类风湿关节炎患者炎症细胞因子的表达及临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类风湿性关节炎(rheumatoid arthritis, RA)是一种以关节滑膜炎为特征的慢性全身性自身免疫性疾病。滑膜炎反复发作,导致关节内软骨和软骨下骨组织的破坏,关节功能障碍,最终造成关节畸形和强直。RA是最常见的风湿性疾病之一。不同RA患者的发病、病程及预后差异较大,严重者伴有多种并发症,且病变持续恶化。因此,RA的早期诊断和积极治疗尤为关键。
     RA的详细发病机制仍未阐明。一般认为是某种未知抗原作用于有遗传倾向的个体,诱导自身免疫应答,引发滑膜增生性病变,导致关节的破坏。自身免疫应答包括抗原递呈、免疫细胞相互作用和免疫效应三个阶段,是一个由多种免疫细胞(抗原递呈细胞、T细胞、B细胞)、分子(膜分子和可溶性分子)以及生物因子(细胞因子、炎性因子)参与并受到严格调控及制约的复杂生理过程。
     越来越多的实验证明,细胞因子参与RA的整个病理过程,并在其中发挥重要作用。各种生物因子间的关系密切、作用复杂,其特点是网络性和多相性。在RA不同的病理过程中参与的生物因子不同。IFN-γ、GM-CSF等在RA的触发阶段起关键作用;T细胞向滑膜迁移受IL-15、IL-16的调控;IL-4、IL-10则作用于B细胞的激活和分化生长。而IL-1、IL-8和TNF-α等炎症因子在病变中起主导作用。
     为进一步探讨细胞因子在RA中的免疫效应机制,本文第一部分建立细胞因子实时荧光定量聚合酶链反应(fluorescence quantitative PCR, FQ-PCR)检测方法。将分离获得的人外周血PBMC置激发型CD3抗体包被的培养板中培养,收取不同培养时间点的培养上清和单个核细胞。分离获得单个核细胞的总RNA并逆转录成cDNA。特异性扩增IL-2、IFN-γ和IL-10的基因片段,与PMD18-T载体连接,制备重组质粒并定量。在优化的PCR条件下,建立目的基因和内参照基因(β-Actin)的检测标准曲线,并检测单个核细胞中目的基因的mRNA表达。同时检测培养上清中相应细胞因子的含量,研究其相关性。结果显示:1.在优化的PCR条件下,目的基因和内参照基因的检测标准曲线稳定可靠,在106、105、104和103 copies/ml浓度范围内具有良好线性关系;2.受CD3抗体的激发,外周血单个核细胞胞浆目的基因的mRNA和相应的培养上清中蛋白质表达水平明显高于健康对照;3.目的基因的mRNA水平和蛋白质表达有一定的相关性。
     第二部分通过对活动期和缓解期RA患者外周血中CD4+T细胞表面的共刺激分子和凋亡分子、多种细胞因子及其相应的mRNA表达水平的检测,进而探讨这些免疫效应分子与类风湿性关节炎病程发展、转归以及预后的相关性。结果显示:1.急性活动期RA患者外周血CD4+T细胞表面CD154、CD69的表达明显高于健康对照组和RA稳定期组,而健康对照组和RA稳定期组之间无显著差异;2.急性活动期RA患者的血清和血浆sCD154水平均高于健康对照组和稳定期RA患者组;3.不同细胞因子在健康对照组血清中的基准水平不同,同样外周血PBMC中其相应的mRNA基准水平也有显著差异,细胞因子血清蛋白质基准水平与其mRNA基准水平完全不相关;4.急性活动期RA患者IL-6、IFN-γ以及IL-10的血清含量与其外周血PBMC中其相应的mRNA水平显著升高,两者之间有良好的相关性。
     综上所述,本研建究立了细胞因子荧光定量PCR的检测方法。采用该检测技术,分析急性活动期RA患者外周血细胞因子及其mRNA的表达变化,证实细胞因子在基因转录水平和蛋白质表达水平之间的相关性。RA患者细胞因子及其mRNA的检测,能为RA的临床诊断、治疗和愈后提供新的实验指标,具有潜在的应用价值。
Rheumatoid arthritis (RA) is a systemic, inflammatory autoimmune disorder that presents as a symmetric polyarthritis associated with swelling and pain in multiple joints, often initially occurring in the joints of the hands and feet. Articular inflammation causes activation and proliferation of the synovial lining, expression of inflammatory cytokines, chemokine-mediated recruitment of additional inflammatory cells, as well as B cell activation with autoantibody production. A vicious cycle of altered cytokine and signal transduction pathways and inhibition of programmed cell death contribute to synoviocyte and osteoclast mediated cartilage and bone destruction. In the last few years, the study of serum cytokine profiles and cytokine mRNA expressions in PBMC in patients of RA have become a hot spot in the pathogenesis of RA.
