加味补肝汤对糖尿病大鼠坐骨神经中JNK及c-jun表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察加味补肝汤对糖尿病大鼠坐骨神经中p-JNK丝裂原活化蛋白激酶及c-jun mRNA表达的影响,探讨其对实验性糖尿病大鼠周围神经病变的防治作用。
     方法:
     1.65只清洁级雄性Wistar大鼠随机抽取20只为正常组,余下45只,采用链脲佐菌素(STZ)复制糖尿病神经病变大鼠模型,将造模成功后的40只大鼠,随机分为模型组(20只),加味补肝汤组(20只)。
     2.分别于造模前,造模后4周(4W)和8周(8W)三个时间点尾静脉采血测血糖值及体重。
     3.分别于造模后4W、8W两个时间点处死大鼠,用黄嘌呤氧化酶法测定血清SOD活力,用免疫组化技术测定坐骨神经p-JNK的表达,用逆转录-聚合酶链反应(RT-PCR)技术测定坐骨神经中c-jun mRNA的表达,并在处死之前检测各组大鼠坐骨神经传导速度。
     结果:
     1.加味补肝汤对大鼠体重与血糖的影响:与模型组相比加味补肝汤组对STZ诱导的糖尿病大鼠的体重和血糖无明显改善(P>0.05)。
     2.加味补肝汤对坐骨神经传导速度的影响:与正常组相比,模型组大鼠坐骨神经传导速度在造模后4、8周明显减慢(P<0.05);加味补肝汤干预均能减缓神经传导速度的减慢且与模型组间差异有显著意义(P<0.05)。
     3.加味补肝汤对血清SOD活力的影响:模型组4W、8W时大鼠血清SOD含量低于同期正常组(P<0.05),随病程的延长模型组大鼠血清SOD含量逐渐减少(P<0.05)。加味补肝汤干预后血清SOD水平均明显高于模型组(P<0.05)。
     4.加味补肝汤对大鼠坐骨神经中p-JNK及c-jun mRNA表达的影响:造模后4、8周模型组大鼠p-JNK及c-jun mRNA表达明显高于正常组(P<0.05),加味补肝汤干预后p-JNK及c-jun mRNA表达明显低于模型组(P<0.05)。
     结论:
     1.加味补肝汤可上调糖尿病大鼠机体SOD水平,具有抗氧化应激作用。
     2.加味补肝汤下调p-JNK的表达、抑制c-junmRNA的转录,减少细胞凋亡可能是通过调节机体氧化应激状态,从而减轻了周围神经细胞氧化应激损伤,这可能是该方防治DPN的作用机制之一。
Objective:to observe the effect of jiaweibugan decoction on the expression of p-JNK mitogen-activated protein kinase and c-jun in sciatic nerve of experimental diabetic rats and explore the preventive and therapeutic effects of Jiaweibugan Decoction on peripheral neuropathy on experimental diabetic rats.
     Methods:
     1.Randomly selected 20 rats from 65 clean grade male Wistar rats as normal control group,and remnant 45 rats were established by streptozotocin(STZ) as diabetic model.The 40 rats which were successful induction were randomly divided into two groups including model-control group and JWBG decoction-treated group.
     2.Nonfasting plasma glucose and weight were measured on 4~(th)、8~(th) week and before treatment respectively.
     3.The rats were killed on 4~(th) or 8~(th) week from the beginning of treatment respectively:the blood serum and sciatic nerve were taken out, and then various parameters were measured as follows:serum SOD was determined by xanthine oxidasemethod;p-JNK expression of protein in sciatic nerve by immunohistochemistry;c-jun mRNA expression by reverse-transcriptase polymerase chain reaction(RT-PCR),and detecting the speed of conduction in sciatic nerve before being killed respectively.
     Results:
     (1)The effects of JWBG decoction on blood glucose and weight: compared with the model group,JWBG decoction has no significantly ameliorating to weight and blood glucose of the rats with diabetes induced by streptozotocin(P>0.05).
