组装体较Eu(BA)_3发光强度大大提高。
     3、将激光染料与介孔MCM-41组装后得到了介孔组装体,测试结果表明组装体仍保持了六方介孔结构,但染料分子的进入降低了介孔孔道结构的有序性,并且在组装的过程中,染料分子与介孔孔道中的-OH成键,组装体具有优异的发光性能,并具有良好的稳定性。复合染料组装体较单一染料组装体具有更强的荧光效应。
There are three parts in this paper: The synthesis of luminescent Alq3-MCM-41 assembly, the organic-inorganic hybrid Eu(BA)_3-MCM-41 assembly, and the assembly of MCM-41 and the fluorescence dyes. The products were characterized by small angle XRD, IR, Excitation-emission spectra and N_2 adsorption-desorption, and the spectra properties were mainly studied.
     1. Small organic luminescent molecule of 8-hydroxyquinoline aluminum (Alq3) as an active optical guest was incorporated into the one-dimension channels of MCM-41. The results from XRD patterns suggest that the Alq3-MCM-41 also have the typical mesoporous structure, but the channels were partially destroyed by the entrance of Alq3. The appearance of absorption band at 1 542cm-1 shows that there is strong binding force between MCM-41 and Alq3 in the assembly. Alq3-MCM-41 has excellent luminescent property owing to the energy transfer between the host and the guest, which is mainly due to the mutual effect of the hybrid inorganic-organic material.
     2. Eu(BA)_3 was assemblied into the channels of MCM-41 directly, then the organic-inorganic hybrid material Eu(BA)_3-MCM-41 was gained. The results indicate that the assembly have more ordered mesoporous structure than MCM-41. Eu(BA)_3 can act as a secondary template when it enters the channel and increase the ordered framework of mesoporous silicon. Eu(BA)_3 can be bonded with the hydroxyl in the channel. The relative luminescent intensity of the peak at 610.2nm which belongs to the transition of 5D0→7F2 of Eu~(3+) is up to 2 859.4 in the assembly, and it is 299% times more than that of Eu(BA)_3.
     3. Luminescent dyes like RhB, Rh6G and the mixture were assemblied with mesoporous material MCM-41, and the assemblies were synthesized. The results show that the assembly remains the hexagonal structure of MCM-41, which reduces in a certain degree as the entrance of the dye molecules. The dyes can be bonded with the hydroxyl of MCM-41, so the assembly exhibits a good fluorescent property. The assembly of mixed dyes has a stronger luminescence than that of single dye.
引文
1 DiRenzo F, Cambon H, Dutartre R. A 28-years-old synthesis of micelle-templated mesoporous silica. Microporous Mater., 1997, 10: 283~286
    2 Yanagisawa T, Shimizu T, Kuroda K, et al. The preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to microporous Materials. Bull Chem. Soc. Jpn., 1990, 63(4): 988~992
    3 Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(22): 710~712
    4 Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Am. Chem. Soc., 1992, 114(27): 10834~10843
    5 Shi Jianlin, Hua Zile, Zhang Lingxia. Nanocomposites from ordered mesoporous materials. J. Mater. Chem.., 2004, 14, 795~806
    6 Yang Pei dong, Zhao Dong yuan, Margolese D I, et al. Generalized syntheses of large pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396(6707): 152~155
    7 Xu Lei, Wang Guo wei, Wei Ying xu, et al. Study on synthesis of mesoporous molecular sieve MCM-41 II. Microwave synthesis method. Chinese Journal of Catalysis, 1999, 20(3): 251~255
    8 Yao Yun feng, Zhang Mai sheng, Yang Yan sheng. Synthesis of nanosized MCM-41 mesoporous molecular sieve by microwave radiation method. Acta. Phys.Chim. Sin., 2001, 17(2): 1117~1121
    9 Run Ming tao, Wu Si zhu, Wu Gang. Ultrasonic synthesis of mesoporous molecular sieve. Microporous and Mesoporous Materials, 2004, 74(1): 37~47
