Timoshenko梁系统的控制设计与稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,柔性系统的振动控制问题受到广泛关注,其中如何设计一个好的反馈控制器以及相应闭环系统的稳定性分析是研究该问题的重点.本文以能精确描述柔性杆件动力学行为的弹性梁模型–Timoshenko梁模型为基本研究对象,对分布参数系统控制中的几个难点问题:时滞控制、异位控制、弹性网络系统控制及闭环系统的稳定性作了初步研究.具体如下:
     1.非同位系统往往不是极小相位的,该性质易造成异位控制器下的系统非耗散,相应的系统适定性和稳定性分析也变得很难处理,这使得异位控制一直是分布参数系统控制中的一个困难问题.本文研究了一类Timoshenko梁弹性混杂系统的异位反馈控制问题.设计了一类带有异位反馈项的边界反馈控制器.在设定的反馈控制器作用下,采用Riesz基方法结合频谱渐近分析的技巧推导出闭环系统满足谱确定增长条件,并在此基础上通过选择适当增益系数,证明了闭环系统的指数稳定性.
     2.在无穷维系统中,时滞会破坏系统稳定性,因此分布参数系统的时滞控制设计是一个难点.本文考察了Timoshenko悬臂梁系统具有输入时滞的反馈控制问题.设计了一类带有部分输入时滞的边界反馈控制器来镇定系统,并讨论了时间延迟反馈输入对于该类Timoshenko弹性梁系统稳定性的影响.此外,本文根据系统频谱的分布状况,给出了相应的闭环系统不稳定、渐近稳定以及指数稳定性条件.
     3.柔性结构网络系统在工程中尤其是航空航天科技中有着重要的应用价值,关于其控制问题的研究有着实际意义.本文考察了星形和树形Timoshenko弹性梁网络系统的反馈镇定问题.通过在节点处设计耗散反馈控制器来镇定这两类网络系统.我们采用矩阵形式来描述相应的闭环系统,将Riesz基方法和乘子方法推广到研究Timoshenko弹性梁网络系统的稳定性中,运用谱分析和渐近分析的技巧,分别证明了这两类网络系统的渐近稳定性与指数稳定性.该分析方法可以进一步推广到更为复杂的Timoshenko梁网络系统的稳定性研究中.
In recent years, the control problems on ?exible system, as an hot issue,is widely studied. The central problem is that how to design a nice feedbackcontroller and its stability analysis. In this thesis, the feedback control de-signs of Timoshenko beam which is one of the most realistic 1-d beam model,is studied. The stability of the corresponding closed loop systems is discussed.Some di?cult problems in distributed parameter system controls are consid-ered, those are time-delay feedback controls, non-collocated feedback controls,networks system feedback controls. some primary results are obtained. Thedetails are given as follows:
     1. Since the non-collocated systems are usually not minimum-phase, thesystems easily become non-dissipative. The design of non-collocated feedbackcontrols and the well-posedness and stability analysis of the correspondingclosed loop systems are di?cult to do. Hence the non-collocated control prob-lem is always a tough problem in distributed parameter system controls. Inthis thesis, a kind of Timoshenko beam hybrid system with non-collocatedfeedback control is considered. A kind of non-collocated feedback controller isdesigned to stabilize this system. By the Riesz basis approach, together withthe asymptotic analysis of the frequency of the system, the spectrum deter-mined growth condition of the system is gotten. Based on this result, togetherwith the distribution of the spectrum, the stability of this kind of systemis discussed. By simulation, it is shown that this system can be stabilizedexponentially under certain choice of the feedback gains.
     2. Since time delays can always destabilize the infinite dimensional sys-tem, the control problem involving time delays is di?cult for distributed pa-rameter system. In this thesis, a kind of time-delay boundary feedback con-troller is designed for the Timoshenko cantilever beam. The e?ect of thetime-delay feedback inputs on the stability of this kind of Timoshenko beam is discussed. The spectrum determined growth condition is gotten by the Rieszbasis property of the (generalized) eigenfunctions of the system operator. Thenthe conditions of instability, asymptotic stability, exponential stability of thiskind of system are obtained based on the spectral distribution. Some simula-tions are given to support these results.
