褐飞虱报警信息素的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了褐飞虱对同类昆虫遇险时释放的挥发物的行为反应,分离测定了这种挥发物的主要成分,并以这种挥发物的溶剂萃取物来检测其对褐飞虱的行为影响。其研究结果如下:
     (1)褐飞虱对同类昆虫遇险释放挥发性物质的行为反应:利用“Y”型嗅觉仪测定了褐飞虱对同类昆虫被草间小黑蛛捕食时产生的化学物质的行为反应,以此验证褐飞虱在遭遇危险时是否产生向同类报警的化学信号。结果表明,褐飞虱若虫对草间小黑蛛释放的挥发性化学物质无逃避反应,而对同类昆虫遭遇草间小黑蛛捕食时释放的挥发性物质则表现出明显的逃避行为,其中1龄褐飞虱若虫有显著的逃避反应,2-3龄若虫有极显著的逃避反应,4-5龄若虫无明显反应。说明褐飞虱低龄若虫在遭遇天敌捕食时会释放挥发性化学物质,产生报警行为,给同类昆虫一个危险警示信号,但褐飞虱高龄若虫的报警行为不明显,推测其原因可能是草间小黑蛛对褐飞虱高龄若虫的捕食能力较弱或者是褐飞虱高龄若虫被捕食时不产生报警信号。
     (2)褐飞虱遇险释放的挥发性物质的分离与鉴定:利用PDMS、CAR/PDMS柱材料的固相微萃取法分别萃取褐飞虱自身释放的挥发性物质和褐飞虱遭遇草间小黑蛛捕食时释放的挥发性物质,并用GC-MS进行分析。结果表明,褐飞虱在遭遇草间小黑蛛捕食时产生了一种新的挥发物,通过与已知化合物的质谱图比对,发现与(E)-2-已烯醛相似,推测这种化合物具有与(E)-2-已烯醛相似的化学结构,而且能够在分子之间发生反应,生成分子量较高但不稳定的化合物。已知(E)-2-已烯醛化合物在蝽象、蟑螂等昆虫的报警信息素都有发现过,因此这种化合物很可能对褐飞虱也有报警作用,其实际结构还需要进一步的研究。
     (3)褐飞虱遇险产生报警信息素的验证:比较研究了褐飞虱报警信息素的提取条件,明确了乙酸乙酯对褐飞虱遇险释放的挥发性物质有较好的提取效果,在500mL味源瓶中放入300头褐飞虱2-3龄若虫比较适宜,提取时间连续提取3小时以上,提取温度在15-25℃左右。用“Y”型嗅觉仪检测这类萃取物对褐飞虱2、3龄若虫的行为影响。结果表明,该乙酸乙酯提取物能引起褐飞虱2-3若虫有显著的逃避行为,这验证了褐飞虱遭遇天敌如草间小黑蛛捕食时能释放向同类昆虫报警的化学信息素,而且这类化合物易溶于乙酸乙酯,其挥发性也比乙酸乙酯小。
This paper was aimed to study alarm behavior and alarm pheromone of BPH。 Y-tube olfactometer was used to examine whether volatiles released by BPH being preyed on by dwarf spider could elicited escape behavior of colonymates; Then, the volatiles were isolated and analysed. At last, solvent extract of the volatiles was examined with Y-tube olfactometer for its effect on BPH. The results were as follows:
     (1) Behavioral response of the brown planthopper, Nilaparvata lugens, to the volatile substance of the same kind of insects attacked by dwarf spider, Erigonidium graminicolum
     Behavioral response of the brown planthopper (BPH), Nilaparvata lugens, to the same kind of insects attacked by dwarf spider, Erigonidium graminicolum, was studied with Y-tube olfactometer in order to verify whether the alarm signal was released to the same kind of insects when BPH attacked by their natural enemies. The results showed that no escape response of BPH nymphs to the chemicals of E. graminicolum, significant escape response of the1st instar nymphs, very significant escape response of the2nd to3rd instar nymphs and no obvious response of the4th to5th to the volatile substance released by the same kind of insects when attacked by E. graminicolum. It was conjectured that E. graminicolum may has weak predatory ability on older nymphs of BPH, or older nymphs may not release alarm signal when they were attacked by E. graminicolum.