     (2)The effects of JWBG decoction on the sciatic nerve conduction velocity:compared with the normal group,the sciatic nerve conduction velocity of the model group is significantly slow on the 4~(th) and 8~(th) week after successful induction by STZ(P<0.01).Intervention with JWBG decoction-treated group could slower the decreasing of nerve conduction velocity,and at the same time there also are a significant difference between the JWBG decoction-treated group and model group(p<0.05).
     (3) The effects of JWBG decoction on serum SOD activity:The results showed that SOD in the model group on 4~(th) or 8~(th) week was lower than that in the normal control group(P<0.05),and it became much lower with diabetic course prolonging gradually,while which in jiaweibugan decoction intervened group was markedly higher than that in model rats(P<0.05).
     (4) The effects of JWBG decoction on the expression of p-JNK mitogen-activated protein kinase and c-jun in sciatic nerve:The results showed that the expression of p-JNK and c-jun in the model group on 4~(th) or 8~(th) week was higher than that in the normal control group (P<0.05),while which in jiaweibugan decoction group was markedly lower than that in model rats(P<0.05).
     Conclusion:
     1.Jiaweibugan decoction could up-regulate the activity of SOD,and have the effect of anti-oxidative stress.
     2.JWBG decoction down-regulate the expression of p-JNK, inhibiting transcription of c-junmRNA and decreasing apoptosis may be through adjusting the oxidative stress state of organism,thus it can protect nerve cell from oxidative injury.This may be one of the function mechanisms of protective effects of Jiaweibugan Decoction on diabetic peripheral neuropathy.
引文
[1]Roglic G,Unwin N,Bennett PH,et al.The burden of mottality attributable to diabetes:realistic estimates for the year.2000.Diabetes Care 2005;28(9):213O-2135.
    [2]Vinik AI,Vinik E.Prevention of the complications of diabetes.Am J Manag Care 2003;9(3 Suppl):63-80;
    [3]Yagihashi S,Yamagishi SI,Wada R,et al.Neuropathy in diabetic mice overexpresing human aldose reductase and effects of aldose reductase inhibitor.Brain 2001,124:2448-2458.
    [4]Hafer-Macko CE,Ivey FM,Gyure KA,et al.Thrombomodulin deficiency in human diabetic nerve microvasculature.Diabetes 2002;51(6):1957-1963.
    [5]Mohanty P,Hamouda W,Garg R,et al.Glucose challenge stimulates reactive oxygen species(ROS)generation by leucocytes.J Clin Endocrinol Metab 2000;85(8):2970-2973.
    [6]徐先祥,夏伦祝,高家荣.中药皂苷类物质抗氧化作用研究.进展.中国中医药科技2004;11(2):126-128.
    [7]郭利平.中药复方抗自由基损伤研究进展.天津中医,1998;15(2):95-96.
    [8]陈泽奇.加味补肝汤治疗糖尿病周围神经病变.中国临床康复.2003,7(27):3766-376.
    [9]叶仁群,陈泽奇,李玉红,加味补肝汤对实验性糖尿病大鼠坐骨神经NGF 表达的影响。重庆医科大学学报,2007.30(2):90-94.
    [10]叶仁群,陈泽奇,熊丽丽,加味补肝汤对糖尿病大鼠背根节细胞凋亡的影响.湖南中医药大学学报,2008,28(5):44-47.
    [11]DR Tomlinson.Mitogen-activated protein kinases as glucose transducers for diabetic complications.Diabetologia,1999,42:1271-1281.
    [12]R Van den Berg,G Haenen,H Van den Berg,Transcription factor NF-κB as a potential biomarker for oxidative stress.British Journal of Nutrition,2001(86):S121-S127
    [13] Y Zhou, Q Wang, B Mark Evers, Oxidative stress-induced intestinal epithelial cell apoptosis is mediated by p38 MAPK. Biochemical and Biophysical Research Communications.2006,350(4) 860-865
    [14] H Kaneto, T Matsuoka, Oxidative stress, ER stress, and the JNK pathway in type 2 diabetes. Journal of Molecular Medicine, 2005,83: 429-439.
    [15] SCHMEICHEL AM,SCHMELZER JD, et al. oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes,2003,52(1):165-171.