     3. The stabilization of star-shape and tree-shape networks of Timoshenkobeams system is considered. Since the flexible structure system has wideapplications, especially in aircraft and space vehicles, its control problem hasimportant significations in engineering. In this thesis, the dissipative joints’feedback controllers are designed to stabilize these two networks. The matricesare used to denote the corresponding closed loop systems. The Riesz basisapproach and multiplier method are extended to study the stability of thenetworks of Timoshenko beams. By the techniques of spectral analysis andasymptotic analysis, the asymptotic stability and exponential stability of thesetwo kinds of networks systems are proved. This method we used here can beextended to the more complex networks of Timoshenko beams systems.
引文
[1] Timoshenko, S. P., On the correction for shear of the di?erential equa-tion for transverse vibrations of prismatic bars, Philosophical Magazine,1921, 41 : 744–746
    [2] Timoshenko, S. P., On the transverse vibrations of bars of uniform cross-section, Philosophical Magazine, 1922, 43 : 125–131
    [3] Yoon, J., Ru, C. Q. and Mioduchowski, A., Timoshenko-beam e?ects ontransverse wave propagation in carbon nanotubes, Composites: Part B,2004, 35 : 87–93
    [4] Wang, C. M., Tan, V. B. C., Zhang, Y. Y., Timoshenko beam model forvibration analysis of multi-walled carbon nanotubes, Journal of Soundand Vibration, 2006, 294 : 1060–1072
    [5] Hsu, J. C., Chang, R. P. and Chang, W. J., Resonance frequency ofchiral single-walled carbon nanotubes using Timoshenko beam theory,Physics Letters A, 2008, 372 : 2757–2759
    [6] Zhang, Y. Y., Wang, C. M. and Tan, V. B. C., Buckling of multiwalledcarbon nanotubes using Timoshenko beam theory, J. Engrg. Mech.,2006, 132(9) : 952–958
    [7] Zhang, Y. Y., Wang, C. M. and Tan, V. B. C., Assessment of Tim-oshenko beam models for vibrational behavior of single-walled carbonnanotubes using molecular dynamics, Advances in Applied Mathemat-ics and Mechanics, 2009, 1(1) : 89–106
    [8] Aydogdu, M. and Ece, M. C., Vibration and buckling of in-plane loadeddouble-walled carbon nano-tubes, Turkish J. Eng. Env. Sci., 2007, 31 :305–310
    [9] Pietrobon, Costa F., On Timoshenk’s beams coe?cient of sensibility toShear E?ect, TEMA Tend. Mat. Apl. Comput., 2008, 9(3) : 447–457
    [10] Wang, L. F., Guo, W. L. and Hu, H. Y., Group velocity of wave propa-gation in carbon nanotubes, Proc. R. Soc. A , 2008, 464 : 1423–1438
    [11] Wang, L. F. and Hu, H. Y., Flexural wave propagation in single-walledcarbon nanotubes, Physical Review B., 2005, 71 : 195412-1–195412-7
    [12] Wei, X. L., Liu, Y., Chen, Q., Wang, M. S. and Peng, L. M., Thevery low shear modulus of multi-walled carbon nanotubes determinedsimultaneously with the axial Young’s Modulus via in situ experiments,Adv. Funct. Mater., 2008, 18 : 1555–1562
    [13] Amin, S. S., Dalir, H. and Farshidianfar, A., Carbon nanotube-reinforcedcomposites: frequency analysis theories based on the matrix sti?ness,Comput. Mech., 2009, 43 : 515–524
    [14] Cowin, S. C. and Nunziato, J. W., Linear elastic materials with voids,J. Elasticity, 1983, 13 : 125–147
    [15] Cowin, S. C., The viscoelastic behavior of linear elastic materials withviods, J. Elasticity, 1985, 15 : 185–191
