双价Bt抗虫水稻的培育和转基因水稻回交效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bt)产生的品体蛋白对鳞翅目昆虫具有特异的毒性,它作为生物杀虫剂在农业害虫防治中已经应用了几十年。随着植物基因工程的发展,编码这种杀虫晶体蛋白的Bt基因被转入许多作物中用于害虫防治。转基因的Bt作物在1996年开始商业化种植,给目标昆虫群体带来了巨大的选择压,因此面临着昆虫可能对其进化出抗性的风险。为了延缓昆虫抗性的发展,人们设计了很多昆虫抗性治理(IRM)的策略,基因聚合是其中的一种。
     水稻是最重要的粮食作物之一,全世界一半以上的人口以之为主食。虫害是世界范围内水稻生产的一个严重威胁,每年都造成巨大的经济损失。为了防治鳞翅目的昆虫,许多Bt基因被转入水稻中,成功地获得了具有抗虫性的转基因株系。根癌农杆菌介导的转化法是培育Bt水稻最常用的方法,但是转化的过程会引起许多体细胞变异,影响了转基因水稻植株的农艺性状。
     本研究以分别转入了cry1Ab、cry1Ac、cry1C和cry2A的4个单价Bt水稻株系为亲本,通过有性杂交的方法将不同的Bt基因聚合起来,培育双价Bt抗虫水稻,并对它们的抗虫性和农艺性状进行了评价。同时,我们还以原品种为轮回亲本,将其中分别转入了cry1Ac、cry1C和cry2A的3个单价Bt水稻株系连续回交3次,最后考察了BCnF3 (n= 1,2,3)纯合株系的农艺性状。本研究获得的主要结果如下:
     1.通过PCR方法在F2代检测Bt基因的分离比,证明Bt基因在聚合后代中仍然按照孟德尔规律稳定地遗传,并且在F3代筛选获得了各种组合的双价Bt纯合的水稻株系。
     2.酶联免疫吸附测定(ELISA)的结果表明cry1Ab、cry1Ac和cry2A在聚合之后能够稳定地表达,对应的Bt蛋白在双价株系中的含量基本上维持在单价亲本的水平。Cry1C蛋白在双价株系中的含量在聚合之后普遍降低了。Cry1Ab、Cry1C和Cry2A蛋白在不同组织中的含量由高到低的顺序依次为叶片、胚乳、茎杆和根,而Cry1Ac蛋白含量由高到低的顺序依次为叶片、茎杆、根和胚乳。
     3.所有转基因株系在室内抗性测验中对一龄三化螟(Scirpophaga incertulas)的致死率为100%,对二龄三化螟的致死率也都高于75%。1Ab+1C、1Ac+1C和1Ac+2A这3种组合对二化螟(Chilo suppressalis)的致死率超过80%,其中1Ac+1C和1Ac+2A产生的致死率显著高于它们的单价亲本,体现出明显的增效作用。另外,二化螟幼虫对Bt蛋白的敏感性显著弱于三化螟幼虫,相同昆虫的二龄幼虫对Bt蛋白的敏感性显著弱于一龄幼虫。
     4.在田间的抗性试验中,原品种明恢63(MH63)和汕优63(SY63)受到严重的危害,而所有的单价和双价纯合株系以及杂交种都对钻心虫表现出优良的抗性,出现的枯心极少。转cry2A单价株系及其对应的杂交种受到很轻微的卷叶螟危害,而其它所有的转基因株系和杂交种都完全没有卷叶。
     5.单价和双价纯合株系的形态学性状和产量性状出现了一些变异,但是大部分双价纯合株系的单株产量达到了MH63的水平。Bt杂交种农艺性状的变异相对亲本较少,所有双价杂交种的单株产量与SY63相比都没有显著的差异。
     6.连续回交和自交后通过发芽试验筛选到了BCnF3纯合株系,它们仍然对水稻鳞翅目害虫保持着优良的抗性。
     7.3个单价亲本株系农艺性状的变异在很大程度上得到了恢复,BC3F3纯合株系的单株产量都达到了MH63的水平。
     8.对带有cry1C和cry2A的单价亲本株系转基因插入位点进行了详细的分析,通过Southern杂交发现cry1C和cry2A在插入位点上分别有两个和一个拷贝。用反向PCR方法分离克隆了侧翼序列,分别定位在水稻的第11和12号染色体上。
The bacterium Bacillus thuringiensis (Bt) can produce crystal proteins that have specific toxicity to lepidopteran insects, and has been applied as a microbial insecticide to the control of crop pests for several decades. With the development of plant genetic engineering, Bt genes encoding insecticidal crystal protein have been introduced into many crop species for pest controlling. Transgenic Bt crops were first commercialized in 1996 and placed a large selection pressure on the target insect populations, so Bt crops face a risk that insect could evolve resistance to them rapidly. Several insect resistance management (IRM) tactics, including gene stacking, have been proposed to delay the development of pest resistance to Bt crops.