     (2) Isolation and analysis of the volatile substance released by BPH indangrous
     Volatile substances released by BPH only and BPH attacked by E. graminicolum were extracted with SPME material included PDMS and CAR/PDMS. Empty odor source and BPH only was used as control. Extract was analyzed with GC-MS. The result showed that new substance was released by BPH coexisting with E. graminicolum. The new substance was presumed to be a seven-carbon acyclic compound with an alkenyl and a carbonyl group, according to the mass-spectrogram. In addition, some components were both detected in volatiles of BPH only and BPH coexisting with the spider. They may be contaminant, or alarm pheromone produced as a result of the transmission from plant to odor source, or other pheromones of BPH. Their origin and function should be still determined by further study.
     (3) Verification of alarm pheromone released by BPH in dangrous
     By studying the extract condition of alarm pheromones of BPH, we found a good extract effect of the volatiles extracted with ethyl acetate solvent, a reasonable number of2nd to3th instar nymphs of BPH (300BPH in500mL taste source bottle), suitable extract time for continuous three hours, and extract temperature is15-25℃. Effect of this extract to2nd to3th instar nymphs of BPH was tested with Y-tube olfactometer. The result showed that ethyl acetate extract induce significantly the escape behavior of2nd to3th instar nymphs of BPH. Ethyl acetate solvent was proved to be most effective to extract the volatiles released by BPH, and it was verified that BPH could release alarm pheromones to the same kind of insects when they attacked by E. graminicolum. This compound dissolved in ethyl acetate solvent easily, and its volatile was less than ethyl acetate.
引文
1. Acar E B, Medina J C, Lee M L, et al. Olfactory behavior of convergent lady beetles (Coleoptera: Coccinellidae) to alarm pheromone of green peach aphid [J]. Canadian Entomologist.2001,133:389-397.
    2. Akiyama M, Sakata T, Mori N, et al. Neryl formate, the alarm pheromone of Rhizoglyphus setosus Manson (Acarina: Acaridae) and the common component among four Rhizoglyphus mites [J]. Applied Entomology and Zoology,1997,32: 75-79.
    3. Al Abassi S, Birkett M A, Pettersson J, et al. Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor is mediated by paired olfactory cells [J]. Journal of Chemical Ecology,2000,26:1765-1771.
    4. Alaux C, Robinson G E, Alarm pheromone induces immediate-early gene expression and slow behavioral response in honey bees [J]. Journal of Chemical Ecology,2007,33(7):1346-1350.
    5. Aldrich J R. Chemical ecology of the Heteroptera [J]. Annual Review of Entomology,1988,3:211-238.
    6. Aldrich J R, Neal J W, Oliver J E, et al. Chemistry vis-a-vis maternalism in lace bugs (Heteroptera: Tingidae): alarm pheromones and exudate defense in Corythucha and Gargaphia species [J]. Journal of Chemical Ecology,1991,17: 2307-2322.
    7. Almohamad R F J, Verheggen F, Francis G, et al. Emission of alarm pheromone by non-preyed aphid colonies. Journal of Applied Entomology [J].2008,132 (8): 601-604.
    8. Arakaki N. Alarm Pheromone Eliciting Attack and Escape Responses in the Sugar Cane Woolly Aphid, Ceratovacuna lanigera [J]. Journal of Ethology,1989, 7:83-90.
    9. Beale M H, Birkett M A, Bruce T J A, et al. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior [J]. Proceedings of the National Academy of Sciences. USA,2006,103:10509-10513.
    10. Bergmann J, Gonzalez A, Zarbin P H Z. Insect pheromone research in South America [J]. Journal of the Brazilian Chemical Society,2009,20(7):1206-1219.
    11. Blatt S E, Borden J H, Pierce J R, et al. Alarm pheromone system of the western conifer seed bug, Leptoglossus occidentalis. Journal of Chemical Ecology,1998, 24:1013-1031.
    12. Boch R, Shearer D A, Stone B C. Identification of iso-amyl acetate as an active component in the sting pheromone of the honey bee [J]. Nature,1962,195: 1018-1020.
    13. Bowers W S, Nault L R, Webb R E, et al. Aphid alarm pheromone:isolation, identification, synthesis [J]. Science,1972,177:1121-1122.