    [16] Ciarletta, M. and Iesan, D., Non-Classical Elastic Solids, Pitman Re-search Notes in Mathematics Series 293, New York : Chapman and Hal-l/CRC, 1993
    [17] Pamplona, P. X., Rivera, J. E. Mun?oz and Quintanilla, R., Stabiliza-tion in elastic solids with voids, Journal of Mathematical Analysis andApplications, 2009, 350 : 37–49
    [18] Casas, P. S. and Quintanilla, R., Exponential decay in one-dimensionalporous-thermo-elasticity, Mechanics Research Communications, 2005,32 : 652–658
    [19]杜燕,许跟起,具有边界控制的线性Timoshenko型系统的指数稳定性,系统科学与数学, 2008, 28(5) : 554–575
    [20] von Flotow, A. H., Traveling wave control for large spacecraft structures,J. Guid. Control Dynam., 1986, 9(4) : 462–468
    [21] Herzl, G. G., Pointing error in passively stabilized spacecraft caused bythermal bending, Journal of Spacecraft and rockets, 1965, 2(3) : 416–418
    [22] Hsu, J. C., Lee, H. L. and Chang, W. J., Flexural vibration fre-quency of atomic force microscope cantilevers using the Timoshenkobeam model, Nanotechnology, 2007, 18 : 285503, doi.10.1088/0957-4484/18/28/285503
    [23] Mendels, D. A., Lowe, M., Cuenat, A., Cain, M. J., Vallejo, E., Ellis,D. and Mendels, F., Dynamic properties of AFM cantilevers and thecalibration of their spring constants, J. Micromech. Microeng., 2006, 16: 1720–1733
    [24]岳鹏,船体薄壁梁弯扭耦合振动的流固耦合分析,硕士学位论文,大连理工大学, 2005
    [25] Bilbao, S. D., Wave and scattering methods for the numerical integra-tion of partial di?erential equations. PhD thesis, Stanford University,California, USA, 2001.
    [26] Lions, J. L., Exact controllability, stabilizability and perturbations fordistributed systems. SIAM Rev. 1988, 30 : 1–68
    [27] D′ager, R. and Zuazua, E., Wave Propagation, Observation and Con-trol in 1-d Flexible Multi-structures, Math′ematiques et Applications 50,Berlin: Springer-Verlag, 2006
    [28] Yao, P. F., On the observability inequality for exact controllability ofwave equations with variable coe?cients, SIAM J. Control Optim.,1999, 37 : 1568–1599
    [29] Krstic, M., Guo, B. Z., Balogh, A. and Smyshlyaev, A., Output-feedbackstabilization of an unstable wave equation, Automatica, 2008, 44 : 63–74
    [30] Krstic, M., Guo, B. Z., Balogh, A. and Smyshlyaev, A., Control of a tip-force destabilized shear beam by non-collocated observer based boundaryfeedback, SIAM J. Control Optim., 2008, 47 : 553–574
    [31] Soufyane, A., Exponential stability of the linearized nonuniform Timo-shenko beam, Nonlinear Analysis: Real World Applications, 2009, 10 :1016–1020
    [32] Ammar-Khodja, F., Kerbal, S. and Soufyane, A., Stabilization of thenonuniform Timoshenko beam, J. Math. Anal. Appl., 2007, 327 : 525–538
    [33] Liu, Z. and Zheng, S., Semigroups Associated with Dissipative Systems,Boca Raton : Chapman and Hall/CRC, 1999
    [34] Wyler, A., Stability of wave equations with dissipative boundary condi-tions in a bounded domain, Di?. Integral Equat., 1994, 7(2) : 345–366
    [35] Zabczyk, J., A note on C0 semigroups, Bull. Acad. Polon. Sci. Math.Astr. Phys., 1975, 23 : 895–898
    [36] Shubov, M. A., Riesz basis property of root vectors of non-self-adjointoperators generated by aircraft wing model in subsonic air?ow, Math.Method Appl. Sci., 2000, 23 : 1585–1615
    [37] Xu, G. Q., Feng, D. X. and Yung, S. P., Riesz basis property of thegeneralized eigenvector system of a Timoshenko beam, IMA J. Math.Control Inform, 2004, 21 : 65–83
