几种无机纳米粒子/导电聚合物核壳结构复合物的设计合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要从导电聚合物复合物材料的结构设计合成角度出发,以苯胺、吡咯和无机纳米粒子溶胶为基材,采用原位氧化聚合的方法,在无机纳米粒子的溶胶体系中直接进行氧化聚合反应,继而得到了具有良好核壳结构的无机纳米粒子/导电聚合物复合物,并进一步对其湿敏性质进行了研究。
     无机纳米粒子/导电聚合物复合物制备中,具有良好分散性和稳定性的无机纳米粒子溶胶是制备具有优异结构与性能的复合材料的前提。利用表面活性剂作为包覆剂能够获得稳定性好、颗粒均匀并且分散性较好的无机纳米粒子溶胶。本论文采用阴阳离子混合表面活性剂成功的制备了正八面体氧化亚铜微晶及硫化铅纳米晶,详细讨论了表面活性剂在材料的制备过程中对形貌及稳定性的影响。同时,以巯基乙酸为表面活性剂制备了银纳米粒子溶胶。
     在无机纳米粒子的溶胶体系中采用原位氧化聚合的方法直接进行聚合物单体的氧化聚合反应是本论文合成的中心思路。在这种合成过程中,无机纳米粒子均匀的分散于溶胶中,在加入聚合物单体后,由于聚合物单体与无机纳米粒子之间的氢键作用或静电吸附作用,聚合物单体吸附于无机纳米粒子的表面,之后加入氧化剂,引发聚合物单体在无机纳米粒子表面进行氧化聚合反应,这样便会得到无机纳米粒子为核、聚合物为壳的复合物。从而,本论文首次通过这种方法制备了银/聚苯胺、硫化铅/聚苯胺、银/聚吡咯和硫化铅/聚吡咯核壳结构纳米复合物。
     为了研究得到的无机纳米粒子/导电聚合物复合物的性质,本论文创新性地通过原位氧化聚合的方法在电极表面制备了均匀的无机纳米粒子/导电聚合物复合物薄膜,之后对其进行湿敏测试并讨论了湿度敏感机理。
In the process of micro-electronices sensors studies, looking for novel functional materials is an important aspect on improving sensitivity, extending applications and developing studies of sensors. The pure organic or inorganic materials can only provide single capability. However, inorganic/organic compound materials have accepted more attentions for their distinct excessive functionality. In recent years, with the rapid development of materials science, conducting polymers become hotspot materials as a new type of materials which have humidity properties. On the other hand, the structures of materials determine their properties. Preparation of special structure is the base of capability studies of materials. In this paper, we design and prepare inorganic nanoparticles/conducting polymer core-shell nanocomposites. The humidity-sensitive properties of the inorganic nanoparticles/conducting polymer core-shell nanocomposites were also studied.
     This paper is based on the preparation of functional materials with novel structures. We have mentioned a sort of experiment design model for the preparation of inorganic nanoparticles/conducting polymer with well core-shell structure. Then, we design and synthesis of several inorganic nanoparticles/conducting polymer composites. At the same time, the humidity-sensitive properties of the composites were also studied.
     Inorganic nanoparticles/conducting polymer composites design synthesis mechanism: In process of the preparation of inorganic nanoparticles/conducting polymer nanocomposites, the polymer monomers were added to the inorganic nanoparticles colloid and the polymer monomers are adsorbed onto the inorganic nanoparticles via hydrogen bonding or electrostatic interaction. After that, oxidant is added to induce the polymerization of polymer monomers and the polymer monomers are polymerized around the surface of the inorganic particles. Finally, inorganic nanoparticles/conducting polymer core-shell nanocomposites can be obtained. Furthermore, the size and morphology of inorganic nanoparticles would influence the core-shell structure of finally obtained composites.
     Firstly, we have design synthesis Ag/polyaniline and Ag/polypyrrole core-shell structure nanocomposites based on the Ag nanoparticles colloid for the first time. Through changing the reaction conditions such as reaction time and the ratio of reactant, we have discussed the factor influenced the reaction and determined the best reaction conditions finally. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, UV-Vis spectra and conductivity test were used to characterize the obtained Ag/polyaniline and Ag/polypyrrole core-shell structure nanocomposites. Then, we prepared Ag/polyaniline core-shell structure nanocomposites films through in-situ oxidation polymerization method direct based on Ag nanoparticles colloid. Slide electrodes were used as the basic materials for preparation of the films. We have studied the humidity properties of Ag/polyaniline core-shell structure nanocomposites films with different Ag content. Humidity respond time of the composites films were decrease with the increase of Ag content in the composites. The sensitivity had no obvious changes. The resistances of the composites films were decrease with the increase of Ag content. The humidity property repetition of Ag/polyaniline composites films was well. For the humidity property of Ag/polyaniline composites films, we considered that its humidity respond mechanism belong to proton exchange mechanism and has two possible proton exchange processes. At the same time, we have prepared Ag/polypyrrole core-shell structure nanocomposites films and studied its humidity properties. However, the Ag/polypyrrole composites films have no respond to humidity.