     The study was divided into two parts. In the first part, this study was designed to investigate the mRNA expression and protein level of cytokines in PBMCs stimulated with CD3 mAb, and to compare the pattern of cytokine protein and cytokine mRNA elevations in PBMCs with that of controls. The PBMCs of healthy adult were isolated by Ficoll and incubated with anti-CD3 mAb coated microwell plates. Cytokine levels of IL-2、IFN-γand IL-10 in culture supernatant were tested by ELISA. PBMCs stimulated by CD3 mAb were selected to express mRNA of cytokines. Cytokine gene fragments of were amplified using specific primers. PCR products were inserted into the PMD18-T vector. Recombinant plasmids were selected after sequencing. Target genes and house keeping gene used asβ-Actin were amplified on fluorescence quantitative PCR. Standard amplification curves were developed at the concentration of target genes andβ-Actin ranging from 103、104、105 and 106 copies/ml. The results showed that: 1. Standard amplification curves were established with high specificity, reliability and stability. 2. The expression of mRNA in PBMCs stimulated by CD3 mAb was significantly higher than that of controls. 3. The levels of in supernatant showed significant difference between the PBMCs stimulated with CD3 mAb and controls. Compared with controls, mean cytokine levels of IL-2、IFN-γand IL-10 were all higher in CD3 mAb co-cultured group. 4. Cytokine levels of IL-2、IFN-γand IL-10 have great relation with the mRNA expression of cytokine in PBMCs.
     In the second part, we continuingly established standard amplification curves of IL-1β、IL-6、IL-8 and TNF-α. The study was proposed to investigate cytokine mRNA expression in PBMCs and protein level of cytokines in active RA patients, and to compare the pattern of cytokine protein and cytokine mRNA elevations in active RA patients with that of stable RA patients and healthy controls. We also explore the functions of molecules expressed on CD4+T cells inducing activation of cells and apoptosis in causing imbalanced immunity of patients with RA. The results showed that: 1. Expression of CD154 significantly increased on CD4+T cells in patients with active RA, comparing with stable RA and healthy controls. 2. Soluble CD154 in plasma with active RA was higher than that of stable RA patients and controls. 3. Compared with controls and stable RA patients, mean serum levels of IL-1β, IL-6, IL-8, IL-10 and IFN-γwere all higher in patients with active RA. In contrast, stable RA patients show higher level of IL-10 compared with controls. 4. Basal levels of cytokine mRNA expression in PBMCs of controls were different. mRNA expression of IL-6, IFN-γ, IL-10 and TNF-αshowed a more general increase in patients with active RA comparing with controls and stable RA patients.
     In summary, mRNA expression of cytokines in PBMCs could be measured by fluorescence quantitative PCR. Both the levels of cytokine in serum and mRNA cytokine expression in PBMCs were significantly higher in patients with active RA than that of stable RA patients and controls. All these results showed the measurement of mRNA expression in PBMCs and serum level of cytokines in patients with active might play an important role in RA diagnosis and prognosis in clinic.
引文
1. Arend WP. The innate immune system in rheumatoid arthritis[J]. Arthritis Rheum, 2001, 44(10): 2224-34.
    2. Klinman D. Dose activation of the innate immune system contribute to the development of rheumatoid arthritis[J]. Arthritis Rheum, 2003, 48(3): 590-3.
    3. Holoshitz J. Activation ofγδT cell by mycobacterial antigens in rheumatoidarthritis[J]. Microbes Infect, 1999, 1(3): 197-202.
    4. Bodman-Smith MD, Anand A, Durand V, et al. Decreased expression of FcrR III(CD16) byγδT cell in patients with rheumatoid arthritis[J]. Immunology, 2000, 99(4): 498-503.
