基于水动力模型的海底悬跨管道地震反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底管道是海洋油气集输与储运系统的重要组成部分,被喻为海上油气田的“生命线”,在海洋油气资源的开发利用中发挥着重要作用,海底管道的安全运行是海上油气田安全生产的重要保证,其安全性和可靠性日益受到重视。对于建造在地震动活跃区域的海底管道,其潜在的地震危险性巨大。因此,进行海底管道抗震研究是非常必要和紧迫的。与波浪荷载相比,地震具有持时短、频率高、强度大的特点,地震时海底悬跨管道和周围水体的相互作用方式与波浪海流作用下有较大区别。因此,研究地震作用下海底管道的水动力模型对开展长距离海底管道考虑水体和结构相互作用的地震反应分析成为可能。此外,地震动的空间变化特性对海底管道的动力反应具有明显地影响,研究海底管道在多点地震动输入下的动力反应具有重大理论意义和实用价值。
     海底管道的悬空段与海水直接接触,其所受的水动力一直是国内外学者研究的重点问题。利用水下地震模拟系统开展了地震作用下海底悬跨刚性管道的水动力模型实验,测量了管道周围流场的变化和管道表面的动水压力。基于Morison方程,按最小二乘原理得到了管道的拖曳力系数CD和惯性力系数CM,讨论了Re数(Reynolds number)、Kc数(Keulegan-Carpenter number)、水深d及间隙比e/D等因素对水动力系数的影响规律。实验结果表明,地震动输入方向对管道的受力特性具有重要的影响。水平地震荷载作用下,管道受到的水动力可以忽略。Re数和Kc数对管道的拖曳力系数CD和惯性力系数CM具有重要影响。相对于波浪和海流,地震动包含的较高频率会对管道的水动力产生重要影响。基于模型实验工况,建立刚性管道-水体耦合系统的三维有限元模型进行数值分析,数值结果与试验结果符合得较好。
     利用水下地震模拟系统开展了地震对海底悬跨柔性管道水动力作用的模型实验研究。利用弹性-重力联合相似律,建立了地震作用下柔性管道的模型与原型间相似关系。同样基于Morison方程,按最小二乘原理得到了管道在不同输入方向下的水动力系数,并讨论了它们受Re数、Kc数、水深d及间隙比e/D的影响趋势。实验结果表明,地震作用下管道受到的水动力出现耦合现象,即在一个方向输入下,管道在两个方向上均受到水动力作用。Re数和Kc数仍然是影响管道水动力系数的两个主要参数。基于模型实验工况,建立柔性管道-水体耦合系统的三维有限元模型进行数值分析,数值结果与实验结果的比较说明,数值模拟能够较好地反映实际管道的运动和受力特性。
     采用非线性最小二乘拟合法对管道的水动力系数CD和CM随Re数、Kc数、水深d及间隙比e/D的变化关系进行了拟合,分别得到了刚性管道和柔性管道地震作用下水动力系数的定量表达式。并以此为基础,建立了适合地震作用下海底悬跨管道的水动力计算模型。与实验数据对比的结果表明,采用地震时Morison模型能够较好地模拟海底管道在地震作用下所受到的水动力。最后比较了适于波流作用的Morison方程和适于地震的Morison模型对海底悬跨管道地震反应的影响。
     采用一种谱表示方法,根据给定的互功率谱密度矩阵合成了与目标功率谱拟合的非平稳多点地震动时程。结果表明,利用本文提出的方法合成的多点地震动时程可用于大尺度结构,例如桥梁、生命线工程、大坝和油气管线等的动力抗震分析。在此基础上,建立了考虑不同地震输入方向耦合的水动力作用海底悬跨管道多点输入非线性计算模型,推导了多点输入运动方程,并基于有限元离散方程,进行了海底悬跨管道三维多点输入地震时程反应计算。分析了不同水动力作用方式对管道地震反应影响的差别,比较了多点输入和一致输入下管道的地震反应,研究了管道材料非线性和土体非线性特征的影响,并进一步研究了管道几何参数对管道地震反应的影响。分析结果显示地震动的空间变化特性能显著增大海底管道的地震反应,其他因素也在不同程度上对海底管道多点输入地震反应产生影响。
As an important component of the offshore oil and gas strorage and transportation system, submarine pipelines are playing significant roles in the offshore exploitation and regarded as the lifelines of offshore oil and gas fields. The security production of the offshore oil and gas fields depends largely on the safe operation of the submarine pipelines. Therefore, the structural integrity and reliability of submarine pipelines are paid more and more attention in practice. The potential seismic risk is very severe for submarine pipelines installed in seismically active regions such as Bohai Bay in China and West offshore in USA. It is of necessity that submarine pipelines laid in these areas be designed to resist earthquake ground motions. Since the characteristics of earthquake compared with wave and current are short duration, ample frequency content and high magnitude, interaction between pipeline and surrounded fluid under earthquake differs from that under wave and current. It is complicated and time-consuming to calculated seismic response of submarine pipeline on the base of interacting model considering water and structure coupling. Thereby, it is an alternate to study on the hydrodynamic force models to simulate and simplify interacting model between pipeline and water subject to earthquakes. Recently, it has been recognized that the spatial variation of seismic ground motion has an important effect on the dynamic response of submarine pipeline. It is of great significance to research the dynamic response of submarine pipelines subjected to spatially varying earthquake ground motions.