    [16] M Baba, H Nukada, D McMorran,et al. Prolonged ischemic conduction failure after reperfusion in diabetic nerve. Muscle & Nerve,2006,33(3):350-355.
    [17] Hensley K, Folyd RA. Reactive oxygen species and protein oxidation in aging:a look back. Arch Biochem Biophys,2002,397(2):377-383.
    [18] Arezzo JC, Zotova E. Electrophysiologic measures of diabetic neuropathy: mechanism and meaning. Int Rev Neurobiol, 2002, 50:229-255.
    [19] Calcutt NA, Dines KC, Cesserna RM. Effects of the peptide HP228 on nerve disorders in diabetic rats. Metaboolism, 1998,147(6):650-656.
    [20] Wilson JR, Stittsworth JD, KadirA, et al. Conduction velocity versus amplitude analysis:evidence for demyelination in diabetic neuropathy. Muscle Nerve, 1998,21 (9) :1228-1230.
    [21] Brownlee M. The pathobiology of diabetic complications:a unifying methanism. Diabeties, 2005,54(6):1615-1625.
    [22] Russell JW, Golovoy D,Vincent AM, et al. High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEBJ,2002,16(13):1738- 1748.
    [23] Vincent AM, Russell JW, Low P, et al. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocrine, 2004,,25(4):612-628.
    [24] Vincent AM, Mclean LL, Backus C, et al. Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J,2005,19(6):638-640.
    [25] Hoeldtke RD, Bryner KD, Mcneill DR, et al. Nitrosative stress,uric acid ,and peripheral nerve function in early type 1 diabetes.Diabetes,2002,51(9):2817-2825.
    [26]Marra G,Cotroneo P,Pitocco D,et al.early increase of oxidative stress and reduced antioxidant defenses in patients with uncomplicated type 1 diabetes:a case for gender difference.Diabetes Care,2002,25(2):370-375.
    [27]Gil-del Valle L,de la Cmilian L,Toledo A,et al.Altered redox status in patients with diabetes mellitus type 1.Pharmaco Res,2005,51(4):375-380.
    [28]Wu LL,Chiou CC,Chang PY,et al.Urinary 8-OhdG:a marker of oxidative stress to DNA and a risk factor for cancer,atherosclerosis and diabetic.Clin Chim Acta,2004,339(1-2):1-9.
    [29]Kanauchi M,Nishioka H,Hashimoto T.Oxidative DNA damage and tubulointerstitial injury in diabetic nephropathy.Nephron,2002,91(2):327-329.
    [30]Nishikawa T,Sasahara T,Kiritoshi S,et al.Evaluation of urinary 8-OhdG as a novel biomarker of macrovascular complications in type 2 diabetes.Diabetes Care,2003,26(5):1507-1512.
    [31]Shin CS,Moon BS,Park KS,et al.Serum 8-hydroxy-guanine levels are increased in diabetic patients[J].Diabetes Care,2001,24(4):733-737.
    [32]赵明,张雯,王亦根 自由基清除剂对糖尿病模型大鼠神经组织中自由基代谢影响的实验研究 临床神经病学杂志
    [33]Maritim Ac,Sanders RA,Watkins JB.Effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats.J Nutr Biochem,2003,14(5):288-294.
    [34]Pieper GM,Siebeneich W.Oral administration of the antioxidant,N-acetylcysteine,abrogates diabetes-induced endothelial dysfunction.J cardio vasc Pharmacol,1998,32(1):101-105.
    [35]Cameron NE,Cotter MA,Maxfield EK.Anti-oxidant treatment streptozotocin-diabetic rats.Diabrtlogia,1993,36(4):299-304.
    [36]DA Allen,MM Yaqoob,SM Harwood.Mechanisms of high glucose-induced apoptosis and.its relationship to diabetic complications.The Journal of Nutritional Biochemistry,2005,16(12):705-713.
    [37]Fernyhough P,Gallagher A,Averill SA.Aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy.Diabetes,1999,48(4):881-889.