    5. Abuzakouk M, Feighery C, Kelleher D, et al. Increased HLA DR and CD44 antigen expression in the gut: evidence of extrarticular immunological activity in rheumatoid arthritis[J]. J Rheumatol, 1999, 26(9): 1869-76.
    6. Waksman BH. Immune regulation in adjuvant disease and other arthritis models[J]. Scand immunol, 2002, 56(1): 12-34.
    7. Kurokawa M, Kato T, Masuko-hongo K, et al. Characterization of T cell clonotypes that accumulated in multiple joints of patients with rheumatoid arthritis[J]. Ann Rheum Dis, 1999, 58(9): 546-53.
    8. VanderBorght A, Geusens P, Raus J, et al. The autoimmune pathogenesis of rheumatoid arthritis: role of autoreactive T cells and new immunotherapies[J]. Semin Arthritis Rheum, 2001, 31(3): 160-75.
    9. VanderBorght A, Geusens P, Vandevycer C, et al. Skewed T-cell receptor variable gene usage in the synovium of early and chronic rheumatoid arthritis patients and persistence of clonally expanded T cells in a chronic patient[J]. Rheumatology, 2000, 39(11): 1189-201.
    10. Dong H, Strome SE, Matteson el, et al. Cositmulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis[J]. J Clin Invest, 2003, 111(3): 363-70.
    11. Pawlik A, Ostanek L, Brzosko I, et al. The expressin of CD4+CD28-T cells in patients with rheumatoid arthritis[J]. Arthritis Res Ther, 2003, 5(4): R210-3.
    12. Sakaguchi N, Takahashi T, Hata H, et al. Altered thymic T-cell seletion due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice[J]. Nature, 2003, 426(11): 454-60.
    13. Pettit AR. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis[J]. Am J Pathol, 2001, 159(11): 1689-99.
    14. Firestein GS, Zvaifler NJ. How important are T cell in chronic rheumatoid synovitis?: II T cell-independent mechanisms from beginning to end[J]. Arthritis Rheum, 2002, 46(2): 298-308.
    15. Panayi GS, Corrigall VM, Pitzalis C. Pathogenesis of rheumatoid arthritis[J]. Rheum Dis Clin North Am, 2001, 27(2): 317-34.
    16. Corrigall V, Solau-Gervais E, Panayi G. Lack of CD80 expression by fibroblast like synoviocytes leading to T cell anergy[J]. Arthritis Rheum, 2000, 43(7): 1606-12.
    17. Kong Y, Feige U, Sarosi I. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand[J]. Nature, 1999, 2(11): 304-306.
    18. Dorner T, Burmester GR. The role of B cells in rheumatoid arthritis: mechanisms and therapeutic targets[J]. Curr Opin Rheumatol, 2003, 15(3): 246-52.
    19. lindenau S, Scholze S, Odendahl M, et al. Aberrant activation of B cells in patients with rheumatoid arthritis[J].Ann N Y Acad Sci, 2003, 987: 246-8.
    20. Schuerwegh AJ, Van Offel WJ, Stevens WJ, et al.Influence of therapy with chimeric monoclonal tumor necrosis factor-αantibodies on intracellular cytoke profiles of T lymphocytes and monocytes in rheumatoid arthritis patients[J]. Rheumatology, 2003, 42: 541-548.
    21. Dayer JM. Evidence for the biological modulation of IL-1 activity: the role of IL-1Rα[J]. Chin Exp Rheumatol, 2002, 20: 514-20.
    22. Boyle DL, Rosengren S, Bugbee W, et al. Quantitative biomarker analysis of synovial gene expression by real-time PCR[J]. Arthritis Resther, 2003, 5(6): R352-360.
    23. Jiang Y, Genant HK, Watt I, et al. A multicenter, double-bind, does-ranging, rand-omize, Placebo-controlled study of recombinant human interl-eukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genantand LarsenScores[J]. Arthritis Rheuma, 2000, 43(5): 1001-1009.
    24. Abramson SB, Amin S.Blocking the effects of IL-1 in rheumatoid arthritis protects bone and cartilage[J]. Rheumatology, 2002, 41(9): 972-980.
