HSP70表达抑制对LPS所致细胞因子表达的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
严重创伤、烧伤、败血症(特别是革兰氏阴性菌败血症)及各种类型的休克常导致全身炎症反应综合征(systemic inflammatoryresponse syndrome,SIRS)发生。SIRS是临床各科十分常见、平时及战时导致死亡的危重病症。虽然SIRS的发生机制迄今尚未完全阐明,但是LPS所致炎症介质的表达和细胞内信号转导通路的活化,在其发病学中的重要作用已受到广泛关注。
     本研究应用RNA干扰技术,抑制RAW264.7小鼠巨噬细胞的HSP70基因表达。采用RT-PCR检测发现,大肠杆菌脂多糖(LPS)可诱导转空载体的RAW264.7小鼠巨噬细胞(NEO)产生大量IL-1β和IL-6等细胞因子。而用过表达HSP70的RAW264.7细胞进行实验,发现HSP70抑制了LPS诱导的细胞因子表达。当抑制HSP70基因的表达后,再进行LPS刺激,则细胞因子表达增多,说明抑制HSP70的表达可促进LPS诱导的细胞因子表达。
     由于NF-κB/IκB信号转导通路的活化在LPS所致炎症反应中发挥了重要作用,我们进一步分析了HSP70表达抑制对LPS所致NF-κB信号通路活化的影响。通过Western blot等技术检测NF-κB(p65)的核移位,我们发现抑制HSP70表达后,HSP70对NF-κB(p65)核移位(LPS刺激60 min)及LPS刺激20 min所致的IκB降解的抑制作用被解除。
     由于IκBα的降解涉及IκBa的磷酸化,而IκBα的磷酸化是由IκB的激酶IKK以及相应的磷酸酯酶相互影响、协同作用的结果。因此,我们进一步分析了HSP70表达抑制对细胞内磷酸酯酶2A活性的影响。在不用LPS刺激和LPS刺激30min后,RNA干扰组细胞内的磷酸酯酶2A活性低于非干扰对照组细胞。说明抑制HSP70的表达可降低细胞内的磷酸酯酶2A的活性。
     综上所述,HSP70可能通过增高磷酸酯酶2A活性,从而抑制LPS所致IκB的磷酸化及降解,减少NF-κB的核移位,从而抑制NF-κB活化以及细胞因子的表达。
Severe trauma,burns,sepsis and various types of shock often leads to systemic inflammatory response syndrome(SIRS) occurred.SIRS is a very common clinical subjects,which can usually leads to death.Although the mechanism of SIRS has not entirely clear yet,but the important role of the expression of inflammatory and the activation of cellular signal transduction by LPS has been wide concerned.
     In order to understand the anti-inflammatory role of heat shock protein 70(HSP70),we investigated the effects of HSP70 knockdown on the lipopolysacchearide(LPS)-induced production of proinflammatory cytokines and the activation of NF-κB signaling pathways in RAW264.7 mouse macrophage cell line.
     Many studies have shown that elevation of HSP70 caused either by activation of the heat shock response(HSR) or through forced expression of the hsp70.1 gene down-regulated cytokine expression in RAW264.7 murine macrophages.Our data showed that inhibition of HSP70 by HSP70-siRNA could increase LPS-mediated expression of proinflammatory cytokines such as interleukin-1β(IL-1β) and interleukin-6(IL-6) at mRNA levels.
     Because NF-κB regulates the transcription of an exceptionally large number of genes,particularly those involved in inflammatory and acute stress response,which suggests a major role of NF-κB signaling pathway in critical diseases.We further determined the effects of HSP70 knockdown on NF-κB signaling pathway.Firstly western blot was used to analyze the subcellular distribution of NF-κB(p65),the transcriptionally active component of the NF-κB complex.It was shown that nuclear translocation of p65 induced by LPS was strongly inhibited in cells transfected with HSP70.But this effect was significantly abolished by HSP70 knockdown.
     Nuclear translocation of p65 occurs subsequently to the phos-phorylation and degradation of IκBα.Therefore we next determined the effects of HSP70 knockdown on the degradation of IκBα.It was shown that the degradation of IκBαinduced by LPS was significantly increased in the cells transfected with HSP70-siRNA,as compared with the cells transfected with HSP70.
     Because the phosphorylation and the consequent degradation of IκBαare also dependent on intracellular phosphatase activity apart from the effect of IκB kinase(IKK),we further investigated the effects of the inhibition of HSP70 on intracellular phosphatase 2A activity during LPS stimulation.HSP70 knockdown could down-regulate the phosphatase 2A activity in the cells at normal condition or stimulated with LPS for 30min.
     In conclusion,HSP70 could up-regulate the phosphatase 2A activity, which might inhibit the phosphorylation and degradation of IκBαand the subsequently nuclear translocation and activation of NF-κB.HSP70 could inhibit LPS-induced production of inflammatory cytokines by inactivating NF-κB pathway.
引文
[1] Tjardes T, Neugebauer E et al: Sepsis research in the next millennium: concentrate on the software rather than the hardware. Shock, 2002,17(1):1-8.
    