     The hydrodynamic forces on the span of submarine pipeline which is surrounded by sea water had been paid much attention by many researchers. Model tests of a free spanning rigid submarine pipe subjected to earthquake were carried out on an underwater shaking table in the Sate Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology. The fluid field adjacent to the pipe and hydrodynamic pressure on the surface of the pipe were measured. Based on Morison's equation, the drag coefficient CD and the inertial coefficient Cm related to earthquakes were obtained by the least square method. The effects of Re (Reynolds number), Kc (Keulegan-Carpenter number), water depth d and the gap ratio e/D on CD and CM were discussed. The experimental results indicate that the seismic input direction has important influence on the characteristic of hydrodynamic forces imposed on pipe. The hydrodynamic force exerted on pipe is negligible under horizontal seismic input. Re and Kc have remarkable effect on the hydrodynamic forces imposed on pipeline under earthquakes. Compared with waves and currents high frequency contents of seismic ground motions were abundant, which resulted in significant effect on the hydrodynamic force of pipe. The rigid pipe-water interaction was simulated using a three-dimensional (3D) finite element model and the numerical results were compared with the experimental results.
     Using the underwater shaking table, model tests of a free spanning flexible submarine pipe subjected to earthquake were conducted considering the relative movement between pipe and water. Based on the joint elastic and gravity similitudes, the model scale design is performed. The hydrodynamic force coefficients under different input directions were obtained on the base of least square method as well. The influence of Re, Kc, water depth d and the gap ratio e/D on the hydrodynamic force coefficients was analysed. According to the experimental results, the coupling action of the hydrodynamic forces occurred. Hydrodynamic forces exsited both in-line and cross-flow directions under a certain sesimic input direction. Re and Kc are two primay parameters which influence the hydrodynamic force coefficients. The flexible pipe-water interaction was simulated using a 3D FE model and the numerical results were compared with the experimental results. The results show that numerical simulation can satisfactorily agree with the pipe movement and the characteristics of the hydrodynamic forces.
     Utilizing non-linear least square method, the variation of hydrodynamic force coefficients with Re and Kc was fitted by regression analysis and the quantitative expressions were obtained for rigid pipeline and flexible pipeline, respectively. Then, hydrodynamic force models for free spanning submarine pipeline suitable for earthquake were established. A conclusion can be drawn that the improved hydrodynamic force model could satisfactorily predict the hydrodynamic forces on the free span of submarine pipelines due to earthquakes. Finally, the effects of different hydrodynamic force models on the seismic response of submarine pipeline with free span were studied.
     A spectral-representation-based simulation algorithm was presented to simulate non-stationary multi-point seismic ground motion time histories compatible with target power spectrum by using prescribed non-stationary cross-spectral density matrix. The results indicate that the multi-point ground motions synthesized by the proposed method can be directly used as an input for the dynamic seismic analysis of large scale structures such as bridges, lifelines, dams, oil and gas pipelines etc. A 3D FE model of submarine pipeline with free span considering hydrodynamic force coupling induced by different seismic input directions subjected to spatially variable ground motions was established. The motion equations of the pipeline were derived and nonlinear multi-support input time-history analysis was performed. The effect of hydrodynamic force action method on seismic response of pipe was analysed. Seismic response of submarine pipelines was compared with different input method such as the multi-station input and identical input. The effect of nonlinear constitutional relationships of pipe steel and soil, and geometry nonlinearity was investigated. Furthermore, geometry factors were studied in the sensitivity analysis. The numerical results display that the spatial variation of ground motions can significantly increase the seismic response of submarine pipelines. Meanwhile, the other factors also influence on the response of the submarine pipelines under multiple-station earthquake ground motions to some extents.
引文
[1]董汝博.多点地震动作用下海底悬跨管道非线性分析[D].大连:大连理工大学,2008.