    [38] Xu, G. Q. and Guo, B. Z., Riesz basis property of evolution equationsin Hilbert spaces and application to a coupled string equation, SIAMJ. Control Optim., 2003, 42(3) : 966–984
    [39] Wang, J. M. and Guo, B. Z., Riesz basis and stabilization for the ?exiblestructure of a symmetric tree-shaped beam network, Math. Meth. Appl.Sci., 2008, 31(3) : 289–314
    [40] Guo, B. Z., Riesz basis property and exponential stability of controlledEuler-Bernoulli beam equations with variable coe?cients, SIAM J. Con-trol Optim., 2002, 40(6) : 1905–1923
    [41] Guo, B. Z., Wang, J. M. and Yang, K. Y., Dynamic stabilization of anEuler-Bernoulli beam under boundary control and non-collocated obser-vation, Systems & Control Letters, 2008, 57 : 740–749
    [42] Kim, J. U. and Renardy, Y., Boundary control of the Timoshenko beam,SIAM J. Control Optim., 1987, 25(6) : 1417–1429
    [43] Morgu¨l, O., Dynamic boundary control of the Timoshenko beam, Au-tomatica, 1992, 28 : 1255–1260
    [44] Morgu¨l, O., Boundary control of a Timoshenko beam attached to a rigidbody: planar motion, INT J. Control, 1991, 54(4) : 763–791
    [45] Feng, D. X., Shi, D. H. and Zhang, W. T., Boundary feedback stabiliza-tion of Timoshenko beam with boundary dissipation, Science in ChinaA, 1998, 40(5) : 483–490
    [46] Xu, G. Q., Yung, S. P., Stabilization of Timoshenko beam by meansof pointwise controls, ESAIM: Control, Optimisation and Calculus ofVariations, 2003, 9 : 579–600
    [47] Xu, G. Q. and Yung, S. P., The exponential decay rate for a Timoshenkobeam with boundary damping, J. Optimiz. Theory App., 2004, 123(3): 669–693
    [48] Xu, G. Q., Boundary feedback exponential stabilization of a Timoshenkobeam with both ends free, INT J. Control, 2005, 78(4) : 286–297
    [49] Shi, D. H. and Feng, D. X., Exponential decay of Timoshenko beamwith locally distributed feedback, IMA J. Math. Control Inform, 2001,18(3) : 395–403
    [50] Taylor, S. W. and Yau, S. C. B., Boundary control of a rotating Timo-shenko beam, ANZIAM J., 2003, 44 : 143–184
    [51] Zhang, F., Dawson, D. M., de Queiroz, M. S. and Vedagarbha, P.,Boundary control of the Timoshenko beam with free-end mass/inertialdynamics, Proceedings of the 36th Conference on Decision & ControlSan Diego, California, USA, 1997, 245–250
    [52] Yan, Q. X. and Feng, D. X., Boundary feedback stabilization of nonuni-form Timoshenko beam with a tipload, Chinese Ann. Math. B, 2001,22(4) : 485–494
    [53] Messaoudi, S. A. and Mustafa, M. I., On the internal and boundarystabilization of Timoshenko beams, Nonlinear di?er. equ. appl. 2008, 15: 655–671
    [54] Rivera, J. E. Mun?oz and Racke, R., Timoshenko systems with indefinitedamping, J. Math Anal. Appl., 2008, 341 : 1068–1083
    [55] Messaoudi, S. A., Soufyane, A., Boundary stabilization of solutions of anonlinear system of Timoshenko type, Nonlinear Anal. 2007, 67 : 2107–2121
    [56] Giorgi, C. and Vegni, F. M., Uniform energy estimates for a semilin-ear evolution equation of the Mindlin-Timoshenko beam with memory,Math. Comput. Modelling, 2004, 39 : 1005–1021
    [57] Ammar-Khodja, F., Benabdallah, A., Rivera, J. E. Mun?oz and Racke,R., Energy decay for Timoshenko systems of memory type, J. Di?erentialEquations, 2003, 194 : 82–115