    [2] Hotchkiss RS, Karl IE et al: The pathophysiology and treatment of sepsis. N Engl J Med,2003,348(2): 138-50.
    [3] Kindas-Mugge I, Hammerle AH, Frohlich I et al: Granulocytes of critically ill patients spontaneously express the 72 kD heat shock protein. Circ Shock, 1993,39 (4):247-52.
    
    [4] Kindas-Mugge I, Pohl WR, Zavadova E et al: Alveolar macrophages of patients with adult respiratory distress syndrome express high levels of heat shock protein 72 mRNA. Shock,1996, 5(3):184-9.
    [5] Huang SN, Wang YR, Luo ZY et al: Molecular mechanism of protection of heat shock response against pulmonary injury induces by LPS in mice. Shock, 1994,1 (supple): 22.
    [6] Huang SN, Wang YR, Xiao XZ et al: The role of macrophage in the tolerance to lethal dose of LPS in mice. Shock, 1995,3 (supple): 4-5.
    [7] Suganuma T, Irie K, Fujii E et al: Effect of heat stress on lipopolysaccharide- induced vascular permeability change in mice. J Pharmacol Exp Ther, 2002,303(2): 656-63.
    [8] de Vera ME, Kim YM, Wong HR et al: Heat shock response inhibits cytokine- inducible nitric oxide synthase expression in rat hepatocytes. Hepatology ,1996, 24(5): 1238-45
    [9] Snyder YM, Guthrie L, Evans GF et al: Transcriptional inhibition of endotoxin- induced monokine synthesis following heat shock in murine peritoneal macrophages. J Leukoc Biol, 1992,51(2): 181-7.
    [10] Moon R, Pritts TA, Parikh AA et al: Stress response decreases the interleukin- 1beta-induced production of complement component C3 in human intestinal epithelial cells. Clin Sci (Lond),1999,97(3):331-7.
    
    [11] Kohn G, Wong HR, Bshesh K et al: Heat shock inhibits TNF-induced ICAM-1 expression in human endothelial cells via I kappa kinase inhibition. Shock, 2002,17(2):91-7.
    [12] Wang X, Zou Y, Wang Y et al: Differential regulation of interleukin-12 and interleukin-10 by heat shock response in murine peritoneal macrophages. Biochem Biophys Res Commun,2001,287(5):1041-4.
    [13] Van Molle W, Wielockx B et al: HSP70 protects against TNF-induced lethal inflammatory shock. Immunity, 2002,May;16(5):685-95.
    
    [14] Shi Y, Tu Z, Zhang H, Xiao X. et al:The inhibition of LPS-induced production of inflammatory cytokines by HSP70 involves inactivation of the NF-kappaBpathwaybut not the MAPK pathways. Shock, 2006,Sep;26(3):277-84.
    [15] Wang Y, Li C, Chang Z. et al: Heat shock response inhibits IL-18 expression through the JNK pathway in murine peritoneal macrophages. Biochem. Biophys. Res. Commun,2002,287(5): 1041-1044
    
    [16] Tang D, Kang R, Xiao X et al: The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. The Journal of Immunology, 2007, 179(3): 1236-1244.
    [17] Uwe Senftleben, Michael Karin.The IKK/NF-κB pathway. Crit Care Med,2002,30(1):s18-s26.
    
    [18] Sen R, Baltimore D. ducibility of kappa immunoglobulin enhancer-binding protein NF-kappa B by a posttranslational mechanism.Cell, 1986,47(1): 921-928.
    