    14. Bowers W S, Nishino C, Montgomery M E, et al. Sesquiterpene progenitor, Germancrene A:an alarm pheromone in aphids [J]. Science,1977a,196: 680-681.
    15. Bowers W S, Nishino C, Montgomery M E, et al. Structure activity relationships of analogs of the aphid alarm pheromone. (E)-β-farnesene [J]. Journal of Insect Physiology,1977b,23:697-701.
    16. Bradshaw J W S, Howse P E. Sociochemicals of ants [M]. Chemical ecology of insects. London: Chapman and Hall. In Bell W.J. Card6 RT (eds.),1984, p429-473.
    17. Cammaerts M C, Inwood M R, Morgan E D, et al. Comparative study of the pheromones emitted by workers of the ant Myrmica rubra and Myrmica scabrinodis [J]. Journal of Insect Physiology,1978,24:207-214
    18. Collins A M, Blum M S. Bioassay of compounds derived from the honeybee sting [J]. Journal of Chemical Ecology,1982,8:463-470.
    19. Collins A M, Blum M S. Alarm responses caused by newly identified compounds derived fron the honeybee sting [J]. Journal of Chemical Ecology,1983,9: 57-65.
    20. Costa-leonardo A M, Kitayama K. Frontal gland dehiscence in the Brazilian termite Serritermes serrifer (Isoptera: Serritermitidae) [J]. Sociobiology,1991,19: 333-338.
    21. De Vos M, Cheng W Y, Summers H E, et al. Alarm pheromone habituation in Myzus persicae has fitness consequences and causes extensive gene expression changes [J]. Proceedings of the National Academy of Sciences,2010,107: 14673-14678.
    22. Du Y, Poppy G. M, Powell W, et al. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi[J]. Journal of Chemical Ecology,1998,24:1355-1368.
    23. Edwards L J, Siddball J B, Dunham L, et al, Trans-betafarnesene, alarm pheromone of the green peach aphid, Myzus persicae (Sulzer) [J]. Nature,1973, 241:126-127.
    24. Farine J P, Everaerts C, Le Quere J L, et al. The defensive secretion of Eurycotis floridana (Dictyoptera: Blattidae: Polyzosteriinae):Chemical identification and evidence of an alarm function [J]. Insect Biochemistry and Molecular Biology, 1997,27 (6):577-586.
    25. Francis F, Vandermoten S, Verheggen F, et al. Is the (E)-β-farnesene only volatile terpenoid in aphids? [J]. Journal of Applied Entomology,2005a,129:6-11.
    26. Francis F, Lognay G, Haubruge E. Role of (E)-β-farnesene in systematic aphid prey location by Episyrphus balteatus larvae (Diptera: Syrphidae) [J]. European Journal of Entomology,2005b,102:431-436.
    27. Foster S P, Denholm I, Thompson R, et al. Reduced response of insecticide-resistant aphids and attraction of parasitoids to aphid alarm pheromone; a potential fitness trade-off [J]. Bulletin of Entomological Research,2005,95: 37-46.
    28. Free J B. Pheromones of social bees [M]. Chapman and Hall. London,1987.
    29. Gibson R W, Pickett J A. Wild potato repels aphids by release of aphid alarm pheromone [J]. Nature,1983,302:608-609.
    30. Hatano E, Kunert G., Bartram S, et al. Do aphid colonies amplify their emission of alarm pheromone [J]. Journal of Chemical Ecology,2008,34:1149-1152.
    31. Hatano E, Kunert G., Weisser W W. Aphid wing induction and ecological costs of alarm pheromone emission under field conditions [J]. Public Library of Science, 2010,5(6):111-118.
    32. Holldobler B, Wilson E O. The Ants [M], Harvard University Press, Cambridge, MA.1990.
    33. Hughes W O H, Howse PE, Goulson D. Mandibular gland chemistry of grass-cutting ants:species, caste, and colony variation[J]. Journal of Chemical Ecology,2001,27(1):109-124.
    34. Hughes W O H, Howse P E, Vilela E F, et al. Field evaluation of potential of alarm pheromone compounds to enhance baits for control of grass-cutting ants (Hymenoptera: Formicidae) [J]. Journal of Economic Entomology,2002,95(3): 537-543.