     Rice is one of the most important food crops, and the staple food for more than half of the people in the world. Insect damage is a great threat to rice production worldwide, causing serious loss every year. For controlling the lepidopteran stemborers and leaffolders, many Bt genes have been introduced into rice, and transgenic lines with resistance were obtained successfully. Agrobacterium-mediated transformation is the most common method of developing Bt rice, but its transgenic procedure causes somaclonal variation continually and influences the agronomic performance of transgenic rice plants.
     In this study, we pyramided two Bt genes to develop two-toxin rice by sexual crossing between four single-gene Bt lines possessing crylAb, crylAc, cry1C and cry2A respectively, and evaluated their insect-resistance and agronomic traits. Meanwhile, we continuously backcrossed three single-gene Bt lines possessing cry1Ac, crylC and cry2A respectively for three times, using their original variety as the recurrent parent, and investigated the agronomic traits of BCF3(n-1,2,3) homozygous lines at last. The main results in this study are as follows:
     1. The segregation ratios of Bt gene in the F2 generation were detected through PCR analysis, and it was confirmed that inheritance of Bt gene still follows Mendelian segregation in the pyramided progeny. Homozygous rice lines of two pyramided Bt genes were obtained in the F3 generation.
     2. The results of enzyme-linked immunosorbent assay (ELISA) indicated that the expression of crylAb, cry1Ac and cry2A was comparatively stable after gene stacking, and most pyramided lines contained a comparable Bt protein level to their single-gene parents. The expression of cry1C decreased in two-gene lines. The levels of crylAb, cry1C and cry2A expressed in different tissues in a decreasing order was leaf, endosperm, stem and root, while the decreasing order of cry1Ac was leaf, stem, root and endosperm.
     3. In the laboratory assay, all transgenic rice lines caused 100% mortality of the first-instar yellow stem borer (Scirpophaga incertulas), and the mortalities of second-instar larvae were higher than 75%. When using striped stem borer (Chilo suppressalis) as test insect, the combinations of lAb+1C, 1Ac+1C and 1Ac+2A caused mortality higher than 80%. Two-gene lines of 1Ac+1C and 1Ac+2A caused apparently higher mortality than corresponding single-gene parents, so the synergistic effects were observed. In addition, larvae of striped stem borer showed higher tolerance to Bt protein compared to yellow stem borer, and the second-instar larvae were less susceptive than the first-instar larvae.
     4. In the field evaluation, original varieties Minghui 63 (MH63) and Shanyou 63 (SY63) were damaged seriously. All transgenic rice lines and their hybrids exhibited excellent efficacy against stemborers, with few deadhearts. Single-gene line 2A and its hybrid were damaged slightly by leaffolders, while all the other transgenic lines and hybrids had no fold leaves.
     5. Both single and two-gene rice lines showed some variations in morphological and yield traits, but most two-gene lines had a comparable yield per plant with MH63. Bt hybrids showed relatively fewer variations in agronomic traits, and none of the two-gene hybrids had significantly lower yields than SY63.
     6. BCnF3 homozygous rice lines were obtained by a germination assay after continuous backcrossing and selfing, and proved to remain resistant to lepidopteran pests.
     7. The agronomic traits of three single-gene lines were recovered to a large extent, and the yield per plant of BC3F3 homozygous lines was comparable with that of MH63.
     8. The transgene insert sites in single-gene parental lines possessing cry1C and cry2A were analyzed detailedly. Results of Southern hybridization indicated that cry1C and cry2A had two and single copy at the single site respectively. The flanking sequences of cry1C and cry2A were cloned by inverse PCR, and located on chromosome 11 and 12 respectively.