    [19] Ghosh S, May MJ, Kopp EB: NF-kappa B and rel proteins: Evolutionarily conserved mediators of immune responses. Annu Rev Immunol,1998,16(1):225-260.
    
    [20] Pritts TA, Wang Q, Sun X et al: Induction of the stress response in vivo decreases nuclear factor-kappa B activity in jejunal mucosa of endotoxemic mice. Arch Surg,2000,135(7):860-6.
    [21] Shanley TP, Ryan MA, Eaves-Pyles T et al: Heat shock inhibits phosphorylation of I-kappaBalpha. Shock,2000,14(4):447-50.
    [22] Wong HR, Ryan MA, Menendez IY et al: Heat shock activates the I-kappaBalpha promoter and increases I-kappaB alpha mRNA expression. Cell Stress Chaperones, 1999,4(1): 1-7.
    [23] Jordi Magrane, Kenneth M. Rosen, Roy C. Smith et al: Intraneuronal -Amyloid Expression Downregulates the Akt Survival Pathway and Blunts the Stress Response The Journal of Neuroscience, November 23, 2005,25(47): 10960 -10969.
    [24]Song MCH,Kellum J.Interleukin-6.Crit Care Med,2005,33(1):453-465.
    [25]Schett G.Immune cells and mediators of inflammatory arthritis.Autoimmunity,2008,41(3):224-229.
    [26]Gabai VL,Merlin AB,Yaglom JA et al.Role of HSP70 in regulation of stress-kinase JNK:implications in apoptosis and aging.FEBS Lett,1998,438(7):1-4.
    [27]Miskolci V,Castro-Alcaraz S,Nguyen P,et al.Okadaic acid induces sustained activation of NFkappaB and degradation of the nuclear IkappaBalpha in human neutrophils.Arch Biochem Biophys,2003,417(1):44-52.
    [28]Yang J,Fan GH,Wadzinski BE,et al.Protein phosphatase 2A interacts with and directly dephosphorylates RelA.J Biol Chem,2001,276(51):47828-47833.
    [1]Janssens,V.and Goris,J.Protein phosphatase 2A:a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling.Biochem.J.2001,353(11):417-439.
    [2]Sontag,E.Protein phosphatase 2A:the Trojan Horse of cellular signaling Cell.Signal.2001,13(1):7-16.
    [3] Janssens, V. et al. PP2A: the expected tumor suppressor. Curr. Opin. Genet. Dev. 2005,15(1): 34-41.
    [4] Sontag E. Protein phosphatase 2A: the trojan horse of cellular signaling. Celluar Signalling, 2001,13(1): 7-16.
    
    [5] Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemical J, 2001,353(3): 417-439.
    
    [6] Mumby, M.C. Protein phosphatase 2A: a multifunctional regulator of cell signaling, in Topics in Current Genetics (Arino, J., and Alexander, D. R.,Eds.) 2003,5(1): 45-72
    
    [7] Ruediger, R., Pham, H.T., and Walter, G. Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene 2001,20(2): 10-15.
    
    [8] Scheidtmann, K.H., Mumby, M.C, Rundell, K et al. Dephosp-horylation of simian virus 40 large-T antigen and p53 protein by protein phosphatase 2A: inhibition by small-t antigen. Mol. Cell, Biol. 1991,11(1): 1996-2003.
    [9] Li, X. and Virshup, D.M. Two conserved domains in regulatory B subunits mediate binding to the A subunit of protein phosphatase 2A.Eur. J. Biochem. 2002,269(3):546-552.
    [10] Xing Y, Xu Y, Chen Y, et al. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell, 2006,127 (2):341 —353.
    [11] Strack, S. et al. Protein phosphatase holoenzyme assembly:identification of contacts between B-family regulatory and scaffolding A subunits. J. Biol. Chem. 2002,277(3): 20750-20755
    [12] Strack, S. et al. Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. J. Biol. Chem. 2004, 279(7): 47732-47739.
    [13] Chen, W. et al. Cancer-associated PP2A Aa subunits induce functional haploinsufficiency and tumorigenicity. Cancer Res. 2005,65: 8183-8192
    [14] Cho U S, Xu W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature, 2007,445(7123): 53-57
    [15] Ruediger, R. et al. Binding specificity of protein phosphatase 2A core enzyme for regulatory B subunits and T antigens. J. Virol. 1999,73(3): 839-842,
    [16] Kremmer, E. et al. Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: abundant expression of both forms in cells. Mol. Cell. Biol. 1997,17(1): 1692-1701,
    [17] Zhou, J. et al. Characterization of the Aa and Ab subunit isoforms of protein phosphatase 2A: differences in expression,subunit interaction, and evolution. Biochem. J. 2003,369(6): 387-398.
    [18] Cho, U.S. et al. Structural basis of PP2A inhibition by small tantigen. PLoS Biol. 2007,5: e202.
    