     Secondly, octahedral PbS nanocrystals were synthesized in aqueous solution assisted with mixed cationic/anionic surfactants. Then we have design synthesis of PbS/polyaniline and PbS/polypyrrole core-shell structure nanocomposites based on the octahedral PbS nanocrystals for the first time. Electrostatic interaction between PbS nanocrystals and polymer plays a key role in the formation of the PbS/polymer composites. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, UV-Vis spectra, Raman spectra and conductivity test were used to characterize the obtained octahedral PbS nanocrystals , PbS/polyaniline and PbS/polypyrrole core-shell structure nanocomposites. Then, we prepared PbS/polyaniline core-shell structure nanocomposites films through in-situ oxidation polymerization method direct based on octahedral PbS nanocrystals. Slide electrodes were used as the basic materials for preparation of the films. We have studied the humidity properties of PbS/polyaniline core-shell structure nanocomposites films with different PbS content. Humidity respond time and sensitivity of the composites films had no obvious changes with the change of PbS content in the composites. The resistances of the composites films were decrease with the increase of PbS content. The humidity property repetition of PbS/polyaniline composites films was well. For the humidity property of PbS/polyaniline composites films, we considered that its humidity respond mechanism belong to proton exchange mechanism and has two possible proton exchange processes. At the same time, we have prepared PbS/polypyrrole core-shell structure nanocomposites films and studied its humidity properties. However, the PbS/polypyrrole composites films have no respond to humidity.
     Finally, Octahedral Cu2O microcrystals were successfully prepared in aqueous solution using hydrazine as the reducing agent and assisted with mixed cationic/anionic surfactants. cetyltrimethylammonium bromide (CTAB) and dodecyl sulfonie acid sodium salt (SDSA) were used as the mixed cationic/anionic surfactants reaction system. In experiment process, through changing the reaction conditions such as temperature, time and the ratio of reactant, we have determined the best reaction conditions finally. We propose that the presence of the cationic/anionic mixture in the reaction system plays a key role in the formation of octahedral Cu2O microcrystals. The presence of CTAB will bring an increase in the growth rate of 100 faces, which favors the formation of octahedrons with eight 111 faces. The SDSA may play the assistant effect in the formation of octahedral Cu2O microcrystals.
引文
[1] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heerger, J. Chem. Soc., Chem. Comm., (1977) 579.
    [2] H. Shirakawa, Angew. Chem. Int. Ed., 40 (2001) 2574.
    [3] A. G. MacDiarmid, Angew. Chem. Int. Ed., 40 (2001) 2581.
    [4] A. J. Heeger, Angew. Chem. Int. Ed., 40 (2001) 2591.
    [5] A. G. Green, Woodhead, J. Chem. Soc. Trans., 93 (1910) 2388.
    [6] A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasiri, W. Wu, S. I. Yaniger, Mol. Cryst. Liq. Cryst., 121 (1985) 173.
    [7] R. Desurville, M. Jozefowicz, L. T. Yu, Electrochem Acta, 13 (1968) 1451.
    [8] L. T. Yu, M. S.Borredon, M. Jozefowicz, G. Belorgey, R. Buvet J. Polym. Sci., 10 (1987) 2931.
    [9] C. K. Chiang, C. R. Fischer, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J.Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett., 39 (1977) 1098.
    [10] C. K.Chiang, M. A. Druy, S. C. Gau, A. J. Heeger, E. J. Louis, A. G.MacDiarmid, Y. W. Park, H. Shirakawa, J. Am. Chem. Soc., 100 (1978) 1013.
    [11] S. Armers, M. Aldissi, Polymer, 32 (1991) 2043.
    [12] E. M. Genies, C. Tsintavis, A. A. Syed, Mol. Cryst Liq. Cryst., 121, (1985) 181.
    [13] E. M. Genies, M. Lapkowski, Synth. Met., 24 (1988) 61.