    10 Yoshitake H, Tatsumi T, Yokoi T. Adsorption Behavior of Arsenate at Transition Metal Cations Captured by Amino-Functionalized Mesoporous Silicates. Chem. Mater., 2003, 15(8): 1713~1721
    11 Ding Y, Chen M, Erlebacher J. Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc., 2004, 126: 6876~6877
    12 Chai G S, Yoon S B, Yu J S. Ordered Porous Carbons with Tunable Pore Sizes as Catalyst Supports in Direct Methanol Fuel Cell. J. Phys. Chem. B., 2004, 108: 7074~7079
    13 Lim M H, Blanford C F, Stein A. MCMs are readily functionalized with organic groups by post-synthetic graphting. J. Am. Chem. Soc., 1997, 119: 4090~4091
    14 Han Y, Meng X, Guan H, et al. Stable iron-incorporated mesoporous silica materials prepared in stong acidic media. Microporous and Mesoporous Materials, 2003, 57(2): 191~196
    15 Huo Yongqian, Li Jun, Wang Wei, et al. Electron spectra of Chemical assembly mesoporous MCM-41 with transition metal complexes. Spectroscopy and Spectral Analysis, 2004, 24(3): 281~284
    16 Tudor J, O' Hare D. Stereospecific propene polymerisation catalysis using an organometallic modified mesoporous silicate. Chem. Commun., 1997, (6): 603~604
    17 Ng S M, Ogino S,Aida T. Free radical polymerization within mesoporous zeolite channels. Macromol Rapid Commun, 1997, 18(12): 991~996
    18 Vartuli J., Schmitt K., Kresge C., Roth W., et al. Development of a Formation Mechanism for M41s Materials. Zeolites and Related Microporous Materials: State of the Art 1994 Studies in surface Science and Catalysis, 1994, 84: 53~60
    19 Vartuli J., Kresge C., Leonowicz M., et al. Synthesis of Mesoporous Materials: Liquid-Crystal Templating Versus Intercalation of Layered Silicates. Chem. Mater., 1994, 6: 2070~2077
    20 Leontidis E. Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr. Opin. Colloid Interface Sci., 2002, 7: 81~91
    21 Firouzi A., Atef F., Oertli A., et al. Alkaline lyotropic silicate-surfactant liquid crystals. Am. Chem. Soc., 1997, 119(15): 3596~3610
    22 Chen X., Ding G., Chen H., Li Q.. Formation at low surfactant concentrations and characterization of Mesoporous MCM-41. Sci. China Ser. B-Chem., 1997, 40(30): 278~285
    23 Huo Q S, Leon R, Petroff P M, Stucky G D. Mesostructure Design with Gemini Surfactants-Supercage Formation in a 3-Dimensional Hexagonal Array. Science, 1995, 268: 1324~1327
    24 Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica based materials. Chem. Mater., 1996, 8(5): 1147~1160
    25 Huo Q S, Margolese D I, Ciesla U, et al. Generalized Synthesis of Periodic Surfactant/Inorganic Composite Materials. Nature, 1994, 368(6469): 317~321
    26 Steel A., Carr S.W., Anderson M.W.. 14N NMR study of surfactant mesophases in the synthesis of mesoporous silicates. J. Chem. Soc. Commun., 1994, 13: 1571~1572
    27 Monnier A, Schuth F, Huo Q S. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 1993, 261(5126): 1299~1303
    28 Brunel D. Functionalized Micelle-Templated Silicates(MTS)and Their Use as Catalysts for Fine Chemicals. Microporous Mesoporous Mater., 1999, 27(3): 329~344
    29 Anwander R., Nagl I., Widenmeyer M.. Surface characterization and functionalization of MCM-41 silicates via silazane silylation. J. Phys. Chem. B, 2000, 104: 3532~3544
    30 Gallezot P.. Preparation of metal clusters in zeolites. Molecular Sieves. Berlin Heidelberg: Springer-Verlag, 2002, 3: 257~298
    31 Anderson P P.. Ionic clusters in zeolites. Molecular Sieves. Berlin Heidelberg: Springer-Verlag, 2002, 3: 307