    25. Klimiuk PA, Sierakowski S, Latosiewicz R, et al.Interleukin-6, soluble interleukin-2 receptor and soluble interleukin-6 receptor in the sera of patients with different histological patterns of rheumatoid synovitis[J]. Clin Exp Rheumatol, 2003, 21(1): 63-69.
    26. Nakahara H, Song J, et al.Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis[J]. Arthritis Rheum, 2003, 48(6): 1521-1529.
    27.吴华香,张颖,朱永良.类内湿关节炎患者血清3种趋化因子水平的变化及临床意义[J].中华医学杂志,2005,85(8):534-537.
    28. Yokota K, Miyazaki T, Hirano M,et al.Simvastatin inhibits production of interleukin 6 (IL-6) and IL-8 and cell proliferation induced by tumor necrosis factor-alpha in fibroblast-like synoviocytes from patients with rheumatoid arthritis. J Rheumatol. 2006 Mar;33(3):463-71.
    29.刘继明,张毅,朱华亭等.IL-8单克隆抗体的研制及其生物活性研究[J].中华微生物学和免疫学杂志,2000,20(6):588-589.
    30. Rudwaleit M, Yin Z, Siegert S, et al. Response to methotrexate in early rheumatoid arthritis is associated with a decrease of T cell derived tumor necrosis factor alpha, increase of interleukin 10, and predicted by initial concentration of interleukin 4. Ann Rheum Dis, 2000, 59(4): 311-314.
    31. Kim W, Min S, Cho M, et al. The role of IL-12 in inflammatory activity of patients with rheumatoid arthritis. Clin Exp Immunol, 2000, 119(1): 175-181.
    32.张冬青,李宁丽,王利等.类风湿性关节炎患者关节滑液浸润的T细胞表达特性[J].中华免疫学杂志,2003,19:275-277。
    33. Ernestam S, Afklint E, Catrina AI, et al. Synovial espression of IL-15 in rheumatoid arthritis is not influenced by blockade of tumor necrosis factor[J]. Arthritis Res Ther, 2005, 8(1): 18-27.
    34. Maria-Eugenia, Miranda-Carus, Alejandro Balsa, et al. IL-15 and the initiation of cell contact-dependent synovial fibroblast T lymphocyte cross-talk in rheumatoid arthritis:effect of methotrexate[J]. Journal of Immunology, 2004, 173: 1463-1476.
    35. Hwang SY, Kim HY. Expression of IL-17 homologs and their receptors in the synovial cells of rheumatoid arthritis patients[J].Mol Cells, 2005, 19(2): 180-184.
    36. Moller B, Kessler U, et al. Expresion of interleukin-18 and its monokine directd function in rheumatoid arthritis[J]. Rheumatology, 2001, 40: 302-309.
    37. Joosten LA, Netea MG, Kin SH, et al. IL-32, a proinflammatory cytokine in rheumatoid arthritis[J].Proc Natl Acad Sci USA, 2006, 103(9): 3298-3303.
    38. Green MJ, Gough AK, et al. Serum MMP-3 and MMP-1 and progression of joint damage in early rheumatoid arthritis[J].Rheumatology, 2003, 42(1): 83-88.
    39. Tchetverikov I,Ronday HK, et al. MMP profile in paired serum and synovial fluidsamples of patients with rheumatoid arthritis[J]. Ann Rheum Dis, 2004, 63(7): 881-883.
    40. Sone H, Sakauchi M, Takahashi A, et al. Elevated levels of vascular endohelial growth factor in the sera of patients with rheumatoid arthritis correlation with disease avtivity[J]. Life Sci, 2001, 69(16): 1861-1869.
    41. Sone H, Kawakami Y, Sakauchi M, et al. Neutralization of vascular endohelial growth factor prevents collagen-induced arthritis and ameliorates established disease in mice[J]. Biochem Biophys Res Commun, 2001, 281(2): 562-568.
    42. Hwang SY, Kim JY, Kim KW, et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-κB and PI3-kinase/A dependent pathways[J]. Arthritis Res Ther, 2004, 6(2): 120-128.
    43. Garnero P, Gineyts E, Christgau S, et al. Association of baseline levels of urinary glucosyl-galactosyl-pyridinoline and type II collagen ctelopeptide with progression of joint destruction in patients with early rheumatoid arthritis[J]. Arthritis Rheum, 2002, 46(1): 21-30.