引文
1. 陈浩.三种Bt基因(cry1Ac、cry2A*和cry9C*)抗虫水稻的培育及评价.[博士学位论文].武汉:华中农业大学图书馆,2005
    2. 韩兰芝,侯茂林,吴孔明,彭于发,工锋.转cry1Ac+CpT1基因水稻对大螟的致死和亚致死效应.中国农业科学,2009,42:523-531
    3. 洪登峰,万丽丽,杨光圣.侧翼序列克隆方法评价.分子植物育种,2006,4:280-288
    4. 刘树生.害虫综合治理面临的机遇,挑战和对策.植物保护,2000,26:35-38
    5. 谭寿湖,张文飞,叶大维.苏云金芽孢杆菌基因组研究概况.基因组学与应用生物学,2009,28:202-208
    6. 唐微.Bt抗虫水稻的培育.[博士学位论文].武汉:华中农业大学图书馆,2006
    7. 王桂荣,吴孔明,梁革梅,郭予元.棉铃虫中肠钙粘蛋白基因的克隆,表达及CrylA结合区定位.中国科学:C辑,2004,34:537-546
    8. 仵均祥.农业昆虫学.北京:科学出版社,2002,42-44
    9. 喻子牛.苏云金芽胞杆菌.北京:科学出版社,1990
    10. 张广林,韩成香,姚洪渭,叶恭银.水稻螟虫对4种Bt杀虫蛋白的敏感性测定.植物保护,2007,33:78-80
    11. Alcantara E P, Aguda R M, Curtiss A, Dean D H, Cohen M B. Bacillus thuringiensis delta-endotoxin binding to brush border membrane vesicles of rice stem borers. Arch Insect Biochem Physiol,2004,55:169-177
    12. Angus T A. A bacterial toxin paralysing silkworm larvae. Nature,1954, 173:545-546
    13. Anilkumar K J, Rodrigo-Simon A, Ferre J, Pusztai-Carey M, Sivasupramaniam S, Moar W J. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Appl Environ Microbiol,2008,74:462-469
    14. Arencibia A D, Carmona E R, Cornide M T, Castiglione S, O'Relly J, Chinea A, Oramas P, Sala F. Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Res,1999, 8:349-360
    15. Badr E, Mabrouk Y, Rakha F, Ghazy A H. Agrobacterium tumefaciens-mediated transformation of potato and analysis of genomic instability by RAPD. Res J Agric Biol Sci,2008,4:16-25
    16. Ballester V, Escriche B, Mensua J L, Riethmacher G W, Ferre J. Lack of cross-resistance to other Bacillus thuringiensis crystal proteins in a population of Plutella xylostella highly resistant to CryIA(b). Biocontrol Sci Technol,1994, 4:437-443
    17. Barton K A, Whiteley H R, Yang N S. Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol,1987,85:1103-1109
    18. Bates S L, Zhao J Z, Roush R T, Shelton A M. Insect resistance management in GM crops:past, present and future. Nat Biotechnol,2005,23:57-62
    19. Baxter S W, Zhao J Z, Gahan L J, Shelton A M, Tabashnik B E, Heckel D G. Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella. Insect Mol Biol,2005,14:327-334
    20. Bergelson J, Purrington C B, Palm C J, Lopez-Gutierrez J C. Costs of resistance:a test using transgenic Arabidopsis thaliana. Proc Biol Sci,1996,263:1659-1663
    21. Berliner E. Uber die Schlaffsucht der Mehlmottenraupe (Ephestia kuhniella Zell.) und ihren Erreger Bacillus thuringiensis n. sp. ZAngew Entomol,1915,2:29-56
    22. Blanco C A, Andow D A, Abel C A, Sumerford D V, Hernandez G, Lopez Jr J D, Adams L, Groot A, Leonard R, Parker R. Bacillus thuringiensis Cry 1 Ac resistance frequency in tobacco budworm (Lepidoptera:Noctuidae). J Econ Entomol,2009, 102:381-387
    23. Boonserm P, Mo M, Angsuthanasombat C, Lescar J. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J Bacteriol,2006,188:3391-3401
    24. Bourguet D, Chaufaux J, Seguin M, Buisson C, Hinton J L, Stodola T J, Porter P, Cronholm G, Buschman L L, Andow D A. Frequency of alleles conferring resistance to Bt maize in French and US corn belt populations of the European corn borer, Ostrinia nubilalis. Theor Appl Genet,2003,106:1225-1233
    25. Bourguet D, Desquilbet M, Lemarie S. Regulating insect resistance management: the case of non-Bt corn refuges in the US. J Environ Manage,2005,76:210-220
    26. Bregitzer P, Halbert S E, Lemaux P J. Somaclonal variation in the progeny of transgenic barley. Theor Appl Genet,1998,96:421-425
    27. Bregitzer P, Dahleen L S, Neate S, Schwarz P, Manoharan M. A single backcross effectively eliminates agronomic and quality alterations caused by somaclonal variation in transgenic barley. Crop Sci,2008,48:471-479
    28. Bravo A, Soberon M. How to cope with insect resistance to Bt toxins? Trends Biotechnol,2008,26:573-579
    29. Burd A, Gould F, Bradley J R, Van Duyn J W, Moar W J. Estimated frequency of nonrecessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera:Noctuidae) in eastern North Carolina. J Econ Entomol,2003, 96:137-142
    30. Cao J, Shelton A M, Earle E D. Gene expression and insect resistance in transgenic broccoli containing a Bacillus thuringiensis crylAb gene with the chemically inducible PR-la promoter. Mol Breeding,2001,8:207-216
    31. Cao J, Zhao J Z, Tang J D, Shelton A M, Earle E D. Broccoli plants with pyramided cry 1 Ac and cry1C Bt genes control diamondback moths resistant to CrylA and Cry1C proteins. Theor Appl Genet,2002,105:258-264
    32. Cao J, Shelton A M, Earle E D. Sequential transformation to pyramid two Bt genes in vegetable Indian mustard(Brassica juncea L.) and its potential for control of diamondback moth larvae. Plant Cell Rep,2008,27:479-487