    32 Zhou W. Z., Thomas J. M., Shephard D. S. et al. Ordering of ruthenium cluster carbonyls in mesoporous silica. Science, 1998, 280(5364): 705~708
    33 Shephard D. S., Maschmeyer T., Johnson B. F. G., et al. Bimetallic nanoparticle catalysts anchored inside mesoporous silica. Angew. Chem. Int. Ed., 1997, 36(20): 2242~2245
    34 Bénédicte Lebeau, Christabel E. Fowler, Simon R. Hall, et al. Transparent thin films and monoliths prepared from dye-functionalized ordered silica mesostructures. J. Mater. Chem., 1999, 9: 2279~2281
    35 Christabel E. Fowler, Bénédicte Lebeau, Stephen Mann. Covalent coupling of an organic chromophore into functionalized MCM-41 mesophases by template-directed co-condensation. Chem. Commun., 1998, 1825~1826
    36 Vogel, R.; Meredith, P.; Kartini, I. et al. Mesostructured dye-doped titanium dioxide for micro-optoelectronic applications. Chem. Phys. Chem., 2003, 4(6): 595~603
    37 Xu Wei, Guo Haiquan, Akins Daniel L.. Aggregation and Exciton Emission of a Cyanine Dye Encapsulated within Mesoporous MCM-41. J. Phys. Chem. B., 2001, 105(32): 7686~7689
    38 Ayumu Fukuoka, Hirokatsu Miyata and Kazuyuki Kuroda. Alignment control of a cyanine dye using a mesoporous silica film with uniaxially aligned mesochannels. Chem. Commun., 2003, 284~285
    39游效曾,孟庆金,韩万书.配位化学进展[M].北京:高等教育出版社, 2000, 222
    40 Ganschow M., Wohrle D., Schulz-Ekloff G.. Incorporation of differently substituted phthalocyanines in the mesoporous molecular sieve Si-MCM-41. J. Porphyrins Phthalocyanines, 1999, 3(4): 299~309
    41 Wark M., Ortlam A., Ganschow M., et al. Monomeric encapsulation of phthalocyanine-dye molecules in the pores of Si-MCM-41 and Ti-MCM-41. Ber. Bunsenges. Phys. Chem., 1998, 102: 1548~1553
    42 Hoppe R., Ortlam A., Rathousky J., et al. Synthesis of titanium-containing MCM-41 mesoporous molecular sieves in the presence of zinc phthalocyanine and rhodamine B. Microporous. Mater., 1997, 8: 267~273
    43 Nicholas R. B., Coleman M. A., Trevor R. S., Justin D. H.. The formation of dimensionally ordered silicon nanowires within mesoporous silica. J. Am. Chem. Soc., 2001, 123(1): 187~188
    44 Leon R., Margolese D., Stucky G.., Petroff P. M.. Nanocrystalline Ge filaments in the pores of a mesosilicate. Physical Review B., 1995, 52(4): 2285~2287
    45 Agger J. R., Anderson M. W., Pemble M. E., et al. Growth of quantum-confined indium phosphide inside MCM-41. J. Phys. Chem. B., 1998, 102(18): 3345~3353
    46 Yang H., Shi Q., Lu Q., Gao F., et al. One-Step Nanocasting Synthesis of Highly Ordered Single Crystalline Indium Oxide Nanowire Arrays From Mesostructured Frameworks. J. Am. Chem. Soc., 2003, 125(16): 4724~4725
    47 Crosby G A, Whan R E. Alire J. Intramolecular energy transfer in rare chelates-role of the triplet state. J. Chem. Phys., 1961, 34(3): 743~748
    48 Crosby G A, Whan R E. Selective excitation of trivalent Tm via intramolecular energy transfer. J. Chem. Phys., 1962, 36(4): 863~865
    49 Whan R E, Crosby G A. Luminescence studies of rare earth complexes-benzoylacetonate and dibenzoylmethide chelates. J. Mol. Spectrosc., 1962, 8: 315~327
    50 Crosby G A. Luminescent organic complexes of the rare earth metals. Mol. Cryst., 1966, 1(1): 37~81
    51 Crosby G A, Whan R E. Intramolcular energy transfer in Yb organic chelates. Spectrochim. Acta., 1958, 10: 377~379
    52 Crosby G A, Whan R E. Extrem variations of the emission spectra of Dy chelates. Naturwissenschaften, 1960, 47: 276~277
    53 Crosby G A, Whan R E. Fluorescence spectra of coordinated Ho and Tm ions. J. Chem. Phys., 1960, 32: 614~618