    44. Drynda S, Ringel B, Kekow M,et al. Proteome analysis reveals disease-associated marker proteins to differentiate RA patients from other inflammatory joint diseases with the potential to monitor anti-TNF alpha therapy[J]. Pathol Res Pract, 2004,200(2): 165-71.
    45. Lorenz P, Ruschpler P, Koczan D , et al. From transcriptome to proteome: differentially expressed proteins identified in synovial tissue of patients suffering from rheumatoid arthritis and osteoarthritis by an initial screen with a panel of 791 antibodies. Proteomics, 2003, 3(6): 991-1002.
    1. Ledur A, Fitting C, David B, et al. Variable estimates of cytokine levels produced by commercial ELISA kits: results using international cytokine standards[J]. J Immunol Methods, 1995, 186(2): 171-179.
    2. Favre N, Bordmann G, Rudin W. Comparison of cytokine measurements using ELISA, ELISPOT and semi-quantitative RT-PCR[J]. Immunol Methods, 1997, 204(1): 57-66.
    3. Giulietti A, Overbergh L, Valckx D, et al. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression[J]. Methods, 2001, 25(4): 386-401.
    4. Espy MJ, Uhl JR, Sloan LM, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing[J]. Clin Microbiol Rev, 2006, 19(1): 165-256.
    5.陈凤花,王琳,胡丽华.实时荧光定量RT-PCR内参基因的选择[J].临床检验杂志,2005,23(5):393-395.
    6. Tricarico C, Pinzani P, Bianchi S, et al. Quantitative real-time reverse transcription polymerase chain reaction:normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies[J]. Anal Biochem, 2002, 309(2): 293-300.
    7. Lossos IS, Czerwinski DK, Wechser MA, et al. 0ptimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies[J]. Leukemia, 2003, 17(4): 789-795.
    8. Révillion F, Pawlowski V, Hornez L, et al. Glyceraldehyde-3-phosphate dehydro- genase gene expression in human breast cancer[J]. Eur J Cancer, 2000, 36(8): 1038- 1042.
    9. Mori R, Wang Q, Danenberg KD,et al. Both beta-actin and GAPDH are usefulreference genes for normalization of quantitative RT-PCR in human FFPE tissue samples of prostate cancer[J]. Prostate, 2008, 68(14): 1555-1560.
    10. Vila MR, Nicolas A, Morote J, et al. Increased glyceroldehyde-3-phosphate dehydrogenase expression in renal cell carcinoma identified by RNA-based, arbitrarily primed polymerase chain reaction[J]. Cancer, 2000, 89(1): 152-164.
    11. Zhu G, Chang Y, Zuo J, et al. Fudenine, a C-terminal truncated rat homologue of mouse prominin, is blood glucose-regulated and can up-regulate the expression of GAPDH[J]. Biochem Biophys Res Commun, 2001, 281(4): 95l-956.
    12. Ghosh T, Soni K, Scaria V, et al. MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmicβ-actin gene[J]. Nucleic Acids Research, 2008, 36(19): 6318-6332.
    13. Holford NC, Sandhu HS, Thakkar H, et al. Stability of beta-actin mRNA in plasma[J]. Ann N Y Acad Sci, 2008, 1137: 108-111.
    14. Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases[J]. Clin Microbiol Rev, 1996, 9(4): 532-562.
    15. Slavka L, Ste′phane T, Patrick S, et al. Optimal kinetics for quantification of antigen- induced cytokines in human peripheral blood mononuclear cells by real-time PCR and by ELISA[J]. J Immunol Methods, 2003, 281: 27-35.
    16. Patrick S, Lionel P, Ligia C, et al. Cytokine mRNA quantification by real-time PCR[J]. J Immunol Methods, 2002, 259: 55-64.
    1. Gary S. Firestein . Evolving concepts of rheumatoid arthritis[J]. NATURE, 2003, 423: 356-361.
    2 Prevoo ML, vant Hof MA, Kuper HH, et al. Modified disease activity scores that include twenty eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis[J]. Arthritis Rheum, 1995, 38: 44-8.
    3. Pratip K Chattopadhyay1, Joanne Yu1,et al. Live-cell assay to detect antigen-specific CD4+ T-cell responses by CD154 expression[J]. Nature Protocols, 2006, 1: 1-6.