    [14] D. K. Moon, K. Osakada, T. Maruyama, T. Yamamoto, Makromol. Chem., 193 (1992) 1723.
    [15] Z. Sun, Y. Geng, J. Li, X. Jing, F. Wang, Synth. Met., 96 (1998) 1.
    [16] Z. Sun, Y. Geng, J. Li, X. Wang, X. Jing, F. Wang, J. Appl.Polym. Sci., 72 (1999) 1077.
    [17] S. Armes, J. F. Miller, Synth. Met., 22 (1988) 385.
    [18] A. Yasuda, T. Shimidzu, Polym. J., 25 (1993) 329.
    [19] Y. Cao, A. Andreatta, A. J. Heeger, P. Smith, Polymer, 30 (1989) 2305.
    [20] E. M. Genies, C. Tsintavis, A. A. Syed, Mol. Cryst. Liq. Cryst., 121 (1985) 181.
    [21] E. M. Genies, M. Lapkowski, Synth. Met., 24 (1988) 61.
    [22] J. C. Chiang, A. G. MacDiarmd. Synth. Met., 13 (1986) 193.
    [23] A. G. MacDiarmid, A. J. Epstein, Synth. Met., 65 (1994) 103.
    [24] P. M. McManus, S. C. Yang, R. T. Cushman, J. Chem. Soc., Chem. Commun. , (1985) 1556.
    [25] S. Stafstr?m, J. L. Bredas, A. J. Epstein, H. S. Woo, B. D. Tanner, W. S. Huang,A. G. MacDiarmid, Phys. Rev. Lett., 59 (1987) 1464.
    [26] R. C. E. Asturias, D. L. Kersher, A. F. Richter,A. G. MacDiarmid , Synth.Met., 29 (1989) 141.
    [27] K. G. Neoh, E. T. Kang, K. L. Tan, Polymer, 33 (1992) 2292.
    [28] A. J. Epstein, J. M. Grinder, F. Zou, Synth. Met., 18 (1987) 303.
    [29] J. M. Ginder, A. J. Epstein, A. G. MacDiarmid, Synth. Met., 29 (1989) 395.
    [30] M. Nechtschein, F. Genond, C. Menardo, Synth. Met., 29 (1989) 211.
    [31] E. T. Kang, T. C. Tan, K. G. Neoh, et al. Polymer, 27 (1986) 1958.
    [32] R. Desurville, M. Jozefowicz and L. T. Yu, Electrochem Acta, 13 (1968) 1451.
    [33] J. P. Travers, J. Chroboczek, F. Deveux, F. Genoud, M. Nechtschein, A. A.Syed, E. M. Genies, C. Tsintavis, Mol. Cryst. Liq. Cryst., 121 (1985) 195.
    [34] E. M. Genies, M. Lapkowski, Synth. Met. , 24 (1988) 61.
    [35] Zaicheng Sun, Yanhou Geng, Ji Li, Xiabin Jing, Fosong, Wang, Synth. Met., 96 (1998) 1.
    [36] S. PArmes, J. F. Miller, Synth. Met., 22 (1988) 385.
    [37] R. L. Hand, R. F Nelson, J. Am. Chem. Soc., 96 (1974) 850.
    [38] I. Kogan, L. Fokeeva, I. Shunina, Y.Estrin, L. Kasumova , M. Kaplunov, G. Davidova, E. Knerelman, Synth. Met., 100 (1999) 303.
    [39] E. M. Genies, C. Tsintavis, A. A. Syed, Mol. Cryst. Liq. Cryst., 121 (1985) 181.
    [40] J. C. Chiang, A. G. MacDiarmd. Synth. Met., 13 (1986) 193.
    [41] J. Huang, M. X. Wan, Solid State Commun., 108 (1998) 255.
    [42] W. A. Gazotti and M. A. Depaoli, Synth. Met., 80 (1996) 263.
    [43] E. Erdem, M. Sacak, M. Karakisla, Polym. Int., 39 (1996) 153.
    [44] J. Huang, M. X. Wan, J. Polym. Sci. Polym. Chem., 37 (1999) 151.
    [45] M. Karakisla, M. Sacak, E. Erdem, U. Akbulut, J. Appl. Electrochem., 27 (1997) 309.
    [46] F. Wudl, R. O. Angus, F. L. Liu, et al., J. Am. Chem. Soc., 109 (1987) 3677.
    [47] F. L. Liu, F. Wudl, M. Novak, A. J. Heeger, J. Am. Chem. Soc., 108 (1986)8311.