    35. Hunt G J, Wood K V, Guzm'an-Novoa E, et al. Discovery of 3-methyl-2-bute n-1-yl acetate, a new alarm component in the sting apparatus of Africanized honey bees [J]. Journal of Chemical Ecology.2003,29:451-461.
    36. Jackson B D. Morgan E D. Insect chemical communication: pheromones and exocrine glands of ants [J]. Chemoecology,1993,4:125-144.
    37. Jan S, Hanus R, Kalinova B, et al. (E,E)-a-Farnesene, an alarm pheromone of the termite Prorhinotermes canalifrons[J].Journal of Chemical Ecology,2008,34: 478-486.
    38. Johnson L K, Haynes L W, Carlson M A, et al. Alarm substances of the stingless bee, Trigona silvestriana. Journal of Chemical Ecology,1985,11:409-416
    39. Johnson L K, Wiemer D F. Nerol, an alarm substance of the stingless bee, Trigona fulviventris (Hymenoptera, Apidae) [J]. Journal of Chemical Ecology 1982,8:1167-81.
    40. Karban R, Chen Y. Induced resistance in rice against insects [J]. Bulletin of Entomological Research,2007,97(4):327-335.
    41. Kielty J P, Allen Williams L J, Underwood N, et al. Behavioral responses of three species of ground beetle (Coleoptera: Carabidae) to olfactorycues associated with prey and habitat [J]. Journal of Insect Behavior.1996,9:237-250.
    42. Kislow C, Edwards L J. Repellent odour in aphids [J]. Nature,1972,235: 108-109.
    43. Kou R, Tang D S, Chow Y S. Alarm pheromone of pentatomid bug, Erthesina fullo Thunberg (Hemiptera: Pentatomidae). Journal of Chemical Ecology,1989, 15:2695-2702.
    44. Kunert G, Reinhold C, Gershenzon J. Constitutive emission of the aphid alarm pheromone, (E)-β-farnesene, from plants does not serve as a direct defense against aphids [J]. BMC Ecology,2010,10:23.
    45. Kuwahara Y, Akimoto K, Leal W S, et al. Isopiperitenone:a new alarm pheromone of the acarid mite, Tyrophagus similis (Acarina, Acaridae) [J]. Agricultural Biology and Chemistry,1987,51:3441-3442.
    46. Kuwahara Y. Chemical ecology in astigmatid mites, in R. T. Carde and J. G. Millar (eds.), Advances in Insect Chemical Ecology [M]. Cambridge University Press, Cambridge,2004, p76-109,
    47. Kuwahara Y, Ibi T, Nakatani Y, et al. Neral, the alarm pheromone of Schwiebea elongata (Banks) (Acari:Acaridae) [J]. Journal of Acarology Society of Japan, 2001,10:19-26.
    48. Kuwahara Y, Ishii S, Fukami H. Neryl formate:Alarm pheromone of the cheese mite, Tyrophagus putrescentiae (Schrank) (Acarina, Acaridae) [J]. Cellular and Molecular Life Sciences,1975,31, (10):1115-1116.
    49. Kuwahara Y, Kawai A, Shimizu N, et al. Geraniol, E-3,7-dimethyl-2,6-octa dien-1-ol, as the alarmpheromone of the sycamore lace bug Corythucha ciliate (Say) [J]. Journal of Chemical Ecology,2011,37:1211-1215.
    50. Kuwahara Y, Koshii T, Okamoto M, et al. Chemical ecology on astigmatid mites. XXX. Neral as the alarm pheromone of Glycyphagus domesticus (DeGeer) (Acarina: Glycyphagidae) [J]. Japan Journal of San Zoolology,1991b,42: 29-32.
    51. Kuwahara Y, Satou, T, Suzuki, T. Geranial as the alarm pheromone of Histio stoma laboratorium Hughes (Astigmata:Histiostomidae) [J]. Applied Entomology and Zoology,1991a,26:501-504.
    52. Kuwahara Y, Shibata C, Akimoto K, et al. Pheromone study on acarid mites. XIII. Identification of neryl formate as an alarm pheromone from the bulb mite, Rhizoglyphus robini (Acarina: Acaridae) [J]. Applied Entomology and Zoology, 1988,23:76-80.