    4. Elzey BD, Grant JF, Sinn HW, et al. Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation[J]. Journal of Leukocyte Biology, 2005, 78(1): 80-84.
    5. M Sugiyama, T Tsukazaki, A Yonekura, et al. Localisation of apoptosis and expression of apoptosis related proteins in the synovium of patients with rheumatoid arthritis[J]. Annals of the Rheumatic Diseases, 1996, 55: 442-449.
    6. C. Sandler, K. A. Lindstedt, S. Joutsiniemi , et al Selective activation of mast cells in rheumatoid synovial tissue results in production of TNF-α, IL-1βand IL-1Ra[J]. Inflammation Research, 2007, 56(6): 230-239.
    7. Chia WT, Yeh LT, Chen YW, et al. IL-1beta in irrigation fluid and mRNA expression in synovial tissue of the knee joint as therapeutic markers of inflammation in collagen antibody-induced arthritis[J]. Disease Markers, 2009, 26(1): 1-7.
    8. Feldmann M,Brennan FM, Foxwell BM, et al. The role of TNF- alpha and IL- 1 in the rheumatoid arthritis[J]. Curr Dir Autoimmun, 2001, 3: 188-199.
    9. Vuolteenaho K, Moilanen T,Hamalainen M, et al. Regulation of nitric oxide production in osteoarthritic and rheumatoid cartilage[J]. Scandinavian Journal of Rheumatology, 2003, 32(1): 19-24.
    10. Pei-Ling Chi, Chuen-Mao Yang. IL-1β-induced expression of cytosolic phospholipase A2 in human synovial fibroblast of rheumatoid arthritis[J]. The FASEB Journal, 2008, 22: 1121-11.
    11. Jae-Gyun Jeong, Jong-Mook Kim, Hongchan Cho, et al. Effects of IL-1βon gene expression in human rheumatoid synovial fibroblasts[J]. Biochemical andBiophysical Research Communications, 2004, 324(1): 3-7.
    12. Weckmann AL, Alcocer-Varela J. Cytokine inhibitors in autoimmune disease[J]. Semin Arthritis Rheum, 1996, 26(2): 539-557.
    13. Barbara E, Drevlow MD, Rosa Lovis, et al. Recombinant human interleukin-1 receptor type I in the treatment of patients with active rheumatoid arthritis[J]. Arthritis Care & Research, 2005, 39(2): 257-265.
    14. W Arend. The balance between IL-1 and IL-1Ra in disease[J]. Cytokine & Growth Factor, 2002,13(4): 323-340.
    15. Lacki JK, Mackiewicz SH. Relations between absolute number of CD4+ CD29+ memory cells and levels of interleukin-6, rheumatoid factors, and acute phase proteins in rheumatoid synovial fluid[J]. Rev Rhum Eng Ed, 1997, 64(3): 160-165.
    16. Hennigan S, Kavanaugh A. Interleukin-6 inhibitors in the treatment of rheumatoid arthritis[J]. Ther Clin Risk Manag, 2008, 4(4): 767-775.
    17. Manfredi M, Benucci M. The role of interleukin-6 in rheumatoid arthritis[J]. Recenti Prog Med, 2008, 99(6): 291-294.
    18. Michael J. Elliott, Ravinder N.Maini, Marc Feldmann, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factorα[J]. Arthritis & Rheumatism, 2008, 58(s2): S92-101.
    19. Bo-Young Yoon1, Mi-La Cho, Yeon-Sik Hong, et al. Anti-CD3 Antibody Induces IL-10-producing CD4+CD25+Regulatory T Cells, Which Suppress T Cell Response in Rheumatoid Arthritis Patients[J]. Immune Network, 2007, 7(3): 124-132.
    20. Lisardo Perez, MD , Javier Orte, MD, JoséA Brieva, et al.Terminal differentiation of spontaneous rheumatoid factor-secreting B cells from rheumatoid arthritis patients depends on endogenous interleukin-10[J]. Arthritis & Rheumatism, 2005, 38(12): 1771-1776.
    1. Mullis K, Faloona F, Scharf S et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986, 51: 263-73.
    2. Russell Higuchi, Carita Fockler, Gavin Dollinger, et al. Kinetic PCR Analysis: Real-time Monitoring of DNA Amplification Reactions. Bio/Technology. 1993, 11: 1026-1030.