    [2]周延东,刘日柱.我国海底管道的发展状况与前景[J].中国海上油气(工程),1998,10(4):1-5.
    [3]李宁.我国海洋石油油气储运回顾与展望[J].油气储运,2003,(9):30-32.
    [4]金伟良,张恩勇,邵剑文等.海底管道失效原因分析及其对策[J].科技通报,2004,20(6):529-533.
    [5]MMS. Incidents associated with oil and gas operations (outer continental shelf (2000)) [R].Washington:Minerals management service,2002.
    [6]张恩勇.海底管道分布式光纤传感技术的基础研究[D].杭州:浙江大学,2005.
    [7]许文兵.平湖油气田海底输油管线临时修复方法[J].中国海洋平台,2003,18(2):37-40.
    [8]马宗晋,稿庆华,方蔚青等.中国重大自然灾害及减灾对策[M].北京:科学出版社,1994.
    [9]许东禹,刘锡清,张训华等.中国近海地质[M].北京:地质出版社,1997.
    [10]王金英,赵冬岩.渤海海底管道工程的现状和问题[J].中国海上油气(工程),1992,4(1):1-6.
    [11]周晶,李昕,马冬霞.海底悬跨管线的地震响应和振动控制[J].世界地震工程,2000,16(4):58-62.
    [12]林钟明,高照杰,贾旭等.地震条件下海底双层油气管线的工作原理、强度标准和损伤评价[J].海洋工程,2002,20(3):1-8.
    [13]罗延声.海底管线管跨段涡激振动下模糊疲劳可靠性评估的研究[D].北京.中国石油大学,1999.
    [14]Toebes G H. The unsteady flow and wake near an oscillating cylinder [J]. Journal of Basic Engineering,1969,91:493-502.
    [15]Stansby P K. The locking-on if vortex shedding due to the cross-stream vibration of circular cylinders in uniform and shear flows [J]. Journal of Fluid Mechanics,1976,74:641-665.
    [16]Sarpkaya T. Fluid forces on oscillating cylinders [J]. Journal of Waterway Port Coastal and Ocean Division ASCE, WW4,1978,104:275-290.
    [17]Sarpkaya T. Vortex-induced oscillations, a selective review [J]. Journal of Applied Mechanics,1979, 46:241-258.
    [18]Sarpkaya T. Hdyrodynamic damping, flow-induced oscillations, and biharmonic response [J]. ASME Journal of Offshore Mechanics and Arctic Engineering,1995,117:232-238.
    [19]Griffin O M, Koopman G H. The vortex-excited lift and reaction forces on resonantly vibrating cylinders [J]. Journal of Sound and Vibration,1977,54:435-448.
    [20]Staubli T. Calculation of the vibration of an elastically mounted cylinder using experimental data from forced oscillation [J]. Journal of Fluids Engineering,1983,105:225-229.
    [21]Moe G, Wu Z J. The lift force on a cylinder vibrating in a current [J]. ASME Journal of Offshore Mechanics and Arctic Engineering,1990,112:297-303.
    [22]Gopalkrishnan R. Vortex induced forces on oscillating bluff cylinders [D]. USA:MIT,1993.
    [23]Carberry J, Sheridan J, Rockwell D. Forces and wake models of an oscillating cylinder [J]. Journal of Fluids and Structures,2001,15(3-4):523-532.
    [24]Sumer B M, Fredse J. Pressure measurements around a pipeline exposed to combined waves and current [C]. Proceedings of the 11th International Offshore Mechanics and Arctic Engineering. Calgary, Canada,1992:113-121.
    [25]Tsahalis D T. Vortex-induced vibrations of a flexible cylinder near a plane boundary exposed to steady and wave-induced currents [J]. Journal of Energy Resources Technology, Transactions of the ASME,1984,106:206-213.
    [26]Tsahalis D T. Vortex-induced vibrations due to steady and wave-induced currents of a flexible cylinder near a plane boundary [J]. Journal of Offshore Mechanics and Arctic Engineering,1987, 109:112-118.
    [27]Bryndum M B, Jacobsen V. Hydrodynamic forces on pipelines:model tests [C]. Proceedings of the Seventh International Offshore Mechanics and Arctic Engineering, Houston, Texas,1988, Volume V:9-21.
    [28]Jacobsen V, Bryndum M B. Prediction of irregular wave forces on submarine pipelines [C]. Proceedings of the Seventh International Offshore Mechanics and Arctic Engineering, Houston, Texas,1988, Volume V:23-32.