    33. Carlson C R, Caugant D A, Kolsto A B. Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol,1994,60:1719-1725
    34. Carlson C R, Johansen T, Lecadet M M, Kolsto A B. Genomic organization of the entomopathogenic bacterium Bacillus thuringiensis subsp. berliner 1715. Microbiology,1996,142:1625-1634
    35. Chen H, Tang W, Xu C G, Li X H, Lin Y J, Zhang Q F. Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor Appl Genet,2005,111:1330-1337
    36. Chen H, Zhang G A, Zhang Q F, Lin Y J. Effect of transgenic Bacillus thuringiensis rice lines on mortality and feeding behavior of rice stem borers (Lepidoptera: Crambidae). J Econ Entomol,2008,101:182-189
    37. Chen M, Shelton A, Ye G Y. Insect-resistant GM rice:Ten years of field testing in China. Annu Rev Entomol,2011,56:81-101
    38. Cohen M B, Gould F, Bentur J S. Bt rice:practical steps to sustainable use. International Rice Research Notes,2000,25:4-10
    39. Crespo ALB, Spencer T A, Alves A P, Hellmich R L, Blankenship E E, Magalhes L C, Siegfried B D. On-plant survival and inheritance of resistance to CrylAb toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis. Pest Manag Sci,2009,65:1071-1081
    40. Dale P J, McPartlan H C. Field performance of transgenic potato plants compared with controls regenerated from tuber discs and shoot cuttings. Theor Appl Genet, 1992,84:585-591
    41. Dalecky A, Ponsard S, Bailey R I, Pelissier C, Bourguet D. Resistance evolution to Bt crops:predispersal mating of European corn borers. PLoS Biol,2006, 4:1048-1057
    42. Dekeyser R, Claes B, Marichal M, Van Montagu M, Caplan A. Evaluation of selectable markers for rice transformation. Plant physiol,1989,90:217-223
    43. Donovan W P, Dankocsik C C, Gilbert M P, Gawron-Burke M C, Groat R G, Carlton B C. Amino acid sequence and entomocidal activity of the P2 crystal protein:an insect toxin from Bacillus thuringiensis var. kurstaki. J Biol Chem,1988, 263:561-567
    44. Dorsch J A, Candas M, Griko N B, Maaty W S A, Midboe E G, Vadlamudi R K, Bulla L A. CrylA toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R1 in Manduca sexta:: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis. Insect Biochem Mol Biol,2002,32:1025-1036
    45. Downes S, Parker T L, Mahon R J. Frequency of alleles conferring resistance to the Bacillus thuringiensis toxins Cry 1 Ac and Cry2Ab in Australian populations of Helicoverpa punctigera (Lepidoptera:Noctuidae) from 2002 to 2006.J Econ Entomol,2009,102:733-742
    46. Federici B A, Bauer L S. Cyt1Aa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa. Appl Environ Microbiol,1998,64:4368-4371
    47. Feldmann K A, Marks M D, Christianson M L, Quatrano R S. A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science,1989, 243:1351-1354
    48. Ferre J, Real M D, Rie J V, Jansens S, Peferoen M. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci USA,1991, 88:5119-5123
    49. Fischhoff D A, Bowdish K S, Perlak F J, Marrone P J, McCormick S M, Niedermeyer J G, Dean D A, Kusano-Kretzmer K, Mayer E J, Rochester D E, Rogers S G, Fraley R T. Insect tolerant transgenic tomato plants. Nat Biotechnol, 1987,5:807-813
    50. Forcada C, Alcacer E, Garcera M D, Martinez R. Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins. Arch Insect Biochem Physiol,1996, 31:257-272
    51. Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K. Insect resistant rice generated by introduction of a modified delta-endotoxin gene of Bacillus thuringiensis. Nat Biotechnol,1993,11:1151-1155
    52. Gahan L J, Gould F, Heckel D G. Identification of a gene associated with Bt resistance in Heliothis virescens. Science,2001,293:857-860
    53. Gahan L J, Gould F, Lopez J D, Micinski S, Heckel D G. A polymerase chain reaction screen of field populations of Heliothis virescens for a retrotransposon insertion conferring resistance to Bacillus thuringiensis toxin. J Econ Entomol,2007, 100:187-194
    54. Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft J R, Pangborn W, English L. Structure of the insecticidal bacterial-endotoxin Cry3Bbl of Bacillus thuringiensis. Acta Crystal,2001,57:1101-1109
    55. Gassmann A J, Carriere Y, Tabashnik B E. Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol,2009,54:147-163
    56. Gao D Y, Vallejo V A, He B, Gai Y C, Sun L H. Detection of DNA changes in somaclonal mutants of rice using SSR markers and transposon display. Plant Cell Tiss Organ Cult,2009,98:187-196