    53. Lawrence M D, Alex H G F, Roitberg B D. The economics of escape behaviour in the pea aphid, Acyrthosiphon pisum [J]. Oecologia,1990,83:473-478.
    54. Leal W S, Nakano Y, Kuwahara Y, et al. Pheromone study on astigmatid mites. XVII. Identification of 2-hydroxy-6-methyl-benzaldehyde as the alarm pheromone of the acarid mite Tyroglyphus perniciosus (Acarina: Acaridae), and its distribution among related mites [J]. Applied Entomology and Zoology,1988, 23:422-427.
    55. Leal W S, Panizzi A R, Niva C C. Alarm pheromone system of leaf-footed bug Leptoglossus zonatus (Heteroptera:Coreidae). Journal of Chemical Ecology,1994, 20:1209-1216.
    56. Lockwood J A, Story R N. Bifunctional pheromone in the first instar of the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae):Its characterization and interaction with other stimuli [J]. Annals of the Entomological Society of America,1985,78:474-479.
    57. Lockwood J A, Story R N. Defensive secretion of the southern green stink bug (Hemiptera Pentatomidae) as an alarm pheromone [J]. Annals of the Entomological Society of America,1987,80:686-691.
    58. Lou Y G, Chen, J.A. Host recognition kairomone from Sogatella furcifera for the parasitoid Anagrus nilaparvatae [J]. Entomologia Experimentalis et Applicata, 2001,101(1):98-106.
    59. Matthews R W, Matthews J R. Chemical Communication [M]. Insect Behavior, 2010, p 217-259.
    60. MacDonald K M, Hamilton J G. C., Jacobson R, et al. Effects of alarm pheromone on landing and take-off by adult western flower thrips [J]. Entomologia Experimentalis et Applicata.2002,103:279-282.
    61. Mondor E B, Roitberg B D. Inclusive fitness benefits of scent-marking predators [J]. Proceedings of the Royal Society B,2004,271:S341-S343.
    62. Michael F. Ryana. Insect chemoreception:Fundamental and Applied [M]. Kluwer Academic Publishers,2002, p73-112.
    63. Micha S G, Wyss U. Aphid alarm pheromone (E)-β-farnesene:a host finding kairomone for the aphid primary parasitoid Aphidius uzbekistanicus (Hymenoptera: Aphidiinae) [J]. Chemoecology,1996,7:132-139.
    64. Mondor E, Addicott J. Do exaptations facilitate mutualistic associations between invasive and native species [J]? Biology. Invasions,2007,9:623-628.
    65. Muller F. Differential alarm pheromone responses between strains of the aphid Acyrthosiphon pisum. Entomol [J]. Experimental and Applied Acarology,1983, 34:347-348.
    66. Nault L R, Montgomery M E, Bowers W S. Ant-aphid association: role of aphid alarm pheromone [J]. Science,1976,192:1349-1351.
    67. Nault L R, Phelan P L. Alarm pheromones and sociality in pre-social insects [M]. Chemical Ecology of Insects. Chapman and Hall, London,1984:237-256.
    68. Nishino C, Bowers W S, Montgomery M E, et al. Aphid alarm pheromone mimics:sesquiterpene hydrocarbons [J]. Agricultural and biological chemistry, 1976,40:2303-2304.
    69. Nishino C, Bowers W S, Montgomery M E, et al. Alarm pheromone of the spotted alfalfa aphid, Therioaphis maculata Buckton (Homoptera:Aphididae)[J]. J Chem. Ecol,1977,3:349-357.
    70. Payne T L. Pheromone perception [M]. Pheromones. North-Holland publishing Company, Amsterdam,1974, p35-61.
    71. Pickett J A, Griffith D C. Composition of aphid alarm pheromones [J]. European Journal of Entomology,1980,6:349-360.
    72. Pickett J A, Wadhams L J, Woodcock, C.M. The chemical ecology of aphids [J]. Annual Review of Entomology,1992,37,67-90.
    73. Podjasek J O, Bosnjak L M, Brooker D J, et al. Alarm pheromone induces a transgenerational wing polyphenism in the pea aphid, Acyrthosiphon pisum[J]. Canadian Journal of Zoology,2005,83:1138-1141.