    [38]Yoon SO,Yun CH,Chung AS.Dose effect of oxidative stress on signal transduction in aging.Mech Ageing Dev,2002,123(12):1597-1604.
    [39]Zafarullah M,Li WQ,Sylvester J,et al.Molecular mechanisms of N-acetylcysteine actions.Cell Mol Life Sci,2003,60(1):6-20.
    [40]S Inoshita,K Takeda,T Hatai,et al.Phosphorylation and Inactivation of Myeloid Cell Leukemia 1 by JNK in Response to Oxidative Stress.J Biol Chem,2002,277(46):43730-43734.
    [41]Woong Sun,Thomas W.Gould,Jason Newbern,et al.Phosphorylation of c-Jun in Avian and Mammalian Motoneurons In Vivo during Programmed Cell Death:An Early Reversible Event in the Apoptotic Cascade.The Journal of Neuroscience,2005,25(23):5595-5603.
    [42]Isabelle Decosterd,,Ru-Rong Ji.A Peptide c-Jun N-Terminal Kinase(JNK)Inhibitor Blocks Mechanical Allodynia after Spinal Nerve Ligation:Respective Roles of JNK Activation in Primary Sensory Neurons and Spinal Astroeytes for Neuropathic Pain Development and Maintenance.The Journal of Neuroscience,2006,26(13):3551-3560;
    [43]Watson A,Eilers A,Lallemand D,et al.Phosphorylation of c-jun is necessary for apoptosis induced by survival signal with drawal in cerebellar granule neurons.J Neurosci,1998,18(2):751.
    [44]Pearson A G,Gray CW,Pearson J F,et al.ATF3 enhances c-Jun mediated neurite sprouting.Brain Res Mol Brain Res,2003,120(1):38245
    [45]吴小梅,朱俐,金淑仪.银杏内酯对神经元氧化应激损伤的保护作用与即早基因表达.中国中医基础医学杂志2003,9(7):51-54
    [46]SHE Fei,SUN Wei,MAO Jie-Ming,W Xian.Calcitonin gene-related peptide gene therapy suppresses reactive oxygen species in the pancreas and prevents mice from autoimmune diabetes.Acta Physiologica Sinica,2003,December 25,2003,55(6):625-632。
    [47]Busui RP,Sullivan KA,Huysen CV,et al.Depletion of Taurine in experimental diabetic neuropathy:implications for nerve metabolic,vascular,and functional deficits.Experimental Neurology,2001,168(2):259-272.
    [48]Obrosova IG,Fathalluh L,Stevens MJ,et al.Taurine counteracts oxidative stress and nerve growth factor deficit in early experimental diabetic neuropathy.Exp Neurol,2001,172(1):211-219.
    [49]Clerk AA,Michael,P.H.Sugden.Stimulation of multiple mitogen-activated protein kinase sub-families by oxidative stress and phosphorylation of the small heat shock protein,HSP25/27,in neonatal ventricular myocytes.Biochem.J,1998,333(Pt3):581-589.
    [50]Maulik NM,Sato BD,Price,et al.An essential role of NF-kappaB in tyrosine kinase signaling of p38MAP kinasse regulation of myocardial adaptation to ischemia.FEBS Lett,1998,429(9):365-369.
    [51]Evans JL,Goldfine ID,Maddux BA,et al.Oxidative stress and stress-activated signals pathways:a unifying hypothesis of type 2 diabetes.Endocr Re V,2002,23(5):599-622.
    [52]李玉红,陈泽奇,叶仁群,加味补肝汤对糖尿病周围神经病变大鼠背根节p38丝裂素活化蛋白激酶表达的干预作用,中国临床康复,2006,10(7)67-69.
    [53]贺钰磊,陈泽奇,叶仁群,加味补肝汤对糖尿病神经病变大鼠血清MDA 水平和NF-kBmRNA表达的影响.湖南中医学院学报,2006,26(4)16-18.
    [54]叶仁群,陈泽奇,熊丽丽,加味补肝汤对糖尿病大鼠背根节细胞凋亡的影响.湖南中医药大学学报,2008,28(5):44-47.