    [58] Zhao, H. L., Liu, K. S. and Zhang, C. G., Stability for the Timo-shenko beam system with local Kelvin-Voigt damping, Acta Mathemat-ica Sinica, English Series, 2005, 21(3) : 655–666
    [59] Liu, K. and Liu, Z., Exponential decay of energy of vibrating stringswith local viscoelasticity, Z. angew, Math. Phys., 2002, 53 : 256–280
    [60] Xu, G. Q. and Mastorakis, N. E., Spectrum of an operator arising elasticsystem with local K-V damping, Zeitschrift fu¨r Angewandte Mathematikund Mechanik, 2008, 88(6) : 483–496
    [61] Wu, S. T., Virtual passive control of ?exible arms with collocated andnoncollocated feedback, J. Robot. Syst., 2001, 18 : 645–655
    [62] Ryu, J. H., Kwon, D. S. and Hannaford, B., Control of a ?exible manip-ulator with noncollocated feedback: Time Domain Passivity Approach,IEEE T. Robot., 2003, 20(4) : 121–134
    [63] Krstic, M., Siranosian, A., and Smyshlyaev, A., Backstepping bound-ary controllers and observers for the slender Timoshenko beam: PartI–Design, Proceedings of the 2006 American Control Conference, Min-neapolis, Minnesota, USA, 2006, 2412–2417
    [64] Krstic, M., Siranosian, A., Smyshlyaev, A. and Bement, M., Backstep-ping boundary controllers and observers for the slender Timoshenkobeam: Part II–stability and simulations, Proceedings of the 45th IEEEConference on Decision & Control, Manchester Grand Hyatt Hotel, SanDiego, CA, USA, 2006, 3938–3943
    [65] Guo, B. Z. and Xu, C. Z., The stabilization of a one-dimensional waveequation by boundary feedback with noncollocated observation, IEEETrans. Automat. Control, 2007, 52(2) : 371–377
    [66] Guo, B. Z. and Guo, W., The strong stabilization of a one-dimensionalwave equation by non-collocated dynamic boundary feedback control,Automatica, 2009, 45 : 790–797
    [67] Guo, B. Z. and Shao, Z. C., Stabilization of an abstract second ordersystem with application to wave equations under non-collocated controland observations, Systems and Control Letters, 2009, 58 : 334–341
    [68] Michiels, W. and Niculescu, S. I., Stability and Stabilization of Time-delay Systems: An Eigenvalue-based Approach, vol. 12 of Advances inDesign and Control, Philadelphia : Society for Industrial and AppliedMathematics, 2007
    [69] Sriram, K. and Gopinathan, M. S., A two variable delay model for thecircadian rhythm of neurospora crassa. J. Theor. Biol., 2004, 231 : 23–38
    [70] Srividhya, J. and Gopinathan, M. S., A simple time delay model foreukaryotic cell cycle, Journal of Theoretical Biology, 2006, 241 : 617–627
    [71] Xu, G. Q., Yung, S. P. and Li, L. K., Stabilization of wave systems withinput delay in the boundary control. ESAIM: Control, Optimisationand Calculus of Variations, 2006, 12 : 770–785
    [72] Xu, G. Q. and Jia, J. G., The group and Riesz basis properties of stringsystems with time delay and exact controllability with boundary control,IMA Journal of Mathematical Control and Information, 2006, 23 : 85–96
    [73] Nicaise S. and Pignotti, C., Stabilization of the wave equation withboundary or internal distributed delay, Di?erential and Integral Equa-tions, 2008, 21 : 935–958
    [74] M¨orgul, O., On the stabilization and stability robustness against smalldelays of some damped wave equation, IEEE Trans. Automatic Control,1995, 40 : 1626–1630
    [75] Guo, B. Z. and Yang, K. Y., Dynamic stabilization of an Euler-Bernoullibeam equation with time delay in boundary observation, Automatica,2009, 45 : 1468–1475