    [19] T. Fellner, D.H. Lackner, H. Hombauer, P. et al A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo, Genes. Dev. 2003,17(1): 2138-2150,
    
    [20] S.R. Stone, J. Hofsteenge, B.A. Hemmings, Molecular cloning of cDNA encoding two isoforms of the catalytic subunit of protein phosphatase 2A, Biochemistry. 1987,26(1):7215-7220.
    
    [21] Y. Khew-Goodall, B.A. Hemmings, Tissue-specific expression of mRNAs encoding alpha- and beta-catalytic subunits of protein phosphatase 2A, FEBS. Lett. 1988,238(3): 265-268.
    [22] Z. Baharians, A.H. Schonthal, Autoregulation of protein phosphatase type 2A expression, J. Biol. Chem. 1998,273(2): 19019-19024.
    
    [23] Gotz, A. Probst, E. Ehler, B. et al Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha, Proc. Natl. Acad.Sci. U. S. A. 1998,95(1):12370-12375.
    [24] Wei, H. et al. Carboxymethylation of the PP2A catalytic subunit in Saccharomyces cerevisiae is required for efficient interaction with the B-type subunits Cdc55p and Rtslp. J. Biol. Chem. 2001,276: 1570-1577.
    [25] Ogris, E. et al. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A. J. Biol. Chem. 1999,274(3): 14382-14391.
    
    [26] Longin, S. et al. An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator. Biochem. J. 2004,380(4): 111-119.
    [27] Longin, S. et al. Spatial control of protein phosphatase 2A (de)methylation. Exp. Cell Res. 2008,314(2): 68-81.
    [28] Chen, J. et al. Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 1992,257(1):1261-1264.
    [29] Guo, H. and Damuni, Z. Autophosphorylation-activated protein kinase phosphorylates and inactivates protein phosphatase 2A. Proc.Natl. Acad. Sci. 1993,90(1): 2500-2504.
    
    [30] Ikehara, T. et al. Methylation of the C-terminal leucine residue of the PP2A catalytic subunit is unnecessary for the catalytic activity and the binding of regulatory subunit (PR55/B). Biochem. Biophys. Res. Commun. 2007,354: 1052-1057.
    