    [55]刘汪洋.活血化瘀法治疗DPN的临床研究[J].空军总医院学报,1994,(2):12
    [56]Flynn MD,Fooke JE.Diabetic neuropathy and the microcirculation[J].Diabetic Med,1995,12(4):298-301
    [57]袁中元,武宝玉.微循环障碍与DM慢性并发症[J].中国微循环,2000,4(20):73-75
    [58]刘冰冰.糖尿病神经病变患者血液流变性与微循环指标分析[J].中国血液流变学杂志,2000,10(1):47-49
    [59]衡先培,王善慧,庞明.糖络通对DPN大鼠血液流变性的影响[J].安微中医学院学报,2002,21(5):42-44
    [60]阴健,郭力弓主.中药现代研究与临床应用.北京:学苑出版社,1993,138-479
    [61]杨新波,黄正明,曹文斌,等.枸杞多糖对正常小鼠及四氧嘧啶糖尿病小鼠血糖的影响.中国药理学通报,1996,6:505.
    [62]折改梅,石阶平.麦冬多糖Md-1,Md-2化学结构的研究.西北药学杂志,2003,18(2):87.
    [63]王本祥.现代中药药理与临床.天津:天津科技翻译出版公司,2004,170-671.
    [1] DeFronzo RA. Pathogenesis of type 2 diabetes : metabolic and molecular implications for identifying diabetes genes . Diabetes Rev, 1997,c1993-c1999.
    [2] Browm M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001 ,414:813.
    [3] Benov L , Batinic Haberle I. A manganese porphyrin suppresses oxidative stress and extends the life span of streptozotocin diabetic rats .Free Radic Res , 2005,39(1)75:81.
    [4] Dursun E , Timur M, Dursun B , Suleymanlar G, Ozben T. Protein oxidation in Type 2 diabetic patients on hemodialysis . J Diabetes Complications , 2005 ,19(3) :142.
    [5] Chakraphan D , Sridulyakul P , Thipakorn B , Bunnag S , Huxley VH ,Patumraj S. Attenuation of endothelial dysfunction by exercise training in STZ-induced diabetic rats[J ]. Clin Hemorheol Microcirc , 2005 ,32(3)212:217.
    [6] Jin H ,Axtell M ,Dahl beck D , et al . NPK1 ,an MEKK12 like mitogen- activated protein kinase kinase kinase ,regulates innate immunity and development in plants[J ]. Dev Cell ,2002 ,3 (2)286 :291
    [7] Hagemann C ,Blank JL.The ups and downs of MEK kinase interactions .Cell Signal,2001, 13( 12):863-875.
    [8] Ballif BA, Blenis J .Molecular mechanisms mediating mammalian Mitogen-activated protein kinase(MAPK)kinase (MEK)-MAPK cell survival signals[J]. Cell Growth Differ,2001, 12( 8):397-408.
    [9] A Simm, G Munch, F Seif, et al. Advanced glycation endproducts stimulate the MAP-kinase pathway in tubulus cell line LLC-PK1. FEBS letters, 1997,410(2):481-484.
    [10] H Ha, KH Kim. Pathogenesis of diabetic nephropathy : Pathogenesis of diabetic nephropathy: the role of oxidative stress and protein kinase C. Diabetes research and clinical practice, 1999,45:147-151.
    [11] M Haneda, et al. Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes ,1997 ,46:847-853.
    [12] DR Tomlinson . Mitogen-activated protein kinases as glucose transducers for diabetic complications . Diabetologia, 1999 ,42 :1271-1281.
    [13] M Haneda, S Araki, M Togawa, et al. Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes 1997; 46: 847-853.
    [14] Shin-Wook Kang, Sharon G Adler, Janine Lapage, et al. p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli. Kidney International. 2001, 60: 543-552.
    [15] Hisayo Fujita, Sayu Omori, Kenji Ishikura,et al. ERK and p38 mediate high-glucose-induced hypertrophy and TGF-β expression in renal tubular cells. Am J Physiol Renal Physiol 2004,286: F120-F126.