    74. Prudic K L, Noge K. Becerra J X.. Adults and nymphs do not smell the same:the different defensive compounds of the giant mesquite bug (Thasus neocalifornicus: Coreidae) [J]. Journal of Chemical Ecology,2008,34:734-741.
    75. Raspotnig G. Chemical alarm and defence in the oribatid mite Collohmannia gigantea (Acari:Oribatida) [J]. Experimental and Applied Acarology,2006,39: 177-194.
    76. Robert K, Meer V, Catherine A, et al. Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta [J]. Journal of Chemical Ecology, 2010,36:163-170.
    77. Robert K, Vander Meer, Catherine A, et al. Isolation of a Pyrazine Alarm Pheromone Component from the Fire Ant, Solenopsis invicta [J]. Journal of Chemical Ecology,2010,36:163-170.
    78. Roisin Y, Everaerts C, Pasteels J M, et al. Caste-dependent reactions to soldier defensive secretion and chiral alarm/recruitment pheromone in Nasutitermes princes[J]. Journal of Chemical Ecology,1990,16:2865-2875.
    79. Roubik D W. Stingless bees:a guide to Panamanian and Mesoamerican species and their hives. In Insects of Panama and Mesoamerica: Selected Studies, eds. D Quintero, A Aiello. Oxford, UK:Oxford Univ.Press,1992, p495-524
    80. Ryana M F. Insect chemoreception: fundamental and applied [M]. Kluwer Academic Publishers,2002, p73-112.
    81. Shearer D A, Boch R.2-Heptanone in the mandibular gland secretion of the honeybee [J]. Nature,1965,206:530.
    82. Shimano S, Sakata T, Mizutani Y, et al. Geranial:the alarm pheromone in the nymphal stage of the oribatid mite, Nothrus palustris [J]. Journal of Chemical Ecology,2002,28(9):1831-1837.
    83. Showalter D N, Troyer E J, Aklu M, et al. Alkylpyrazines:alarm pheromone components of the little fire ant, Wasmannia auropunctata (Roger) (Hymenoptera, Formicidae)[J]. Insectes Sociaux,2010,57:223-232.
    84. Slessor K N, Winston M L, Conte Y L. Pheromone communication in the honeybee (Aphis mellifera L.)[J]. Journal of Chemical Ecology,2005,31(11): 2731-2745.
    85. Sobotnik J, Hanus R. Kalinova B, et al. (E,E)-a-Farnesene, an Alarm Pheromone of the Termite Prorhinotermes canalifrons[J]. Journal of Chemical Ecology,2008, 34:478-486.
    86. Sun F Y, Biasio F D, Qiao H L, et al. Two odorant-bingding proteins mediate the behavioural response of aphids to the alarm pheromone (E)-β-farnesene and structural analogues [J]. PloS ONE,2012,7(3):732-759.
    87. Teerling C R, Gillespie D R, Borden J H. Utilization of western flower thrips alarm pheromone as a prey-finding kairomone by predators [J]. The Canadian Entomologist,1993,125(3):431-437.
    88. Vander Meer R K, Porter S D. Fire ant, Solenopsis invicta, worker alarm pheromones attract Pseudacteon phorid flies.Proceedings of the 2002 Imported Fire Ant Conference. Athens, Georgia.2002:77-80.
    89. Vandermoten S, Mescher M C., Francis F. Aphid alarm pheromone:An overview of current knowledge on biosynthesis and functions [J]. Insect Biochemistry and Molecular Biology,2012,42(1):1-9
    90. Verheggen F J, Fagel Q, Heuskin S, et al. Electrophysiological and behavioral responses of the multicolored Asian lady beetle, Harmonia axyridis Pallas, to sesquiterpene semiochemicals [J]. Journal of Chemical Ecology,2007,33(11): 2148-2155.
    91. Verheggen F. Production of alarm pheromone in aphids and perception by ants and natural enemies [D]. PhD Thesis. Gembloux Agricultural University, Gembloux, Belgium,2008.
    92. Verheggen F J, Mescher M C, Haubruge E, et al. Emission of alarm pheromone in aphids:A non-contagious phenomenon [J]. Journal of Chemical Ecology, 2008a,34:1146-1148.
    93. Verheggen F J, Arnaud L, Bartram S, et al. Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly [J]. Journal of Chemical Ecology, 2008b,34:301-307.