    57. Gealy D R, Mitten D H, Rutger J N. Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa):implications for weed management. Weed Technology,2003,17:627-645
    58. Georghiou G P, Wirth M C. Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera:Culicidae). Appl Environ Microbiol, 1997,63:1095-1101
    59. Ghareyazie B, Alinia F, Menguito C A, Rubia L G, de Palma J M, Liwanag E A, Cohen M B, Khush G S, Bennett J. Enhanced resistance to two stem borers in an aromatic rice containing a synthetic crylA(b) gene. Mol Breeding,1997,3:401-414
    60. Gill S S, Cowles E A, Pietrantonio P V. The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol,1992,37:615-634
    61. Gomez I, Miranda-Rios J, Rudio-Piera E, Oltean D I, Gill S S, Bravo A, Soberon M. Hydropathic complementarity determines interaction of epitope 869HITDTNNK876 in Manduca sexta Bt-R1 receptor with Loop 2 of domain II of Bacillus thuringiensis Cry 1A toxins. J Biol Chem,2002,277:30137-30143
    62. Gould F, Martinez-Ramirez A, Anderson A, Ferre J, Silva F J, Moar W J. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc Natl Acad Sci USA,1992,89:7986-7990
    63. Gould F, Anderson A, Reynolds A, Bumgarner L, Moar W J. Selection and genetic analysis of a Heliothis virescens (Lepidoptera:Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J Econ Entomol,1995,88:1545-1559
    64. Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz J L, Brousseau R, Cygler M. Bacillus thuringiensis Cry1A(a) insecticidal toxin:crystal structure and channel formation. J Mol Biol,1995,254:447-464
    65. Halpin C. Gene stacking in transgenic plants-the challenge for 21st century plant biotechnology. Plant Biotechnol J,2005,3:141-155
    66. Hara H, Atsumi S, Yaoi K, Nakanishi K, Higurashi S, Miura N, Tabunoki H, Sato R. A cadherin-like protein functions as a receptor for Bacillus thuringiensis CrylAa and Cry1Ac toxins on midgut epithelial cells of Bombyx mori larvae. FEBS Lett, 2003,538:29-34
    67. Heckel D G, Gahan L C, Gould F, Anderson A. Identification of a linkage group with a major effect on resistance to Bacillus thuringiensis Cry1Ac endotoxin in the tobacco budworm (Lepidoptera:Noctuidae). J Econ Entomol,1997,90:75-86
    68. Heckel D G, Gahan L C, Liu Y B, Tabashnik B E. Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis. Proc Natl Acad Sci USA,1999,96:8373-8377
    69. Heckel D G, Gahan L J, Baxter S W, Zhao J Z, Shelton A M, Gould F, Tabashnik B E. The diversity of Bt resistance genes in species of Lepidoptera. J Invert Path, 2007,95:192-197
    70. Herrero S, Gechev T, Bakker P L, Moar W J, De Maagd R A. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. BMC genomics,2005,6:96-105
    71. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice(Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J,1994,6:271-282
    72. Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol,1997,35:205-218
    73. Hiei Y, Ishida Y, Kasaoka K, Komari T. Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tiss Organ Cult,2006, 87:233-243
    74. Hua G, Jurat-Fuentes J L, Adang M J. Bt-Rla extracellular cadherin repeat 12 mediates Bacillus thuringiensis CrylAb binding and cytotoxicity. J Biol Chem, 2004,279:28051-28056
    75. Huang G, Zhang L, Birch R G. Rapid amplification and cloning of Tn5 flanking fragments by inverse PCR. Lett Applied Microbiol,2000,31:149-153
    76. Huang J K, Hu R F, Rozelle S, Qiao F B, Pray C E. Transgenic varieties and productivity of smallholder cotton farmers in China. Aust J Agr Resour Econ,2002, 46:367-387
    77. Ives A R, Glaum P R, Ziebarth N L, Andow D A. The evolution of resistance to two-toxin pyramid transgenic crops. Ecol Appl,2011,21:503-515
    78. James C. Global status of commercialized transgenic crops:2002. ISAAA Briefs, No 27,2002, ISAAA, Ithaca, NY
    79. James C. Global status of commercialized biotech/GM crops:2005. ISAAA Briefs, No 32,2005, ISAAA, Ithaca, NY
    80. James C. Global status of commercialized biotech/GM crops:2008. ISAAA Briefs, No 39,2008, ISAAA, Ithaca, NY
    81. James C. Global status of commercialized biotech/GM crops:2010. ISAAA Briefs, No 42,2010, ISAAA, Ithaca, NY
    82. Jurat-Fuentes J L, Gahan L J, Gould F L, Heckel D G, Adang M J. The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens. Biochemistry,2004,43:14299-14305
    83. Kato H, Namai H. Floral characteristics and environmental factors for increasing natural outcrossing rate for F1 hybrid seed production of rice Oryza sativa L. Jpn J Breeding,1987,37:318-330
    84. Keller M, Sneh B, Strizhov N, Prudovsky E, Regev A, Koncz C, Schell J, Zilberstein A. Digestion of delta-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CryIC. Insect Biochem Mol Biol,1996,26:365-373