    [48] R. V. Gregory, W. C. Kimbrell, H. H. Kuhn. Synth. Met., 28 (1989) 823.
    [49] A. F. Diaz, J. A. Logan, J. Electroanal. Chem., 111 (1980) 111.
    [50] T. Ohsaka, Y. Ohnuki, J. Electroanal. Chem., 161 (1984) 399.
    [51] T. Kobayashi, et al., J. Electroanal. Chem., 161 (1984) 419.
    [52] A. Volkov, G. Tourillon, P. C. Lacaze, J. E. Dubois, J. Electroanal. Chem., 115 (1980) 279.
    [53] W. S. Huang, B. D. Humphrey, A. G. MacDiarmid, J. Chem. Soc., Faradny Trans., 1 (1986) 82.
    [54] D. M. Mohilner, R. N. Adams, W. J. Argersinger, J. Am. Chem. Soc., 84 (1962) 3618.
    [55] G. Mengoli, M. T. Munari, P. Bianco, M. M. Musiani, J. Appl. Polym. Sci., 26 (1981) 4247.
    [56] G. Mengoli, M. Munsani, C. Folonari, J. Electroanal. Chem., 124 (1981) 237.
    [57] E. W. Paul, A. J. Ricco, M. S. Wrighton, J. Phys. Chem., 89 (1981) 1441.
    [58] C. M. Carlin, L. J. Kepley, A. J. Bard, J. Electrochem. Soc., 132 (1985) 353.
    [59] S. F. Patil, A. G. Bedekar, C. M. Agashe, J. Mater. Sci. Lett, 12 (1993) 497.
    [60] P. Wang, J. S. Dordick, Macromolecules, 31 (1998) 941.
    [61] K. S. Aiva, J. Kumar, K. A. Marx, S. Tripathy, Macromolecules, 30 (1997) 4024.
    [62] R. Premachandran, S. Banerjee, V. T. John, G. L. McPherson, J. A. Akkara, D.L. Kaplan, Chem. Mater., 9 (1997) 1342.
    [63] F. Bruno, J. A. Akkara, L. Samuelson, D. L. Kaplan, K. A. Marx, J. Kumar, S.Tripathy, Langmuir, 11 (1995) 889.
    [64] T. Makela, S.Pienimaa, T. Taka, Synth. Met., 85 (1997) 1335.
    [65] D. C. Trivedi, S. K. Dhawan, Synth. Met., 59 (1993) 267.
    [66] P. Novak, K. Muller, K. S. V. Santhanam, O. Haas, Chem. Rev., 97 (1997) 207.
    [67] N. Oyama, T. Tatsuma, T. Sato, T. Sotomura, Nature, 373 (1995) 598.
    [68] L.Yu, X. H. Wang, J. Li, X. B. Jing, F. S. Wang, J. Power Source, 73 (1998) 261.
    [69] K. Hyodo, Electrochimica Acta, 39 (1994) 265.
    [70] T. Kobayashi, H. Yoneyama, H. Tamura, J. Electroanal Chem., l61 (l984) 4l9.
    [71] A. Kitani, T. Yano, K. Sasaki, J. Electroanal. Chem., 209 (1986) 227.
    [72] M. Morita, Makromol Chem., 194 (l993) 1523.
    [73] M. Morita, Makromol. Chem. Phys., l96 (l995) 2649.
    [74] B. P. Jelle, G. Hagen, S. NoDland, Electrochimica Acta 38 (1993) 1497.
    [75] E. A. R. Duek, M. A. De Paoli, Adv. Mater., 5 (1993) 650.
    [76] M. Akhter, H. A. Weakliem, Synth. Met., 26 (1988) 203.
    [77] A. J. Epstein, A. G. MacDiarmid, Synth. Met., 69 (1995) 179.
    [78] Y. Yang, E. Westerweele, C. Zhang, P. Smith, A. J. Heeger, J. Appl. Phys., 77 (1995) 694.
    [79] A. Bsiesy, Y. F. Ermolieff, F. Muller, F. Gaspard, Thin Solid Films, 255 (1995) 43.
    [80] S. A. Chen, K. R. Chuang, C. I. Chao, H. T. Lee, Synth.Met., 82 (1996) 207.
    [81] V. P. Parkhutik, R. Diaz Calleja. E. S. Matveeva, J. M. Martinez-Duart, Synth. Met., 67 (1994) 111.