    94. Verheggen F J, Haubruge E, Mescher M C. Alarm pheromone-Chemical signaling in response to danger [J]. Pheromones,2010,83(2):215-239.
    95. Vrkoc J, Krecek J, Hrdy I. Monoterpenic alarm pheromones in two Nasutitermes species [J]. Acta Entomology Biohemoslov,1978,75:1-8.
    96. Wager B R, Breed M D. Does honey bee sting alarm pheromone give orientation information to defensive bees? [J]. Annals of the Entomological Society of America,2000,93:1329-1332.
    97. Wardle, Borden, Pierce, et al. Volatile compounds released by disturbed and calm adults of the tarnished plant bug, Lygus lineolaris[J]. Journal of Chemical Ecology,2003,29(4):931-944.
    98. Wilson E O A. Chemical releaser of alarm and digging behavior in the ant Pogonomyrmex badius (Latreille) [J]. Psyche,1958,65:41-51.
    99. Wyatt. Pheromones and Behavior [M]. Chemical Communication in Crustaceans, 2011,p23-38
    100.陈建明.杀虫剂诱导褐飞虱再猖獗的原因分析[J].植物医生,1996,(2):5-6
    101.程家安,祝增荣.2005年长江流域稻区褐飞虱暴发成灾原因分析.植物保护2006,32(4):1-4
    102.程遐年,吴进才,马飞.褐飞虱研究与防治[M].中国农业出版社,2003年,第43页.
    103.胡进耀,苏智先,陈光生,等.水稻-褐飞虱-稻虱缨小峰的化学生态学概述[J].内江师范学院学报,2002,19(6):74-78.
    104.黄文耀,新玲,钟宁.蚜虫报警信息素EBF的合成[J].化学通报,2002,3:157-161.
    105.李汝铎,丁锦华,胡国文,等.褐飞虱及其种群管理[M].上海:复旦大学出版社,1996年.
    106.李正名,王天生,么恩云,等.昆虫信息素研究Ⅲ.拟蚜虫警戒素的研究[J].化学学报,1987,45:1124-1128.
    107.刘芳,娄永根,程家安.稻株挥发物在调节褐飞虱、白背飞虱种内种问关系中的作用[J].中国水稻科学,2002,16(2):162-166.
    108.刘金艳.蚜虫报警信息素的合成及生物活性研究[D].硕士学位论文,北京,首都师范大学,2008年,1-50页.
    109.娄永根,程家安.褐飞虱利它素及其与水稻品种的关系[J].植物保护学报,1994,21(4):327-332.
    110.娄永根,程家安,平霄飞,等.稻虱缨小蜂对褐飞虱和白背飞虱卵的识别机制[J].昆虫学报,2002,15(6):770-776.
    111.苗建才.无公害杀虫剂及其应用技术.哈尔滨:黑龙江科学技术出版社.1990年4月,第11-30页
    112.汪鹏.调控褐飞虱及其天敌稻虱缨小峰行为的活性化合物筛选及其田间效果的初步测定[D].硕士学位论文.杭州,浙江大学.2011年,1-48页.
    113.徐涛,川强,夏嫡,等.虫害诱导的水稻挥发物刈褐飞虱寄主选择行为的影响[J].科学通报.2002,17(11):849-853.
    114.杨新玲,阚炜,黄文耀,等.蚜虫报警信息素类似物的结构与生物活性关系[J].昆虫学报,2003,46(5):660-664.
    115.郑浩,扬长举,华红霞,等.与昆虫有关的植物挥发性次生物质的研究方法[J].昆虫知识,2002,39(1):9-13.
    116.张慧艳.杨扇舟.蛾性信息素活性成分与结构研究及其对寄主植物挥发物的电生理反应[D].硕士学位论文,北京,北京林业大学,2007年,1-47页.
    117.张钟宁,刘殉,梅雪芹,等.蚜虫报警信息素与杀虫剂混用:一种蚜虫防治新方法的研究[A].动物学集刊,1993,10:1-5.
    118.张钟宪,肖阿林,张国玺.(E)-p-法尼烯的合成[J].首都师范大学学报.1998,19(2):41-44.
    119.张钟宪.一种减压流化反应系统.中国,国家发明专利,专利号ZL 02131090.4,2004年.