    [31] Jordens, J. et al. The protein phosphatase 2A phosphatase activator is a novel peptidyl-prolyl cis/trans-isomerase. J. Biol. Chem. 2006,281(4): 6349-6357.
    [32] Leulliot, N. et al. Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity. Mol. Cell 2006,23: 413-424.
    [33] Fellner, T. et al. A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo. Genes Dev. 2003,17(1): 2138-2150.
    [34] Hombauer, H. et al. Generation of active protein phosphatase 2A is coupled to holoenzyme assembly. PLoS Biol. 2007,5: e155,
    [35] Wei, H. et al. Carboxymethylation of the PP2A catalytic subunit in Saccharomyces cerevisiae is required for efficient interaction with the B-type subunits Cdc55p and Rts1p. J. Biol. Chem. 2001,276(3): 1570-1577.
    [36] Gentry, M.S. et al. A novel assay for protein phosphatase 2A (PP2A) complexes in vivo reveals differential effects of covalent modifications on different Saccharomyces cerevisiae PP2Aheterotrimers. Eukaryot. Cell.2005 4(1): 1029-1040.
    [37] J. Gotz, A. Probst, E. Ehler, et al .Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha, Proc. Natl. Acad.Sci. 1998, 95(1): 12370-12375.
    [38] Koren, R. et al. The scaffolding A/Tpd3 subunit and high phosphatase activity are dispensable for Cdc55 function in the Saccharomyces cerevisiae spindle checkpoint and in cytokinesis. J. Biol. Chem. 2004,279(3): 48598-48606.
    [39] Silverstein, A.M. et al. Actions of PP2A on the MAP kinase pathway andapoptosis are mediated by distinct regulatory subunits.Proc. Natl. Acad. Sci. 2002,99(1): 4221-4226.
    [40] Goris, J., Hermann, J., Hendrix, P., et al. Okadaic acid, a non-TPA tumor promotor, inhibits speci(?)cally protein phosphatases, induces maturation and MPF formation in Xenopus laevis oocytes. Adv. 1989,5(1): 579-592.
    [41] Picard, A., Capony, J. P., Brautigan, et al. Involvement of protein phosphatases 1 and 2A in the control of M phase-promoting factor activity in star(?)sh. J. Cell Biol. 1989,109(1): 3347-3354.
    [42] Picard, A., Labbe!, J. C., et al M. Okadaic acid mimics a nuclear component required for cyclin B-cdc2 kinase microinjection to drive star(?)sh oocytes into M phase. J. Cell Biol. 1991,115(1): 337-344.
    [43] Fe!lix, M. A., Cohen, P. and Karsenti, E. Cdc2 H1 kinase is negatively regulated by a type 2A phosphatase in the Xenopus early embryonic cell cycle : evidence from the effects of okadaic acid. EMBO J. 1990, 9(1): 675-683.
    [44] Yamashita, K., Yasuda, H., Pines, J., et al .T. Okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, activates cdc2/H1 kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J. 1990, 9(1): 4331-4338,
    [45] Lee, T. H., Solomon, M. J., Mumby, M. C. et al a negative regulator of MPF, is a form of protein phosphatase 2A. Cell 1991,64(1): 415-423.
    [46] Gould, K. L., Moreno, S., Owen, D. et al. Phosphorylation at Thr167 is required for Schizosaccharomyces pombe p34cdc2,function.EMBO J.1991,10(1):3297-3309,
    [47]Lee,T.H.,Turck,C.and Kirschner,M.W.Inhibition of cdc2 activation by INH/PP2A.Mol.Biol.Cell 1994,5(1):323-338.
    [48]Borgne,A.and Meijer,L.Sequential dephosphorylation of p34cdc2 on Thr-14and Tyr-15 at the prophase/metaphase transition.J.Biol.Chem.1996,271(3):27847-27854.
    [49]Vandre!,D.D.and Wills,V.L.Inhibition of mitosis by okadaic acid:possibleinvolvement of a protein phosphatase 2A in the transition from metaphase to anaphase.J.Cell Sci.1992.101(2):79-91.
    [50]Bastians,H.,Topper,L.M.,Gorbsky,G.L et al.Cell cycleregulated proteolysis of mitotic target proteins.Mol.Biol.Cell 1999,10(1):3927-3941.
    [51]Agostinis,P.,Derua,R.,et al.Speci(?)city of the polycation-stimulated (type-2A) and ATP,Mg-dependent(type-1) protein phosphatases toward substrates phosphorylated by p34cdc2 kinase.Eur.J.Biochem.1992,205(2):241-248.
    [52]Mayer-Jaekel,R.E.,Ohkura,H.,Ferrigno,P et al.Drosophila mutants in the 55 kD aregulatory subunit of protein phosphatase 2A show strongly reduced ability to dephosphorylate substrates of p34cdc2.J.Cell Sci.1994,107(1):2609-2616.
    [53]Ferrigno,P.,Langan,T.A.and Cohen,P.Protein phosphatase 2A1 is the major enzyme in vertebrate cell extracts that dephosphorylates several physiological substrates for cyclin-dependent protein kinases.Mol.Biol.Cell 1993,4(1):669-677.
    [54]Turowski,P.,Myles,T.,Hemmings,B.A.et al.Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55.Mol.Biol.Cell.1999,10(1):1997-2015.
    [55]Lowe,M.,Gonatas,N.K.and Warren,G.The mitotic phosphorylation cycle of the cis-Golgl matrix protein GM130.J.Cell Biol.2000,149(1):341-356.
    [56]Westphal,R.S.,Coffee Jr,R.L.,Marotta,A et al.Identi(?)cation of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. J. Biol.Chem. 1999,274(2): 687-692.
    [57] Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemical J, 2001,353(3): 417- 439.
    [58] Junttila M R, Puustinen P, Niemel M, et al. CIP2A inhibits PP2A in human malignancies. Cell, 2007,130(1): 51- 62.