    [29]Bryndum M B, Bonde C, Smitt L W, et al. Long free spans exposed to current and waves:model tests [C]. Offshore Technology Conference, Houston, Texas, USA,1989, Paper No.6153.
    [30]Bruschi R, Montesi M, Tura F, et al. Field tests with pipeline free spans exposed to wave flow and steady current [C]. Offshore Technology Conference, Houston, Texas, USA,1989, Paper No.6152.
    [31]Chioukh N and Narayanan R. Oscillations of elastically mounted cylinders over plane beds in waves [J]. Journal of Fluids and Structures,1997,11:447-463.
    [32]Chevalier C, Lambert E, Belorgey M. Velocity field around a pipeline in breaking waves [C]. Proceedings of the Eighth International Offshore and Polar Engineering Conference, Montreal, Canada,1998, Volume II:68-73.
    [33]Cokgor S, Avci Ⅰ. Hydrodynamic forces on partly buried pipeline in waves/current [C]. Proceedings of the Eighth International Offshore and Polar Engineering Conference, Montreal, Canada,1998, Volume II:94-99.
    [34]Sundar V, Roopsekhar K A P, Schlurmann T, et al. Probability distribution of wave forces on pipelines near a sloping boundary parallel and normal to wave direction [J]. Coastal Engineering Journal,2004,46(1):93-117.
    [35]邢至庄,孙绍述,胡玉霞.接近海底水平管的波浪力和CD,CM,CL值的实验研究[J].海洋工程,1990,8(3):24-31.
    [36]李玉成,陈兵,王革.波浪对海底管线作用的物理模型实验及数值模拟研究[J].海洋通报,1996,15(4):58-65.
    [37]李玉成,陈兵.波浪作用下海底管线的物理模型实验研究[J].海洋通报,1996,15(5):68-73.
    [38]马良,张日向.海底部分埋设管道在波流作用下水动力效应的实验研究[J].中国海上油气(工程),1998,10(4):33-37.
    [39]李岩磊.海底管线悬跨段动力响应分析及其实验研究(硕士学位论文).青岛:中国海洋大学,2004.
    [40]Wu Y X, Yang H P, Pu Q, et al. Oscillatory flow induced hydrodynamic forces on a pipeline near erosive sandy seabed [C]. Proceedings of the 14th International Offshore and Polar Engineering Conference, Toulon, France,2004, Volume II:56-61.
    [41]Billah K Y, Scanian R H. Resonance Tacoma narrows bridge failure and undergraduate physics textbooks [J]. American Journal of Physics,1991,59(2):118-122.
    [42]Blevins R D. Flow-induced vibration [M].2nd Edition. New York:Van Nostrand Reinhold,1990.
    [43]Aronsen K, Larsen C M, Mφrk K. Hydrodynamic coefficient from in-line VIV experiment [C]. Proceedings of the 24th International Offshore Mechanics and Arctic Engineering, Halkidiki, Greece, 2005:OMAE2005-67393.
    [44]Aronsen K, Larsen C M. Hydrodynamic coefficients for in-line vortex induced vibrations [C], Proceedings of the 26th International Offshore Mechanics and Arctic Engineering, San Diego, California, USA,2007:OMAE2007-29531.
    [45]孟昭瑛,杨树耕,王仲捷.水下管道涡激振动的实验研究[J].水力学报,1994,7:43-50
    [46]方华灿,隋信众.海底管道管跨的流激涡旋振动的试验研究与安全可靠性分析[J].中国海上油气(工程),1998,10(2):20-23.
    [47]余建星,罗延生,方华灿.海底管线管跨段涡激振动响应的实验研究[J].地震工程与工程振动,2001,21(4):93-97.
    [48]蔡洪滨,黄维平.基于管道振动实验的涡激升力频谱分析[J].中国水运(学术版).2006,6(5):45-47.
    [49]黄维平,王爱群,李华军.海底管道悬跨段流致振动实验研究及涡激力模型修正[J].工程力学,2007,24(12):153-157.
    [50]Yang B, Gao F P, Wu Y X, et al. Experimental study on vortex-induced vibrations of submarine pipeline near seabed boundary in ocean currents [J]. China Ocean Engineering,2006,20:113-121.
    [51]Gao F P, Yang, B, Wu Y X, et al. Steady current induced seabed scour around a vibrating pipeline [J]. Applied Ocean Research,2006,28(5):291-298.
    [52]Son J S, Hanratty T J. Numerical solution for the flow around a cylinder at Reynolds number of 40, 200 and 500 [J]. Journal of Fluid Mechanics,1969,35:369-386.