    [82] K. Kaneto, M. Kaneko, Y. Min and A. G. MacDiarmid, Synth. Mit., 7l (1995) 2211.
    [83] M. Hasik, A. Pron et al., Synth. Met., 55 (1993) 972.
    [84] M. Hasik, J. Pozniczek, A. Pron, J. Molecular Catalysis, 89 (1994) 329.
    [85] M. Hasik, A. Pron et al., J. Chem. Soc., Faraday Trans., 90 (1994) 2099.
    [86] M. R. Anderson, B. R. Mattes, H. Reiss, R. B. Kaner, Science, 252 (1991) 1412.
    [87] B. R. Mattes, M. R. Anderson, J. A. CoAnlin et al., Synth. Met., 55 (1993) 3655.
    [88] H. HachiSuka, T. Ohara, K. I. Ikeda, K. Matsumoto, J Appl. Polym. Sci., 56 (1995) l47.
    [89] L. Rebattet, M. Escoubes, E.Genies, M. Pineri, J Appl. Polym. Sci., 58 (1995) 923.
    [90] L. Reballet, M. Escoubes, E.Genies, M. Pineri, J Appl. Polym. Sci., 57 (1995) 1595.
    [91] G. Mengoli, M. M. Musiani, B. Pelli. J. Appl. Polym. Sci., 28 (1983) 1125.
    [92] X. H. Wang, J. Li, Z. C. Sun, Synth. Met., 102 (1999) 1377.
    [93] Y. Wei, C. Yang, T. Ding, J. Yeh, G. Wei. Polym. Mater. Sci. Eng., 74 (1996) 209.
    [94] V. Svetlicic. A. J. Schmidt, L. L. Miller, Chem. Mater., 10 (1998) 3305.
    [95] J. Feng, A. G. MacDiarmid. Synth. Met., 102 (1999) 1304.
    [96] G. A. Ozin, Adv. Mater., 4 (1992) 612.
    [97] E. P. Giannelis, Adv. Mater., 8 (1996) 29.
    [98] L. Wang, L. X. Feng, J. Appl Polym Sci., 71 (1999) 2087.
    [99] X. Wang, D. Chen, J. Appl Polym Sci., 71 (1999) 665.
    [100] Y. Wang, N. Herron, Science, 273 (1996) 632.
    [101] Y. Mizutani, S. Nago, J. Appl. Polym. Sci., 72 (1999) 1489.
    [102] F. Suzuki, K. Onozato, J. Appl. Polym. Sci., 39 (1990) 371.
    [103] H. Xie, Y. Ma, J. Appl. Polym. Sci., 76 (2000) 845.
    [104] Y. Gao, N. R. Choudhury, N. Dutta, J. Matisons, M. Reading, L. Delmotte, Chem. Mater., 13 (2001) 3644.
    [105] H. Sertchook, D. Avnir, Chem. Mater., 15 (2003) 1690.
    [106] J. Kim, S. S. Kim, K. H. Kim, Y. H. Jin, S. M. Hong, S. S. Hwang, D. Y. Shin, S. S. Im, Polymer, 45 (2004) 3527.
    [107] V. V. Ginzburg, C. Singh, C. Balazs, Macromolecules, 33 (2000) 1089.
    [108] X. Fu, S. Qutubuddin, Polymer, 42 (2001) 807.
    [109] A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, O. Kamigaito, J. Mater. Res., 8 (1993) 1174.
    [110] A. Usuki, Y. Kojima , M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, J. Mater. Res., 8 (1993) 1180.
    [111] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, J. Mater. Res., 8 (1993) 1185.
    [112] T. Lan, T. J. Pinnavaia, Chem. Mater., 6 (1994) 2216.
    [113] H. Shi, T. Lan, T. J. Pinnavaia, Chem. Mater., 8 (1996) 1584.
    [114] Z. Wang, T. J. Pinnavaia, Chem. Mater., 10 (1998) 1820.
    [115] A. Okada, A. Usuki, Mater. Sci. Eng., 13 (1995) 109.
    [116] P. Messersmith, E. P. Giannelis, Chem. Mater., 6 (1994) 1719.
    [117] J. W. Gilman, Appl. Clay Sci., 15 (1999) 31.
    [118] F. Dietsche, R. Mulhaupt, Polym. Bull., 43 (1999) 395.
    [119] D. Porter, E. Metcalfe, M. J. K. Thomas, Fire Mater., 24 (2000) 45.