    3. C A Heid, J Stevens, K J Livak, et al. Real time quantitative PCR. Genome Res. 1996, 6: 986-994.
    4. UE Gibson, CA Heid, PM Williams et al. A novel method for real time quantitative RT-PCR. Genome Res. 1996, 6: 995-1001.
    5. Holland PM, Abramson RD, Watson R et al. Detection of specific polymerase chain reaction product by utilizing the 5’-3’exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA. 1991, 88(15): 7276-7280.
    6. Yin JL, Shackel NA, Zekry A, et al. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunology and Cell Biology. 2001, 79(3): 213-221.
    7. Tyagi S, Bratu DP, Kramer FR, et al. Multicolor molecular beacons for allele discrimination. Nat Biotechnol. 1998, 16: 49-53.
    8. van Schie RC, Marras SA, Conroy JM, et al. Semi-automated Clone verification by real2time PCR using molecular beacons. Biotechniques. 2000, 29(6): 1296-1306.
    9. Wittwer CT, Herrmann MG, Moss AA, et al. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques. 1997, 22: 130-138.
    10. Brechtbuehl K. Whalley SA, Dusheiko GM, et al. A rapid real-time quantitative polymerase chain reaction for hepatitis B virus.J Virol Methods. 2001, 93(1): 105-113.
    11. M Schutten, D Peters, NK T Back, et al. Multicenter Evaluation of the New Abbott Real-Time Assays for Quantitative Detection of Human Immunodeficiency Virus Type 1 and Hepatitis C Virus RNA. Journal of Clinical Microbiology. 2007, 45(6): 1712-1717.
    12. Foulongne V, Montes B, Didelot-Rousseau MN, et al. Comparison of the LCx Human Immunodeficiency Virus (HIV) RNA Quantitative, RealTime HIV, and COBAS AmpliPrep-COBAS TaqMan Assays for Quantitation of HIV Type 1 RNA in Plasma. Journal of Clinical Microbiology. 2006, 44(8): 2963-2966.
    13. J Elizabeth Bode, William Hurtle, David Norwood. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis. 2004, 42(12): 5825-5831.
    14. Marisa L Wong, Juan F Medrano. Real-time PCR for mRNA quantitation. BioTechniques. 2005, 39(1): 75-85.
    15. Silke Lassmann, Markus Bauer, Richie Soong, et al. Quantification of CK20 gene and protein expression in colorectal cancer by RT-PCR and immunohistochemistry reveals inter- and intratumour heterogeneity. Journal of Pathology. 2002, 198(2):198-206.
    16. JT Rosenbaum, JR Smith. Anti-TNF therapy for eye involvement in spondy- loarthropathy ducible factor 21a. Clin Exp Rheumatol. 2002, 20 (28): S143-145.
    17. Nagadenahalli B Siddappa, Appukuttan Avinash, et al. Regeneration of commercial nucleic acid extraction columns without the risk of carryover contamination. BioTechniques. 2007, 42(2): 186-192.
    18. Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Immunological Methods. 2000, 246(1-2): 79-90.
    19. Schutten M, Hoogen B, Ende ME, et al. Development of a Real-time quantitative RT-PCR for the detection of HIV-2 RNA in plasma. Journal of Virological Methods. 2000, 88: 81-87.
    20. Loeb KR, Jerome KR, Goddard J, et al. High-Throughput Quantitative Analysis of Hepatitis B Virus DNA in Serum Using the TaqMan Fluorogenic Detection System . Hepatology. 2003, 32(3): 626-629.
    21. Keertan Dheda1, Jim F. Huggett1, et al. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques. 2004, 37: 112-119.
    22. Volker Blaschke, Kristian Reicha, Sabine Blaschkeb, et al. Rapid quantitation of proinflammatory and chemoattractant cytokine expression in small tissue samples and monocyte-derived dendritic cells: validation of a new real-time RT-PCR technology. Journal of Immunological Methods. 2000, 246(1-2): 79-90.
    23. Thomas D, Schmittgen, Brian A, et al. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. Journal of Biochemical and Biophysical Methods. 2000, 46(1-2): 69-81.