    [53]Jain P C, Rao K S. Numerical solution of unsteady viscous incompressible fluid flow past a circular cylinder [J]. Phys. Fluid Supp.,1969,12:57-64.
    [54]Jordan S K, Fromm.J E. Oscillatory drag lift and torque on a circular cylinder in a uniform flow [J]. Phys. Fluids,1972,15:371-376.
    [55]Lin C L, Pepper D W, Lee S C. Numerical methods for separated flow solutions around a circular cylinder [J], AIAA J,1976,14(7):900-907.
    [56]Ha Minch H, Boisson H C, Martinez G. Unsteady mixed convection heat transfer around a circular cylinder [J]. Trans. ASME J. Heat Transfer,1980,13:35-44.
    [57]张洪泉.混合层绕流圆柱旋涡脱落的数值研究[J].力学学报,1993,25(3):356-361.
    [58]叶春明,吴文权.数值模拟圆柱绕流旋涡生成、分离及演化[J].华东工业大学学报,1995,17(4):25-30
    [59]叶春明,吴文权.数值模拟圆柱绕流旋涡运动及尾流不稳定性分析[J].工程热物理学报,1997,18(2):169-172.
    [60]凌国平,林国灿.绕旋转圆柱流动涡尾流结构和临界状态特性[J].力学学报,1997,29(1):8-16.
    [61]Lei C, Cheng L. Armfield S W, et al. Vortex shedding suppression for flow over a circular cylinder near a plane boundary [J]. Ocean Engineering,2000,27:1109-1127.
    [62]李玉成,陈兵.海底管线上波浪力的大涡模拟及三步有限元数值模拟[J].海洋通报,1999,21(6):87-93.
    [63]Chen B, Cheng L. Numerical investigation of three-dimensional flow around a free-spanned pipeline [C]. Proceedings of the Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan,2002, Volume II:61-67.
    [64]吕林.海洋工程中小尺度物体的相关水动力数值计算[D].大连:大连理工大学,2006.
    [65]Hirt G W, Amaden A A, Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds [J]. Journal of Computational Physics,1974,14 (3):227-253.
    [66]Nomura T, Hughes T J R. An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body [J]. Computer Methods in Applied Mechanics and Engineering,1992,95(2): 115-138.
    [67]Nomura T. ALE finite clement computations of fluid-structure interaction problems [J]. Computer Methods in Applied Mechanics and Engineering,1994,112:291-308.
    [68]Wei R, Sekine A, Shimura, M. Numerical analysis of 2D vortex-induced oscillations of a circular cylinder [J]. International Jounial for Numerical Methods in Fluids,1995,21:993-1005.
    [69]Newman D J, Karniadakis G E. A direct numerical simulation study of flow past a freely vibrating cable [J]. Journal of Fluid Mechanics,1997,344:95-136.
    [70]Schulz K W, Kallinderis Y. Unsteady flow structure interaction for incompressible flows using deformable hybrid grids [J]. Journal of Computational Physics,1998,143:569-597.
    [71]蒋莉,沈孟育,求解流体与结构相互作用问题的ALE有限体积方法[J].水动力学研究与进展(A辑).2000,15(2):148-155.
    [72]曹丰产,项海帆.圆柱非定常绕流及涡致振动的数值计算[J].水动力学研究与进展A辑,2001,16(1):111-118.
    [73]王国兴.海底管线管跨结构涡致耦合振动的数值模拟与实验研究[D].青岛:中国海洋大学,2006.
    [74]Morison J R, Johnson J W, O'Brien M P. The forces exerted by surface waves on piles. Petroleum Transactions [J], American Institute of Mining Engineering,1950,189:149-157.
    [75]Sarpkaya T, Isaacson M. Mechanics of wave forces on offshore structures [R]. London:Van Nostrand Reinhold Company,1981.
    [76]Lambrakos K F, Chao J C, Beckmann H et al. Wake model of hydrodynamic forces on pipelines. Ocean Engineering [J],1987,14(2):117-36.
    [77]Soedigdo I R. Wake Ⅱ model for hydrodynamic forces on marine pipelines (Ph.D. thesis). Texas: Texas A&M University,1997.
    [78]Soedigdo, I R, Edge B L, Sabag, S R. Wake Ⅱ model for hydrodynamic forces on marine pipelines including waves and currents.
    [79]Laya E J, Connor J J, Shyam S S. Hydrodynamic forces on flexible offshore structures [J]. Journal of Engineering Mechanics,1984,110(3):433-448.
    [80]Terro M J, Abdel-Rohman M. Wave induced forces in offshore structures using linear and nonlinear forms of Morison's equation [J]. Journal of Vibration and Control,2007,13(2):139-157.