    [120] J. W. Gilman, C. L. Jackson, A. B. Morgan, R. Harris, E. Manias, E. P. Giannelis, M. Wuthenow, Chem. Mater., 12 (2000) 1866.
    [121] C. Zeng, L. L. James, Macromolecules, 34 (2001) 4098.
    [122] S. Tasaka, H. E. Katz, R. S. Hutton, J. Orenstein, G. H. Frederickson, T. T.Wang, Synth. Met., 16 (1986) 17.
    [123] J.-H. Yang, W.-S. Yang, X.-D. Chai, Y.-M. Chen, L.-S. Li, Y.-A. Cao, Y.-B. Bai, D.-J. Wang, T.-J. Li, Synthetic Metal, 86 (1997) 2127.
    [124] Z. Wang, S. Liub, Z. Duc, Z. Huc, H. Zhanga, Materials Science and Engineering, 24 (2004) 459.
    [125] F. Tiarks, K. Landfester, M. Antonietti, Langmuir, 17 (2001) 5775.
    [126] B. Erdem, E. D. Sudol, V. L. Dimonie, M. El-Aasser, J. Polym. Sci. Polym. Chem., 38 (2000) 4419.
    [127] E. Duguet, M. Abboud, F. Morvan, P. Maheu, M. Fontanille, Macromol. Symp., 151 (2000) 365.
    [128] J. Stejskal, P. Kratochvil, S. P. Armes, S. F. Lascelles, A. Riede, M. Helmstedt, J. Prokes, I. Krivka, Macromolecules, 29 (1996) 6814.
    [129] E. Bourgeat-Lami, J. Lang, J. Colloid Interface Sci., 197 (1998) 293.
    [130] F. Corcos, E. Bourgeat-Lami, C. Novat, J. Colloid Polym. Sci., 277 (1999) 1142.
    [131] I. Sondi, T. H. Fedynyshyn, R. Sinta, E. Matijevic, Langmuir, 16 (2000) 9031.
    [132] W. D. Hergeth, U. J. Steinau, H. J. Bittrich, G. Simon, K. Schmutzler, Polymer, 30 (1989) 254.
    [133] M. J. Percy, C. Barthet, J. C. Lobb, M. A. Khan, S. F. Lascelles, M. Vamvakaki, S. P. Armes, Langmuir, 16 (2000) 6913.
    [134] S. Reculusa, C. Poncet-Legrand, S. Ravaine, C. Mingotaud, E. Duguet, E. Bourgeat-Lami, Chem. Mater., 14 (2002) 2354.
    [135] S. Maeda, S. P. Armes, J. Colloid Interface Sci., 159 (1993) 257.
    [136] S. Maeda, S. P. Armes, Synth. Met. 69 (1995) 499.
    [137] Z. F. Li, M. Swihart, E. Ruckenstein, Langmuir, 20 (2004) 1963.
    [138] L. Zhang, M. Wan, J. Phys. Chem. B, 107 (2003) 6748.
    [139] M. M. Olliveira, E. G. Castro, C. D. Canestraro, D. Z. anchet, D. Ugarte, L. S. Roman, A. zarbin, J. Phys. Chem. B, 110 (2006) 17063.
    [140] A. Mullane, S. Dale, J. Macpherson, P. Unwin, Chem. Commun., (2004) 1606.
    [141] S. Marinakos, D. Shultz, D. Feldheim, Adv. Mater., 11 (1999) 34.
    [142] S. Pillalamarri, F. Blum, A. Tokuhiro, M. Bertino, Chem. Mater., 17 (2005) 5941.
    [143] T. Sarma, D. Chowdhury, A. Paul, A. Chattopadhyay, Chem. Commun., (2002) 1048.
    [144] G. Majumdar, M. goswami, T. Sarma, A. A. Paul, Chattopadhyay, Langmuir, 21 (2005) 1663.
    [145] T. Sarma, A. Chattopadhyay, Langmuir, 20 (2004) 4733.
    [146] B. Z. Tang, Y. H. Geng, J. W. Y. Lam, B. S. Li, Chem. Mater., 11 (1999) 1581.
    [147] J. Liu, M. X. Wan, J. Polym. Sci. Part A: Polym. Chem., 38 (2000) 2734.
    [148] M. X. Wan, J. C. Li, J. Polym. Sci. Part A: Polym. Chem., 36 (1998) 2799.
    [149] J. Deng, X. Ding, Y. Peng, W. Zhang, J. Wang, X. Long, P. Li, A. Chan, Polymer, 8 (2002) 2179.