    [76]冯康,石钟慈,弹性结构的数学理论,北京:科学出版社, 1981
    [77] Mugnolo, D., Gaussian estimates for a heat equation on a network, Netw.Heter. Media, 2007, 2 : 55–79
    [78] Bretti, G., Natalini, R., Piccoli, B., A ?uid-dynamic tra?c model onroad networks, 2007, 14(2) : 139–172
    [79] M′atrai, T. and Sikolya, E., Asymptotic behavior of ?ows in networks,Forum Math., 2007, 19 : 429–461
    [80] Dorn, B., Semigroups for ?ows in infinite networks, Semigroup Forum,2008, 76 : 341–356
    [81] Sikolya, E., Semigroups for ?ows in networks, PhD thesis, Universita¨tTu¨bingen, 2004
    [82] Pavlov, B. S. and Faddeev, M. D., Model of free electrons and the scat-terig problem, Teor. Mat. Fiz., 1983, 55(2) : 257–269
    [83] Nicaise, S., Some results on spectral theory over networks, applied tonerve impulse transmission, Lect. Notes Math., 1985, 1171 : 532–541
    [84] Kuchment, P., Quantum graphs: I. Some basic structures, Waves inRandom and Complex Media, 2004, 14(1) : 107–128
    [85] Kuchment, P., Quantum graphs: II. Some spectral properties of quan-tum and combinatorial graphs, J. Phys. A: Math. Gen, 2005, 38 : 4887–4900
    [86] Penkin, O. M., On a maximum principle for the elliptic equation onstratified sets, Di?. Uravn., 1998, 34(10) : 1433–1434
    [87] von Below, J., A characteristic equation associated to an eigenvalueproblem on C2-networks, Linear Algebra Appl., 1985 71 : 309–325
    [88] von Below, J., Sturm-Liouville eigenvalue problems on networks, Math.Methods Appl. Sci., 1988, 10 : 383–395
    [89] Ali Mehmeti, F., A characterization of a generalized C∞-notion on nets,Integral Equations Operator Theory, 1986, 9 : 753–766
    [90] Ali Mehmeti, F., Nonlinear Waves in Networks, Berlin : Akademie Ver-lag, 1994
    [91] Ali Mehmeti, F., von Below, J. and Nicaise, S., Partial Di?erential Equa-tions on Multistructures, Lect. Notes Pure Appl. math., 219, New York:Marcel Dekker, 2001
    [92] Pokornyi, Yu. B. and Karelina, I., On the Green function of the Dirichletproblem on a graph, Soviet Math. Kokl. 1991, 43 : 732–734
    [93] Rolewicz, S., On controllability of systems of strings, Studia Mathemat-ica, 1970, 36 : 105–110
    [94] Chen, G., Delfour, C., Krall, A. M. and Payre, G., Modeling, stabiliza-tion and control of serially connected beams, SIAM J. Control Optim.,1987, 25 : 526–546
    [95] Chen, G., Krantz, S. G., Russell, D. L., Wayne, C. E., West, H. H. andColeman, M. P., Analysis, designs, and behavior of dissipative jointsfor coupled beams, SIAM Journal on Applied Mathematics, 1989, 49 :1665–1693
    [96] Liu, K. S., Huang, F. L. and Chen, G., Exponential stability analysis ofa long chain of coupled vibrating strings with dissipative linkage, SIAMJournal on Applied Mathematics, 1989, 49(6) : 1694–1707
    [97] Lagnese, J. E., Leugering, G. and Schmidt, E. J. P. G., Modeling, Anal-ysis and Control of Dynamic Elastic Multi-link Structures, Systems &Control: Foundations & Applications, Boston : Birkhauser, 1994
    [98] Dekoninck, B. and Nicaise, S., Control of networks of Euler-Bernoullibeams, ESAIM: Control, Optimisation and Calculus of Variations, 1999,4 : 57–81
    [99] Schmidt, E. J. P. G., On the modeling and exact controllability of net-works of vibrating strings, SIAM J. Control Optim., 1992, 30 : 229–245