    [81]Venkataramana K, Kawano K, Yoshihara S et al. Time-domain dynamic analysis of offshore structures under combined wave and earthquake loadings. Proceedings of the Eighth International Offshore and Polar Engineering Conference, Montreal, Canada,1998:404-411.
    [82]Bishop RED, Hassan A Y. The lift and drag force on a circular oscillating in a flowing fluid[C]. Proceedings of the Royal Society of London, London,1964,277:51-75.
    [83]Hartlen R T, Currie I G Lift-oscillator model of vortex-induced vibration [J]. ASCE Journal of Engineering Mechanics Division,1970,96:577-591.
    [84]Iwan W D, Blevins R D. A model for vortex induced oscillation of structures [J]. Journal of Applied Mechanics,1974,41:581-586.
    [85]Iwan W D. The vortex induced oscillation of non-uniform structure systems [J]. Journal of sound and vibration,1981,79(2):291-301.
    [86]Krenk S, Nielsen S R K. Energy balanced double oscillator model for vortex-induced vibrations [J]. ASCE Journal of Engineering Mechanics,1999,125:263-271.
    [87]Kim W T, Perkins N C. Two-dimensional vortex-induced vibration of cable suspensions [J]. Journal of Fluids and Structures,2002,16:229-245.
    [88]Matteolcua F, Emmanuel D L. Coupling of structure and wake oscillators in vortex induced vibrations [J]. Journal of Fluids and Structures,2004,1:116-133.
    [89]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报(自然科学版),2001,29(10):1214-1219.
    [90]Knani K. Semi-empirical formula for the seismic characteristics of the ground. Bulletin of earthquake research institute, University of Tokyo, Japan.1957,35:309-325.
    [91]Tajimi H. A statistical method of determining the maximum response of a building structure during an earthquake. Proceeding of 2nd World Conference on Earthquake Engineering. Tokyo and Kyoto, Japan.
    [92]Clough R W, Penzien J. Dynamics of Structures (2nd edition), New York:McGraw-Hill,1993.
    [93]胡聿贤和周锡元.弹性体系在平稳和平稳化地面运动下的反应.中国科学院土木建筑研究所地震工程研究报告集第一集,北京:科学出版社,1962.
    [94]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动,1991,11(3):45-53.
    [95]冯启明,胡聿贤.空间相关地面运动的数学模型[J].地震工程与工程振动,1981,1(2):1-8.
    [96]Harichandran R S, Vanmarcke E H. Stochastic variation of earthquake ground motion in space and time. Journal of Engineering Mechanics [J],1986,112(2):154-175.
    [97]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报,1996,18(1):55-62.
    [98]Loh C H, Yeh Y T. Spatial variation and stochastic modeling of seismic differential ground movement [J]. Earthquake Engineering and Structural Dynamic,1988,16(5):583-596.
    [99]Hao H, Oliveira C S, Penzien J. Multiple-station ground motion processing and simulation based on SMART-1 array data [J]. Nuclear Engineering and Design,1989,111:293-310.
    [100]Loh C H, Lin S G. Directionality and simulation in spatial variation of seismic waves. Engineering Structure [J],1990,12(2):134-143.
    [101]Abrahamson N A, Schneider J F, Stepp J C. Empirical spatial coherency functions for application to soil-structure interaction analysis [J]. Earthquake Spectra,1991,7:1-28.
    [102]王君杰.多点多维地震动随机模型及结构的反应谱分析方法[D].哈尔滨:国家地震局工程力学研究所,1992.
    [103]Armen Der Kiureghian. A coherency model for spatially varying ground motions [J]. Earthquake Engineering and Structural Dynamics,1996,25(2):99-111.
    [104]Luco J E, Wong H L. Response of a rigid foundation to a spatially random ground motion [J]. Earthquake Engineering and Structural Dynamics,1986,14(6):891-908.
    [105]胡聿贤,周锡元.弹性体系在平稳和非平稳化地面运动下的反应.中国科学院土木建筑研究所地震工程研究报告集,第一集,科学出版署,1962.
    [106]Goto H, Toki, K. Structural response to nonstationary random excitation [C]. Proc.4WCEE,130-144, 1969.
    [107]Amin M, Ang A H-S. Nonstationary stochastic model for earthquake motions [J]. ASCE, Vol.94, EM2,1968.
    [108]Zerva A. Seismic ground motion simulations from a class of spatial variability model [J]. Earthquake Engineering and Structural Dynamics,1992,21(4):351-361.