    [16] Anthony Makkinje, Deborah A. Quinn , et al . Gene 33/Mig-6, a Transcriptionally Inducible Adapter Protein That Binds GTP-Cdc42 and Activates SAPK/JNK. J.Biol.Chem. 2000, 275(23): 17838—17847.
    [17] Zhang SL, Chen X, Hsieh TJ, et al. High Glucose Stimulates Angiotensinogen Gene Expression via Reactive Oxygen Species Generation in Rat Kidney Proximal Tubular Cells. Endoeriol, 2002, 172(2): 333—344.
    [18] Toyoda M, Suzuki D, Honma M, High expression of PKC-MAPK pathway mRNAs correlates with glomerular lesions in human diabetic nephropathy. Kidney International, 2004, 66: 1107-1114.
    [19] Sakai N. WadaT. Fumichi K. Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Kidney Diseases.2005. 45: 54—65.
    [20] JC Krepinsky, Y Li, D Tang, L Liu. Stretch-induced Raf-1 activation in mesangial cells requires actin cytoskeletal integrity. Cellular signalling, 2005, 17: 311-320.
    [21]A Perlman,LM Lawsin,P Kolachana,el al.Angiotensin Ⅱ Regulation of TGF-β in Murine Mesangial Cells Involves Both PI3 Kinase and MAP Kinase.Annals of Clinical & Laboratory Science,2004,34:277-286.
    [22]Y Gorin,JM Ricono,B Wagner,NH Kim,el al.Angiotensin Ⅱ-induced ERK1/ERK2 activation and protein synthesis are redox-dependent in glomerular mesangial cells.Biochemical Journal,2004,381:231-239.
    [23]T Hayashida,HW Schnaper.High Ambient Glucose Enhances Sensitivity to TGF-1 via Extracellular Signal—Regulated Kinase and Protein Kinase C Activities in Human Mesangial Cells.Journal of the American Society of Nephrology,2004.15:2032.2041.
    [24]M Kuriyama,T Taniguchi,Y Shira,el al.Activation and translocation of PKCδis necessary for VEGF-induced ERK activation through KDR in HEK293T cells.Biochemical and Biophysical Research Communications,2004,325:843-851.
    [25]G Nguyen,CA Burckl(?),JD Sraer,Renin/prorenin-receptor biochemistry and functional significance.Current Hypertension Reports,2004,6:129-132.
    [26]VA McBain,M Robertson,E Muckersie,et al.High glucose concentration decreases insulin-like growth factor type 1-mediated mitogen-activated protein kinase activation in bovine retinal endothelial cells.Metabolism,2003.52:547-551.
    [27]赵炜,王雨生,张瑞,等.P42/44MAPK信号转导通路在缺氧诱导的人视网膜色素上皮细胞VEGF表达中的作用.眼科新进展,2005,25,109-112.
    [28]T Kondo,CR Kahn.Altered insulin signaling in retinal tissue in diabetic states.Journal of Biological Chemistry,2004,279:37997-38006.
    [29]BJ DeBosch,E Baur,BK Deo,et al.Effects of insulin-like growth factor-1 on retinal endothelial cell glucose transport and proliferation.Journal of neurochemistry,2001,77:1157-1167.
    [30]V Poulaki,AM Joussen,N Mitsiades,et al.Insulin-Like Growth Factor-I Plays a Pathogenetic Role in Diabetic Retinopathy.American Journal of Pathology. 2004,165:457-469.
    [31] A OTANI, H TAKAGI, H OH, S KOYAMA, et al. Angiotensin II induces expression of the Tie2 receptor ligand, angiopoietin-2, in bovine retinal endothelial cells. Diabetes. 2001. 50: 867—875.
    [32] Nagineni CN, Samuel W, Nagineni S, et al. Transforming growth factor beta induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells: involvement of mitogcn—actirated protein kinases. J Cell Physiol, 2003, 197: 453-462.
    [33] Hata Y, Rook SL, Aiello LP. Basic fibroblast growth factor induces expression of VEGF receptor KDR through a protein kinase C and p44 / p42 Mitogen—activated protein kinase dependent pathway. Diabetes. 1999,48: 1145—1155.