    [100] Dekoninck, B. and Nicaise, S., The eigenvalue problem for networks ofbeams, Linear Algebra Appl., 2000, 314(1) : 165–189
    [101] Hansen, S. and Zuazua, E., Exact controllability and stabilization of avibrating string with an interior point mass, SIAM J. Control Optim.,1995, 33(5) : 1357–1391
    [102] Castro, C., Asymptotic analysis and control of a hybrid system composedby two vibrating strings connected by a point mass, ESAIM: Control,Optimisation and Calculus of Variations, 1997, 2 : 231–280
    [103] Castro, C. and Zuazua, E., Exact boundary controllability of two Euler-Bernoulli beams connected by a point mass, Math. Comput. Modelling,2000, 32 : 955-969
    [104] Sadek, I. S. and Melvin, V. H., Optimal control of serially connectedstructures using spatially distributed pointwise controllers, IMA Journalof Mathematical Control and Information, 1996, 13 : 335–358
    [105] Leugering, G., Dynamic domain decomposition of optimal control prob-lems for networks of strings and Timoshenko beams, SIAM J. ControlOptim., 1999, 37(6) : 1649–1675
    [106] D′ager, R. and Zuazua, E., Controllability of star-shaped networks ofstrings, C. R. Acad. Sci. Paris, S′erie I, 2001, 332(7) : 621–626
    [107] D′ager, R. and Zuazua, E., Controllability of tree-shaped networks ofstrings, C. R. Acad. Sci. Paris, S′erie I, 2001, 332(12) : 1087–1092
    [108] Dager, R., Observation and control of vibrations in tree-shaped networksof strings, SIAM J. Control Optim., 2004, 43 : 590–623
    [109] Ammari, K., and Jellouli, M., Stabilization of star-shaped networks ofstrings, Di?erential and Integral Equations, 2004, 17 : 1395–1410
    [110] Ammari, K., Jellouli, M. and Khenissi, M., Stabilization of generic treesof strings, J. Dynamical Control Systems, 2005, 11 : 177–193
    [111] Ammari, K. and Jellouli, M., Remark on stabilization of tree-shapednetworks of strings, Applications of Mathematics, 2007, 52(4) : 327–343
    [112] Ammari, K., Asymptotic behaviour of some elastic planar networks ofBernoulli-Euler beams, Appl. Anal., 2007, 86 : 1529–1548
    [113] Mercier, D. and R′egnier, V., Spectrum of a network of Euler-Bernouillibeams, Journal of Mathematical Analysis and Applications, 2008, 337 :174–196
    [114] Mercier, D. and R′egnier, V., Control of a network of Euler-Bernouillibeams, Journal of Mathematical Analysis and Applications, 2008, 342: 874–894
    [115] Nicaise, S. and Valein, J., Stabilization of the wave equation on 1-Dnetworks with a delay term in the nodal feedbacks, Networks and Het-erogeneous Media, 2007, 2 : 425–479
    [116] Guo, B. Z. and Xie, Y., A su?cient condition on Riesz basis with paren-theses of non-self-adjoint operator and application to a serially connectedstring system under joint feedbacks, SIAM J. Control Optim., 2004,43(4) : 1234–1252
    [117] Guo, B. Z., Xie, Y. and Hou, X., On spectrum of a general Petrowskytype equation and Riesz basis of n-connected beams with linear feedbackat joints, Journal of Dynamical and Control Systems, 2004, 10(2) : 187–211
    [118] Xu, G. Q., Han, Z. J. and Yung, S. P., Riesz basis property of seriallyconnected Timoshenko beams, International Journal of Control, 2007,80(3) : 470–485
    [119] Han. Z. J. and Wang, L., Riesz basis property and stability of plannarnetworks of controlled strings, Acta Appl. Math., DOI 10.1007/s10440-009-9459-8, to appear.