    [109]Zerva A. On the spatial variation of seismic ground motions and its effect on lifelines [J]. Engineering Structure,1994,16:534-546.
    [110]Conte J P, Pister K S, and Mahin S A. Non-stationary ARMA modeling of seismic ground motion [J]. Soil Dynamics and Earthquake Engineering,1992,11:411-426.
    [111]Ramadan, O. and Novak, M. Simulation of spatially incoherent random ground motions [J]. Journal of Engineering Mechanics,1993,119(5):997-1016.
    [112]董汝博,周晶,冯新.一种考虑局部场地收敛性的多点地震动合成方法[J].振动与冲击,2007,26(4):5-9.
    [113]周晶,李昕,马冬霞.海底悬跨管线的地震响应和振动控制[J].世界地震工程,2000,16(4):58-62.
    [114]李听,刘亚坤,周晶等.海底悬跨管道动力响应的试验研究和数值模拟[J].工程力学,2003,20(2):2]-25.
    [115]Li X, Dong R B, Jin Q et al. Hydrodynamic force model on free spanning pipeline subjected to seismic excitations [C]. Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal,2008:OMAE2008-57081.
    [116]Zeinoddini M, Sadrossasat S M, Parke G A R. Nonlinear seismic analysis of free spanning submarine pipelines:effects of pipe-water interaction [C]. Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal,2008: OMAE2008-57781.
    [117]孙政策,段梦兰等.现用海底管线抗震设计方法存在的问题及解决办法[J].振动工程学报,2004.17(3):263-268.
    [118]Wagner D.A., Murff J.D., Brennodden H., et al. Pipe-Soil Interaction Model [C]. Proceedings of Nineteenth Annual Offshore Technology Conference, Houston, Texas,1987, paper number:5504.
    [119]Allen D W, Lammert W F, Hale J R, et al. Submarine Pipeline On-Bottom Stability:Recent AGA Research [C]. Proceedings of 21st Annual Offshore Technology Conference, Houston, Texas,1989, paper number:6055.
    [120]Verley R L P, Sotberg T A. Soil Resistance Model for Pipelines Placed on Sandy Soils [C]. Proceedings of 11th International Conference on Offshore Mechanics and Arctic Engineering, Calgary, Canada,1992, Volume V-A:123-131.
    [121]Zhang J, Randolph M F, Stewart D P. An Elasto-Plastic Model for Pipe-Soil Interaction of Unburied Offshore Pipelines in Calcareous Sand [C]. The Proceedings of the ninth International Offshore and Polar Engineering Conference, Brest, France,1999, Volume II:185-192.
    [122]Bruschi R, Curti G, Marchesani F, et al. The Maspus project:upgrades for deep water pipelines on very uneven seabeds [C], Deep Offshore Technology Conference,1993,98-140.
    [123]Nath, B and Soh C H. Transverse seismic response analysis of offshore pipelines in proximity to the sea-bed [J]. International Journal for Numerical Methods in Engineering,1978,6(6):569-583.
    [124]Haldar A K, Reddy D V, et al. Finite Element Nonlinear Seismic Response Analysis of Submarine Pipe-Soil Interaction [C]. Soils under Cyclic and Transient Loading, Proc of the Int Symp, Swansea, Wales,1980.2:867-877.
    [125]Romagnoli R and Varvelli R. Integrated seismic response analysis of offshore pipeline-sea floor systems[C]. Proceedings. of the International Offshore Mechanics and Arctic Engineering Symposium, Houston,1988. pp.139-145.
    [126]马良.海底管道抗震设计初探[J].中国海洋平台,1999,14(4):26-29.
    [127]林钟明,高照杰,贾旭等.地震条件下海底双层油气管线的工作原理、强度标准和损伤评价[J].海洋工程,2002,20(3),1-8.
    [128]孙政策,段梦兰,张文等.现用海底管线抗震设计方法存在的问题及解决办法[J].振动工程学报,2004,17(3):263-268.
    [129]孙政策,段梦兰,张文等.地震波条件下海底管线抗震设计方法研究[J].石油学报,2005,26(2):115-118.
    [130]岳志勇,余轩凌,孙政策等.引入惯性力影响的海底埋设管线的抗震设计方法[J].应用力学学报,2004,21(2):110-114.
    [131]Nath B and Soh C H. Seismic response analysis of offshore pipelines in contact with the sea-bed [C]. International Journal for Numerical Methods in Engineering,1978,13(1):181-196.
    [132]Kershenbaum N Y, Mebarkia S A. and Choi H S. Behavior of marine pipelines under seismic faults [J]. Ocean Engineering,2000; 27(5):473-48.