    [150] Z. Wei, M. Wan, T. Lin, L. Dai, Adv. Mater., 15 (2003) 136.
    [151] J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, A. S. C. Chan, Eur. Polym. J., 38 (2002) 2497.
    [152] W. Feng, X. D. Bai, Y. Q. Lian, J. Liang, X. G. Wang, K. Yoshino, Carbon, 41 (2003) 1551.
    [153] J. H. Chen, Z. P. Huang, D. Z. Wang, S. X. Yang, J. G. Wen, Z. F. Ren, Appl. Phys. A, 73 (2001) 129.
    [154] X. Yan, Z. Han, Y. Yang, B. Tay, J. Phys. Chem. C., 111 (2007) 4125.
    [155] J. Huang, I. Ichinose, T. Kunitake, Chem. Commun., (2005) 1717.
    [156] Y. Sakai, Yoshihiko, M. Matsuguchi, H. Sakai, et al., Sensors and Actuators, B, 24 (1995) 689.
    [157] Y. Sakai, M. Matsuguchi, Hurukawa, Proceeding of the Second East Asia Conference on Chemical Sensors, Xi′an, China, (1995) 336.
    [158] M. Matsuguchi, S. Umeda, Y. Sadaoka, Y. Sakai, Sensors and Actuators, B, 49 (1998) 179.
    [159] Y. Sakai, Y. Sadaoka, M. Matsuguchi, Sensors and Actuators, B, 35 (1995) 85.
    [160] S. Pi-Guey, H. Shuay-Chwen, Sensors and Actuators, B 105 (2005) 170.
    [161] S. Pi-Guey, S. Yi-Lu, W. Chao-Shen, L. Chu-Chieh, Sensors and Actuators, B, 119 (2006) 483.
    [162] Y. Li, M. J. Yang, G. Casalbore-Miceli, N. Camaioni, Sensors and Actuators B, 85 (2002) 73.
    [163] Y. Li, M. J. Yang, Y. She, Talanta, 62 (2004) 707.
    [164] Y. Li, M. J. Yang, Y. She, Sensors and Actuators, B, 107 (2005) 252.
    [165] G. Casalbore-Miceli, M. J. Yang, Y. Li, et al., Sensors and Actuators B, 114 (2006) 584.
    [166] J. Wang, B. Xu, G. Liu, J. Zhang, T. Zhang, Sensors and Actuators B, 66 (2000) 159.
    [167] J. Wang, W. Yan, J. Zhang, F. Qiu, T. Zhang, Materials Chemistry and Physics, 69 (2001) 288.
    [168] J. Wang, Q. Lin, R. Zhou, B. Xu, Sensors and Actuators B, 81 (2002) 248.
    [169] J. Wang, B. K. Xu, S. P. Ruan, S. P. Wang, Materials Chemistry and Physics, 78 (2003) 746.
    [170] J. Wang, F. Wu, Sensors and Actuators B, 99 (2004) 586.
    [171] J. Wang, X. Wang, X. Wang, Sensors and Actuators B, 108 (2005) 445.
    [172] J. Wang, F. Wu, Taylor & Francis, 323 (2005) 71.
    [173] J. Wang, G. Song, Thin Solid Films, 515 (2007) 8776.
    [174] X. Wang, Y. Ding, Sensors and Actuators B, 115 (2006) 421.
    [175] X. Zhou, T. Jiang, J. Zhang, X. Wang, Z. Zhu, Sensors and Actuators B, 123 (2006) 229.
    [176] S. Pi-Guey, S. Yi-Lu, L. Chu-Chieh, Talanta, 69 (2006) 946.
    [177] C. O. Yoon, H. K. Sung, J. H. Kim, E. Barsoukov, J. H. Kim, H. Lee, Synth. Met., 99 (1999) 201.
    [178] K. Hosono, I. Matsubara, N. Murayama, W. Shin, N. Izu, Thin Solid Films, 484 (2005) 396.
    [179] L. Geng, S. Wang, Y. -Q. Zhao, P. Li, S. -M. Zhang, W. -P. Huang, S. -H. Wu, Mater. Chem. Phys., 99 (2006) 15.
    [180] P.-G. Su, L. -N. Huang, Sens. Actuators B: Chem., 123 (2007) 501.
    [181] W. C. Geng, N. Li, X. T. Li, R. Wang, J. C. Tu, T. Zhang, Sens. Actuators B, 125 (2007) 114.