    85. Khanna H K, Raina S K. Elite indica transgenic rice plants expressing modified Cry 1 Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas). Transgenic Res,2002,11:411-423
    86. Knight P J K, Crickmore N, Ellar D J. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol,1994,11:429-436
    87. Labra M, Savini C, Bracale M, Pelucchi N, Colombo L, Bardini M, Sala F. Genomic changes in transgenic rice(Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens. Plant Cell Rep,2001,20:325-330
    88. Lambert B, Peferoen M. Insecticidal promise of Bacillus thuringiensis. BioScience, 1992,42:112-122
    89. Lee M K, Aguda R M, Cohen M B, Gould F L, Dean D H. Determination of binding of Bacillus thuringiensis delta-endotoxin receptors to rice stem borer midguts. Appl Environ Microbiol,1997,63:1453-1459
    90. Li J D, Carroll J, Ellar D J. Crystal structure of insecticidal 8-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature,1991,353:815-821
    91. Lin Y J, Zhang Q F. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep,2005,23:540-547
    92. Liu Y B, Tabashnik B E, Moar W J, Smith R A. Synergism between Bacillus thuringiensis spores and toxins against resistant and susceptible diamondback moths (Plutella xylostella). Appl Environ Microbiol,1998,64:1385-1389
    93. Liu Y B, Tabashnik B E, Dennehy T J, Patin A L, Sims M A, Meyer S K, Carriere Y. Effects of Bt cotton and Cry 1 Ac toxin on survival and development of pink bollworm (Lepidoptera:Gelechiidae). J Econ Entomol,2001,94:1237-1242
    94. Luttrell R G, Ali I, Allen K C, Young III S Y, Szalanski A, Williams K, Lorenz G, Parker Jr C D, Blanco C. Resistance to Bt in Arkansas populations of cotton bollworm. Proceedings of the Beltwide Cotton Conferences,2004, p1373-1383, San Antonio, TX
    95. MacIntosh S C, Stone T B, Jokerst R S, Fuchs R L. Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens. Proc Natl Acad Sci USA,1991,88:8930-8933
    96. Maqbool S B, Riazuddin S, Loc N T, Gatehouse AMR, Gatehouse J A, Christou P. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breeding,2001,7:85-93
    97. Martin PAW, Travers R S. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol,1989,55:2437-2442
    98. Matzke A J, Neuhuber F, Park Y D, Ambros P F, Matzke M A. Homology-dependent gene silencing in transgenic plants:epistatic silencing loci contain multiple copies of methylated transgenes. Mol Gen Genet,1994, 244:219-229
    99. McElroy D, Zhang W, Cao J, Wu R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell,1990,2:163-171
    100. Mendelsohn M, Kough J, Vaituzis Z, Matthews K. Are Bt crops safe? Nat Biotechnol,2003,21:1003-1009
    101. Moar W J, Pusztai-Carey M, Van Faassen H, Bosch D, Frutos R, Rang C, Luo K, Adang M J. Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hubner) (Lepidoptera:Noctuidae). Appl Environ Microbiol,1995, 61:2086-2092
    102. Morin S, Biggs R W, Sisterson M S, Shriver L, Ellers-Kirk C, Higginson D, Holley D, Gahan L L, Heckel D G, Carriere Y, Dennehy T J, Brown J K, Tabashnik B E. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci USA,2003,100:5004-5009
    103. Morin S, Henderson S, Fabrick J A, Carriere Y, Dennehy T J, Brown J K, Tabashnik B E. DNA-based detection of Bt resistance alleles in pink bollworm. Insect Biochem Mol Biol,2004,34:1225-1233
    104. Morse R J, Yamamoto T, Stroud R M. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure,2001,9:409-417
    105. Nayak P, Basu D, Das S, Basu A, Ghosh D, Ramakrishnan N A, Ghosh M, Sen S K. Transgenic elite indica rice plants expressing CrylAc delta-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc Natl Acad Sci USA,1997,94:2111-2116
    106. Ochman H, Gerber A S, Hartl D L. Genetic applications of an inverse polymerase chain reaction. Genetics,1988,120:621-623
    107. Oppert B, Kramer K J, Beeman R W, Johnson D, McGaughey W H. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem, 1997,272:23473-23476
    108. Park Y H, Lee H S, Yi G H, Sohn J K, Kim K M. Functional analysis for rolling leaf of somaclonal mutants in rice (Oryza sativa L.). Am J Plant Sci,2011,2:56-62
    109. Peng J Y, Kononowicz H, Hodges T K. Transgenic indica rice plants. Theor Appl Genet,1992,83:855-863
    110. Ragagnin V A, de Souza T L P O, Sanglard D A, Arruda K M A, Costa M R, Alzate-Marin A L, Carneiro J E, Moreira M A, de Barros E G. Development and agronomic performance of common bean lines simultaneously resistant to anthracnose, angular leaf spot and rust. Plant Breeding,2009,128:156-163