    54 Crosby G A, Whan R E, Freeman J J. Spectroscopic studies of rare earth chelates. J. Phys. Chem., 1962, 66: 2493~2495
    55黄春辉.稀土配位化学[M].北京:科学出版社,1999, 363~380
    56 Sabbatin N., Grardigle M., Lehn J. M.. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord. chem. rev., 1993, 123(1): 201~208
    57胡继明、陈观锉、曾云鹦.稀土配合物的发光机理和荧光分析特性研究.高等学校化学学报,1990, 11(8): 817~821
    58杨迟,杨燕生.发光镧系超分子的设计及应用.大学化学, 1995, 10(1): 6~10
    59张若桦.稀土元素化学[M].天津:天津科学技术出版社, 1987, 45~48
    60 Dexter D L. A theory of sensitized luminescence in solids. J. Chem. Phys., 1953, 21(5): 836~850
    61 Sato S, Wada M. Relations between intramolecular energy efficiencies and triplet state energies in rare earthβ-dikeketone chelates. Bull. Chem. Soc. Jap., 1970, 43(7): 1955~1962
    62 Wei Changping, Li Shuzeng, Zhou Bin, et al. Catalytic Synthesis of Isopropyl Benzene over SO42-/ZrO2-MCM-41. Chem. Res. Chinese U., 2006, 22(3): 371~374
    63 Yin Wei. Luminescence of Nanosized supramolecular Materials Composed of Host Mesoporous Molecular Sieves and Guest Schiff Bases. Chin. J. Lumin., 2005, 26(3): 349~353
    64 Xu Jie, Wei Changping, Wan Chenglong. Assembly and Characterization of Mesoporous Material MCM-41 and Semiconductor. Journal of Jilin University(Science Edition), 2007, 45(1): 121~124
    65 Chen C H, Shi J. Metal chelates as emitting materials for organic electroluminescence. Coord. Chem. Rev., 1998, 171(1): 161~174
    66 LI Hairong, Zhang Fujia, Zheng Daishun. Investigation on Structural Characteristics of Tris-(8-hydroxyquinoline) Aluminum. Chin. J. Lumin., 2003, 24(1): 44~50
    67 Dong Yanfeng, Li Qingshan. Photoluminescent spectra of 8-hydroxyquinoline aluminum embedded in porous alumina. Acta. Phys. Sin., 2002, 51(7): 1645~1648
    68 Xu C X, Xue Q H, Ba L, et al. Spectral Behaviors of 8-Hydroxyquinoline Aluminum in Nanometer-sized Holes of Porous Alumina. Chin. Sci. Bul., 2001, 46(21): 1839~1841
    69 Chang H J, Chen Y F, Lin H P, et al. Strong visible photoluminescence from SiO2 nanotubes at room temperature. Appl. Phys. Lett., 2001, 78(24): 3791~3793
    70 Wang Zhengxiang, Chen Hong, Tan Meijun, et al. The Synthesis and Fluorescence Properties of Doping Europium-Benzonic Acid-Phenanthroline Complexes. Spectroscopy and Spectral Analysis, 2005, 25(7): 1106~1109
    71 Zheng Lingzhi, Zhou Zhongcheng, Shu Wangen. Spectra Analyses of Europium Complexes with Benzonic Acid and Its Derivatives. Chin. J. Lumin., 2006, 27(3): 373~377
    72 Xu Qinghong, Li Hongwu, Li Liansheng, et al. A Study on Assembly of a Rare Earth Complex [C5H5NC16H33][Eu(TTA)4] in the Channel of Si-MCM-41. Chemical Journal of Chinese Universities, 2003, 24(10): 1758~1760
    73 Wei Changping, Jiang Xinhua, Lin Kewen, et al. Mesoporous Material Assemblesing Sparse Soil Organism Material. Journal of Changchun University of Science and Technology, 2005, 28(3): 89~91
    74 Ge S X, He N Y. Photoluminescence of [Eu(bpy)2]3+ dispersed in MCM-41 and HMS. Journal of Southeast University(English Edition), 2005, 21(2): 211~214
    75张迈生,刘伟江,杨燕生等. MCM-41-罗丹明B超分子功能材料的组装及其发光.高等学校化学学报, 1999, 20(4): 526~528
    76赵丹,秦伟平,张继森等.罗丹明6G/MCM-41纳米复合物的发光蓝移.发光学报, 2003, 24(6): 637~640
    77袁淑娟,李清山,潘志锋等.有机染料在多孔铝中的发光研究.半导体学报, 2001, 22(11): 1406~1410
    78白妮,张萍,郭阳虹等.曙红Y在介孔分子筛MCM-41膜及粉体中的封装及发光性质研究.高等学校化学学报, 2002, 23(5): 786~788
    79王菲菲,李清山. Rh6G/多孔氧化铝复合体系发光的研究.曲阜师范大学学报, 2003, 29(2): 49~51
    80阳福,容建华,刘应亮等.罗丹明B在介孔二氧化硅中的发光研究.功能材料, 2005, 36(4): 575~576
    81陈悦,李晓天,古丽米娜等.负载激光染料香豆素151的MCM-41粉体及其纤维的光学性质研究.高等学校化学学报, 2006, 27(3): 397~400