    [120] Guo, Y. N. and Xu, G. Q., Stability and Riesz basis property for generalnetwork of strings, Journal of Dynamical and Control Systems, 2009,15(2) : 223–245
    [121] Timoshenko, S., Vibration Problems in Engineering, New York: VanNorstrand, 1955
    [122]姚伟岸,钟万勰,辛弹性力学,北京:高等教育出版社, 2002
    [123] Han, S. M., Benaroya, H. and Wei, T., Dynamics of transversely vi-brating beams using four engineering theories, Journal of Sound andVibration, 1999, 225(5) : 935–988
    [124] Meirovitch, L., Analytical Methods in Vibrations, New York : MacMil-lan, 1967
    [125]许跟起,网络微分方程及其进展,新世纪分析数学研讨会,大会专题报告,长沙, 2007
    [126] Pazy, A., Semigroups of Linear Operators and Applications to PartialDi?erential Equations, Berlin: Springer-Verlag, 1983
    [127]李延保,秦国强,王在华,有界线性算子半群应用基础,沈阳:辽宁科学技术出版社, 1992
    [128]周鸿兴,王连文,线性算子半群理论及应用,济南:山东科学技术出版社, 1994
    [129] Guo, B. Z. and Xu, G. Q., Expansion of solution in terms of generalizedeigenfunctions for a hyperbolic system with static boundary condition,Journal of Functional Analysis, 2006, 231 : 245–268
    [130] Xu, G. Q. and Yung, S. P., The expansion of semigroup and criterion ofRiesz basis, J. Di?er. Equ., 2005, 210 : 1–24
    [131] Curtain, R. F. and Zwart, H., An Introduction To Infite-DimensionalLinear Systems Theory, Texts in Applied Masthematics 21, New York:Springer-Verlag, 1995
    [132] Lyubich, Yu. I. and Ph′ong, V. Q., Asymptotic stability of linear di?er-ential equations in Banach spaces, Studia Math., 1988, 88 : 34–37
    [133] Huang, F. L., Characteristic condition for exponential stability of lineardynamical systems in Hilbert spaces, Ann. of Di?. Eqs., 1985, 1 : 43–56
    [134] Xu, G. Q., Liu, D. Y. and Liu, Y. Q., Abstract second order hyper-bolic system and applications to controlled networks of strings. SIAM J.Control Optim., 2008, 47(4) : 1762–1784
    [135] Conway J. B., Functions of One Complex Variable, Second Edition, NewYork: Springer-Verlag, 1978
    [136] Avdonin, S. A. and Ivanov, S. A., Families of Exponentials: the Methodof Moments in Controllability Problems for Distributed Parameter Sys-tems, Cambridge : Cambridge University Press, 1995
    [137] Young, R. M., An Introduction to Nonharmonic Fourier Series, London:Academic Press, 1980
    [138] Vu, Q. P., Wang, J. M., Xu, G. Q. and Yung, S. P. Spectral analysis andsystem of fundamental solutions for Timoshenko beams, Appl. Math.Lett., 2005, 18 : 127–134
    [139] Datko, R., Two examples of ill-posedness with respect to small timedelays in stabilized elastic systems, IEEE Trans. Automatic Control,1993, 38 : 163–166
    [140] Nicaise, S. and Pignotti, C., Stability and instability results of the waveequation with a delay term in the boundary or internal feedbacks, SIAMJ. Control Optim., 2006, 45 : 1561–1585
    [141] Suh, H. and Bien, Z., Use of time-delay actions in the controller design.IEEE Trans. Automatic Control, 1980, 25 : 600–603
    [142] Kwon, W. H., Lee G. W. and Kim, S. W., Performance improvement,using time delays in multi-variable controller design, INT. J. Control,1990, 52 : 1455–1473
    [143] Xu, G. Q. and Feng, D. X., The Riesz basis property of a Timoshenkobeam with boundary feedback and application, IMA Journal of AppliedMathematics, 2002, 67 : 357–370
    [144] Adams, Robert A., Sobolev Spaces, New York : Academic Press, 1975