    111. Rashid H, Yokoi S, Toriyama K, Hinata K. Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep,1996,15:727-730
    112. Riaz N, Husnain T, Fatima T, Makhdoom R, Bashir K, Masson L, Altosaar I, Riazuddin S. Development of Indica Basmati rice harboring two insecticidal genes for sustainable resistance against lepidopteran insects. S Afr J Bot,2006,72:217-223
    113. Roush R T. Bt-transgenic crops:just another pretty insecticide or a chance for a new start in resistance management? Pestic Sci,1997,51:328-334
    114. Roush R T. Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Phil Trans R Soc London B,1998,353:1777-1786
    115. Saxena D, Stotzky G. Bt corn has a higher lignin content than non-Bt corn. Am J Bot,2001,88:1704-1706
    116. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler D R, Dean D H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev,1998,62:775-806
    117. Schnepf H E, Whiteley H R. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci USA,1981, 78:2893-2897
    118. Shu Q Y, Cui H R, Ye G Y, Wu D X, Xia Y W, Gao M W, Altosaar I. Agronomic and morphological characterization of Agrobacterium-transformed Bt rice plants. Euphytica,2002,127:345-352
    119. Silver J, Keerikatte V. Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J Virol,1989,63:1924-1928
    120. Storer N P, Babcock J M, Schlenz M, Meade T, Thompson G D, Bing J W, Huckaba R M. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico. J Econ Entomol, 2010,103:1031-1038
    121. Sundaram R M, Vishnupriya M R, Biradar S K, Laha G S, Reddy G N, Rani N S, Sarma N P, Sonti R V. Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica,2008,160:411-422
    122. Sundaram R M, Vishnupriya M R, Laha G S, Rani N S, Rao P S, Balachandran S M, Reddy G N, Sarma N P, Sonti R V. Introduction of bacterial blight resistance into Triguna, a high yielding, mid-early duration rice variety. Biotechnol J,2009, 4:400-407
    123. Tabashnik B E, Malvar T, Liu Y B, Finson N, Borthakur D, Shin B S, Park S H, Masson L, De Maagd R A, Bosch D. Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Appl Environ Microbiol,1996,62:2839-2844
    124. Tabashnik B E, Liu Y B, Malvar T, Heckel D G, Masson L, Ballester V, Granero F, Mensua J L, Ferre J. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc Natl Acad Sci USA, 1997,94:12780-12785
    125. Tabashnik B E, Liu Y B, Malvar T, Heckel D G, Masson L, Ferre J. Insect resistance to Bacillus thuringiensis:uniform or diverse. Phil Trans R Soc London B,1998, 353:1751-1756
    126. Tabashnik B E, Patin A L, Dennehy T J, Liu Y B, Carriere Y, Sims M A, Antilla L. Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. Proc Natl Acad Sci USA,2000,97:12980-12984
    127. Tabashnik B E, Carriere Y, Dennehy T J, Morin S, Sisterson M S, Roush R T, Shelton A M, Zhao J Z. Insect resistance to transgenic Bt crops:lessons from the laboratory and field. J Econ Entomol,2003,96:1031-1038
    128. Tabashnik B E, Fabrick J A, Henderson S, Biggs R W, Yafuso C M, Nyboer M E, Manhardt N M, Coughlin L A, Sollome J, Carriere Y, Dennehy T J, Morin S. DNA screening reveals pink bollworm resistance to Bt cotton remains rare after a decade of exposure. J Econ Entomol,2006,99:1525-1530
    129. Tabashnik B E, Gassmann A J, Crowder D W, Carriere Y. Insect resistance to Bt crops:evidence versus theory. Nat Biotechnol,2008,26:199-202
    130. Tabashnik B E, Unnithan G C, Masson L, Crowder D W, Li X C, Carriere Y. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry 1 Ac and Cry2Ab in pink bollworm. Proc Natl Acad Sci USA,2009a,106:11889-11894
    131. Tabashnik B E, Van Rensburg J B J, Carriere Y. Field-evolved insect resistance to Bt crops:definition, theory, and data. J Econ Entomol,2009b,102:2011-2025
    132. Talekar N S, Shelton A M. Biology, ecology, and management of the diamondback moth. Annu Rev Entomol,1993,38:275-301
    133. Tang J D, Shelton A M, Van Rie J, De Roeck S, Moar W J, Roush R T, Peferoen M. Toxicity of Bacillus ihuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella). Appl Environ Microbiol,1996,62:564-569
    134. Tang J D, Collins H L, Metz T D, Earle E D, Zhao J Z, Roush R T, Shelton A M. Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. J Econ Entomol,2001,94:240-247
    135. Tang W, Chen H, Xu C G, Li X H, Lin Y J, Zhang Q F. Development of insect-resistant transgenic indica rice with a synthetic crylC* gene. Mol Breeding, 2006,18:1-10
    136. Triglia T, Peterson M G, Kemp D J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res, 1988,16:8186