    [34] Li A, Li H, Jin G, et al. A proteomic study on cell cycle progression of endothelium exposed to tumor conditioned medium and the possible role of cyclin D1/E. Clinical Hemorheology and Microcirculation, 2003, 29(3-4): 383—390.
    [35] AB El-Remessy, M Al-Shabrawey, et al. Neuroprotective and Blood-Retinal Barrier-Preserving Effects of Cannabidiol in Experimental Diabetes. American Journal of Pathology. 2006,168:235-244.
    [36] AM Joussen, V Poulaki, A Tsujikawa, et al. Suppression of diabetic retinopathy with angiopoietin-1. American Journal of Pathology, 2002,160: 1683 - 1693.
    [37] A Ciruela, AK Dixon, S Bramwell, etal. Identification of MEK1 as a novel target for the treatment of neuropathic pain. British Journal of Pharmacology, 2003, 138: 751—756.
    [38] T PURVES, A MIDDLEMAS, S AGTHONG , etal . A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. The FASEB Journal, 2001, 15: 2508—2514.
    [39] Agthong S, Tomlinson DR. Inhibition of p38 MAP kinase corrects biochemical and neurological deficits in experimental diabetic neuropathy. Annals of the New York Academy of Sciences, 2002, 973: 359—362.
    [40] P Fernyhough. Aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy. Diabetes ,1999 ,48:881-889.
    [41] K Oh-Hashi, W Maruyama, K Isobe. Peroxynitrite induces GADD34, 45, and 153 VIA p38 MAPK in human neuroblastoma SH-SY5Y cells. Free Radical Biology and Medicine, 2001,30(2): 213-221.
    [42] Evans JL, Goldfine ID, Maddux BA, et al. Oxidative stress and stress-activated Signaling pathyway unifying hypothesis of type 2 diabetes .EndocrRev,2002, 23(5):599-622
    [43] Begum N, Ragolia L. High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation. American Journal of Physiology, 2000, 278: C81-C91.
    [44] N Shanmugam, YS Kim, L Lanting, R Natarajan, et al. Regulation of Cyclooxygenase-2 Expression in Monocytes by Ligation of the Receptor for Advanced Glycation End Products. Journal of Biological Chemistry, 2003,278: 34834-34844.
    [45] M Suzuki, K Akimoto, Y Hattori. Glucose upregulates plasminogen activator inhibitor-1 gene expression in vascular smooth muscle cells. Life Sciences, 2002, 72: 59-66.
    [46] T Force, K Kuida, M Namchuk, K Parang, Inhibitors of protein kinase signaling pathways emerging therapies for cardiovascular disease. Circulation, 2004, 109:1196-1205.
    [47] T Tawadros, D Martin, IB1/JIP-1 controls JNK activation and increased during rostatic LNCaP cells neuroendocrine differentiation. Cellular Signalling, 2005(17), 929-939.
    [48] Y Chen, A Leask, DJ Abraham, D Pala. Heparan sulfate-dependent ERK activation contributes to the overexpression of fibrotic proteins and enhanced contraction by scleroderma fibroblasts. Arthritis & Rheumatism, 2008(58),577-585.
    [49] M Shinkai, YS Lopez. Clarithromycin has an immunomodulatpry effect on ERK-mediated inflammation induced by Pseudomonas aeruginosa flagellin. Journal of Antimicrobial Chemotherapy, 2007,84-93
    [50] Y Liu, JA Ko, R Yanai, K Kimura. Induction by Latanoprost of Collagen Gel Contraction Mediated by Human Tenon Fibroblasts: Role of Intracellular Signaling Molecules. Investigative Ophthalmology and Visual Science. 2008;49:1429-1436.
    [51] S Medicherla, AA Protter, JY Ma. Preventive and Therapeutic Potential of p38-Selective Mitogen-Activated Protein Kinase Inhibitor in Nonobese Diabetic Mice with Type 1 Diabetes. Journal of Pharmacology and Experimental Therapeutics, 2006,318:99-107.