    [133]Kalliontzis C. Numerical simulation of submarine pipelines in dynamic contact with a moving seabed [J]. Earthquake Engineering and structural dynamics,1998,465-486.
    [134]Figarov N G and Kamyshev A M. Seismic stability of offshore pipelines. Proceedings of the International Offshore and Polar Engineering Conference [C], Los Angeles, USA,1996:477-481.
    [135]Datta T K and Mashaly E A. Seismic response of buried submarine pipelines [J]. Journal of Energy Resources Technology, Transactions of the ASME,1988,110(4):208-218.
    [136]Datta T K and Mashaly E A. Transverse response of offshore pipelines to random ground motion [J]. Earthquake Engineering and Structural Dynamics,1990,19(2):217-228.
    [137]Zhou J, Li X and Ma D X. Seismic response and vibration control for free spanning submarine pipelines [C]. Proceedings. of the eleven International Offshore and Polar Engineering Conference, Stavanger,2001,2:180-184.
    [138]Li X, Liu, Y K and Zhou J. Experimental study on free spanning submarine pipeline under dynamic excitation [J]. China Ocean Engineering,2002,16(4):537-548.
    [139]董汝博,周晶,冯新.部分悬跨海底管道多点输入地震反应分析[J].振动工程学报,2008,21(2):146-151.
    [140]董汝博,李昕,金峤,周晶.多点输入下悬跨海底管道非线性地震响应参数分析[J].土木工程学报,2008,41(7):103-109.
    [141]DNV Offshore Standard, DNV-OS-F101:Submarine pipeline systems [S]. Norway:Det Norske Veritas,2000.
    [142]ASME B31.8, Gas transmission and distribution piping systems [S].USA:The American Society of Mechanical Engineers,2007.
    [143]DNV Recommended Practice, DNV-RP-C205:Envriomental conditions and environmental loads [S]. Norway:Det Norske Veritas,2007.
    [144]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [145]ADINA Theory and Modeling Guide, ADINA R&D, Inc.,2004.
    [146]Olson L G, Bathe K J. An infinite element for analysis of transient fluid-structure interactions [J]. Engineering Computations,1985,2:319-329.
    [147]林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000,40(1):1-8.
    [148]张鸿雁,张志政,王元.流体力学[M].北京:科学出版社,2004.
    [149]CLOUGH R W, PENZIEN J. Dynamic of structures [M]. McGraw-Hill, Inc.,1975.
    [150]李玉成,滕斌.波浪对海上建筑物的作用(第二版)[M].北京:海洋出版社,2002.
    [151]陈惠发.土木工程材料的本构方程(第二卷塑性与建模).武汉:华中科技大学出版社,2001.
    [152]ALA (American Lifelines Alliance). Guidelines for the Design of Buried Steel Pipe, G.A. Antaki and J.D. Hart, Co-Chairmen, July, www.americanlifelinesalliance.org,2001.
    [153]DNV Recommended Practice, DNV-RP-F105:Free Spanning Pipelines [M]. Norway:Det Norske Veritas,2006.
    [154]Lou L, Zerva A. Effects of spatially variable ground motions on the seismic response of a skewed, multi-span, RC highway bridge[J]. Soil Dynamics and Earthquake Engineering,2005,25(7-10): 729-740.
    [155]Priestley, M. B. Non-linear and non-stationary time series analysis,1988, Academic Press, Neww York.
    [156]Deodatis, G Non-stationary stochastic vector processes:seismic ground motion applications [J]. Probabilistic Engineering Mechanics,1996,11:149-168.
    [157]屈铁军,王前信.空间相关的多点地震动合成(Ⅰ)基本公式[J].地震工程与工程振动,1998,18(1):8-15.
    [158]Clough R. W. and Penzien J. Dynamics of structures,1975, McGrawHill, New York.
    [159]Der Kiureghian, A. and Neuenhofer, A. Response spectrum method for multi-support seismic excitations[J]. Earthquake Engineering and Structural Dynamics,1992,21:713-740.
    [160]Qu Tiejun, Wang Junjie and Wang Qianxin. A practical model for the power spectrum of spatially variant ground motion[J]. ACTA SEISMOLOGICA SINICA,1996,9(1):69-79.
    [161]Monti, G.,Nuti, C. and Pintio, E. Nonlinear response of bridges under multisupport excitation[J]. Journal of Structural Engineering,1996,122(5):476-484.
    [162]Wilson E L. Three dimensional static and dynamic analysis of structures:a physical approach with emphasis on earthquake engineering. Berkley, California:Computers and Structures, Inc.,2002.