    137. Tu J M, Zhang G A, Datta K, Xu C G, He Y Q, Zhang Q F, Khush G S, Datta S K. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat Biotechnol,2000,18:1101-1104
    138. Uemura T. The cadherin superfamily at the synapse:more members, more missions. Cell,1998,93:1095-1098
    139. Vadlamudi R K, Weber E, Ji I, Ji T H, Bulla L A Jr. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem,1995, 270:5490-5494
    140. Vaeck M, Reynaerts A, Hofte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Montagu M, Leemans J. Transgenic plants protected from insect attack. Nature, 1987,328:33-37
    141. Van Rensburg J B J. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S Afr J Plant Soil,2007,24:147-151
    142. Van Rie J, McGaughey W H, Johnson D E, Barnett B D, Van Mellaert H. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science,1990,247:72-74
    143. Van Sint Jan V, de Macedo C C, Kinet J M, Bouharmont J. Selection of Al-resistant plants from a sensitive rice cultivar, using somaclonal variation, in vitro and hydroponic cultures. Euphytica,1997,97:303-310
    144. Wang G J, Castiglione S, Chen Y, Li L, Han Y F, Tian Y C, Gabriel D W, Han YN, Mang K Q, Sala F. Poplar (Populus nigra L.) plants transformed with a Bacillus thuringiensis toxin gene:insecticidal activity and genomic analysis. Transgenic Res, 1996,5:289-301
    145. Whalon M E, Miller D L, Hollingworth R M, Grafius E J, Miller J R. Selection of a Colorado potato beetle (Coleoptera:Chrysomelidae) strain resistant to Bacillus thuringiensis. J Econ Entomol,1993,86:226-233
    146. Williams S, Friedrich L, Dincher S, Carozzi N, Kessmann H, Ward E, Rylas J. Chemical regulation of Bacillus thuringiensis delta-endotoxin expression in transgenic plants. Nat Biotechnol,1992,10:540-543
    147. Wu K M, Lu Y H, Feng H Q, Jiang Y Y, Zhao J Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science,2008, 321:1676-1678
    148. Xie R, Zhuang M, Ross L S, Gomez I, Oltean D I, Bravo A, Soberon M, Gill S S. Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to CrylA toxins. J Biol Chem,2005,280:8416-8425
    149. Xu X J, Yu L Y, Wu Y D. Disruption of a cadherin gene associated with resistance to Cry 1 Ac delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol,2005,71:948-954
    150. Yang Y J, Chen H Y, Wu S W, Yang Y H, Xu X J, Wu Y D. Identification and molecular detection of a deletion mutation responsible for a truncated cadherin of Helicoverpa armigera. Insect Biochem Mol Biol,2006,36:735-740
    151. Yang Y J, Chen H Y, Wu Y D, Yang Y H, Wu S W. Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry 1 Ac. Appl Environ Microbiol,2007,73:6939-6944
    152. Ye G Y, Shu Q Y, Yao H W, Cui H R, Cheng X Y, Hu C, Xia Y W, Gao M W, Altosaar I. Field evaluation of resistance of transgenic rice containing a synthetic crylAb gene from Bacillus thuringiensis Berliner to two stem borers. J Econ Entom, 2001,94:271-276
    153. Ye R J, Huang H Q, Yang Z, Chen T Y, Liu L, Li X H, Chen H, Lin Y J. Development of insect-resistant transgenic rice with CrylC*-free endosperm. Pest Manag Sci,2009,65:1015-1020
    154. Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J,1983,2:2143-2150
    155. Zhang M, Wang X C, Yan W D, Liang Y C, Shi W M. K+ and Na+ uptake and transport and SOD activity in Bt transgenic cotton seedlings under salt stress. Acta Pedologica Sinica,2005,42:460-467
    156. Zhang L, Wu D, Yang C. Agrobacterium-mediated transformation of Japanese lawngrass (Zoysia japonica Steud.) containing a synthetic crylA(b) gene from Bacillus thuringiensis. Plant Breeding,2007,126:428-432
    157. Zhang S P, Cheng H M, Gao Y L, Wang G R, Liang G M, Wu K M. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry 1 Ac toxin. Insect Biochem Mol Biol,2009,39:421-429
    158. Zhao J Z, Fan Y L, Fan X L, Shi X P, Lu M G. Evaluation of transgenic tobacco expressing two insecticidal genes to delay resistance development of Helicoverpa armigera. Chinese Sci Bull,1999,44:1871-1874
    159. Zhao J Z, Collins H L, Tang J D, Cao J, Earle E D, Roush R T, Herrero S, Escriche B, Ferre J, Shelton A M. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of CrylC. Appl Environ Microbiol,2000,66:3784-3789
    160. Zhao J Z, Cao J, Li Y X, Collins H L, Roush R T, Earle E D, Shelton A M. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol,2003,21:1493-1497
    161. Zhao J, Jin L, Yang Y H, Wu Y D. Diverse cadherin mutations conferring resistance to Bacillus thuringiensis toxin Cry 1 Ac in Helicoverpa armigera. Insect Biochem Mol Biol,2010,40:113-118