    [182] G. Cui, J. S. Lee, S. J. Kim, H. Nam, G. S. Cha, H. D. Kim, Analyst, 123 (1998) 1855.
    [183] A. A. Karyakin, L. V. Lukachora, E. E. Karyakina, A. V. Orlov, G. P.Kappachora, Anal. Commun., 36 (1999) 153.
    [184] E. Smela, N. Gadegaard, Adv. Mater., 11 (1999) 953.
    [185] A.G. MacDiarmid, Angew. Chem., Int. Ed. Engl., 40 (2001) 2581.
    [186] V. Saxena, B.D. Malhotra, Curr. Appl. Phys., 3 (2003) 293.
    [187] T. F. Otero, I. Boyano, M. T. Gortés, G. Vázquez, Electrochim. Acta, 49 (2004) 3719.
    [188] Y. Wang, N. Toshima, J. Phys. Chem., B, 101 (1997) 5301.
    [189] J. C. Lin, C. Y. Wang, Mater. Chem. Phys., 45 (1996) 136.
    [190] R. Jin, Y. W. Cao, A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zhang, Science, 294 (2001) 1901.
    [191] J. R. Gould, J. R. Lenhard, A. A. Muenter, S. A. Godleski, S. Farid, J. Am. Chem. Soc., 122 (2000) 11934.
    [192] P. K. Khanna, N. Singh, S. Charan, A. K. Viswanath, Mater. Chem. Phys., 92 (2005) 214.
    [193] J. M. Du, Z. M. Liu, B. X. Han, Z .H. Li, J. L. Zhang, Y. Huang, Microporous Macroporus Mater., 84 (2005) 254.
    [194] S. K. Pillalamarri, F. D. Blum, A. T. Tokuliro, M.F. Bertino, Chem. Mater., 17 (2005) 5941.
    [195] A. H. Chen, H. Q. Wang, X. Y. Li, Chem. Commun., 14 (2005) 1863.
    [196] E. Pintér, R. Patakfalvi, T. Fülei, Z. Gingl, I. Dékány, C. Visy, J. Phys. Chem. B, 109 (2005) 17474.
    [197] P. Gadenne, Y. Yagil, G. Deutscher, J. Appl. Phys., 66 (1989) 3019.
    [198] R. S. Kane, R.E. Cohen, R. Silbey, J. Phys. Chem., 100 (1996) 7928.
    [199] Y. Wang, N. Herron, J. Phys. Chem., 91 (1987) 257.
    [200] S. Wang, S. Yang, Langmuir, 16 (2000) 389.
    [201] D. Yu, D. Wang, Z. Meng, J. Lu, Y. Qian, J. Mater. Chem., 12 (2002) 403.
    [202] Y. Ma, L. Qi, J. Ma, H. Cheng, Cryst. Growth Des., 4 (2004) 351.
    [203] S.M. Lee, Y.W. Jun, S.N. Cho, J.W. Cheon, J. Am. Chem. Soc., 124 (2002) 11244.
    [204] Y. He, Mater. Chem. Phys., 92, 134 (2005).
    [205] J. Deng, C. He, Y. Peng, J. Wang, X. Long, P. Li, and A. Chan, Synth. Met., 139, 295 (2003).
    [206] X. Yang, T. Dai, Y. Lu, Polymer, 47 (2006) 441.
    [207] D. Chowdhury, A. Paul, A. Chattopadhyay, Langmuir, 21 (2005) 4123.
    [208] Y. Chang, J.J. Teo, H.C. Zeng, Langmuir, 21 (2005) 1074.
    [209] X. Li, H. Gao, C.J. Murphy, L. Gou, Nano Lett., 4 (2004) 1903.
    [210] W. Wang, G. Wang, X. Wang, Y. Zhan, Y. Lin, C. Zheng, Adv. Mater., 14 (2002) 67.
    [211] P. He, X. Shen, H. Gao, J. Colloid Interface Sci., 284 (2005) 510.
    [212] L. Gou, C.J. Murphy, Nano Lett., 3 (2003) 231.
    [213] R. Liu, F. Oba, E.W. Bohannan, F. Ernst, J.A. Switzer, Chem. Mater., 15 (2003) 4882.
    [214] C. Lu, L. Qi, J. Yang, X. Wang, D. Zhang, J. Xie, J. Ma, Adv. Mater., 17 (2005) 2562.
    [215] X. Zhang, Y. Xie, F. Xu, X. Liu, D. Xu, Inorg. Chem. Commun., 6 (2003) 1390.