HBsAg S基因克隆及基因转化用黄瓜的组织培养
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎是危害全球人类健康的最主要的传染病之一,能够在全球广大地区流行。接种乙肝病毒疫苗已成为控制乙型肝炎发生的唯一经济有效的方法。如何使乙肝疫苗更加安全、经济、有效和更容易地推广使用是世界各国研究的主要方向。
     随着基因工程技术和分子生物学研究的飞速发展,植物已开始被用作生产蛋白质、糖类和脂类等生物大分子的生物反应器。本试验以从genebank中查到的中国人群优势亚型adr亚型的乙肝病毒S基因序列为模板设计了正向引物5′-cgggatcc atggagaacacaacatcagga-3′和反向引物5′-cgagctc ttaaatgtatacccaaagaca-3′,以从乙肝患者血清中提取的DNA为模板进行了PCR扩增,获得了正确的S基因片段,经纯化、酶切,将此片段克隆到植物表达载体pBI121中,转化宿主菌大肠杆菌JM109;PCR和双酶切检测证明乙肝病毒表面抗原S基因已经插入到pBI121中,成功实现了在大肠杆菌细胞中的克隆;将此重组质粒用CaCl_2介导的热击法转化根癌农杆菌LBA4404,获得了阳性克隆,可以用于植物转化实验。同时本研究从愈伤组织再生和子叶外植体直接分化花芽两条途径对黄瓜组织培养条件进行了摸索,通过外植体类型、外植体苗龄和培养基中激素浓度配比几个方面对黄瓜愈伤组织的诱导进行了研究,认为外植体直接分化花芽的途径成苗时间短,再生率高,适合作为基因转化的受体系统,为进一步对黄瓜的遗传转化提供了依据。
     本研究克隆的乙肝病毒表面抗原S基因来自于中国人群中的优势亚型adr亚型病毒,因此对于防治中国人群中广泛流行的乙型肝炎更具有针对性。将对HBV黄瓜疫苗的研制、改变传统免疫观念、改善免疫方法产生一定影响。
Hepatitis B is one of the most dangerous infectious diseases that do harm to people's health and it ravages in almost everywhere on the earth. Widely vaccination for hepatitis B has been the only economical and effective means to control the disease. And it is one of the most crucial tasks for us in the near future to find out how to make vaccine more safe, economical, effective and easy to application.
    With the rapid development of molecular biology and gene engineering, plants can be used as the bioreactor for proteins, carbohydrates and lipids. Subtype adr is the prevailing subtype of HBV in Chinese people. We used the coding sequence of this subtype searched from genebank as the model of PCR reaction and designed a pair of primer: 5'-cgggatccatggagaacacaacatcagga-3' (Forward primer), 5'-cgagctcttaaatgtatac ccaaagaca-3' (Backward primer). The DNA prepared from the serum of HBV sufferers was amplified by PCR and the S gene of HBsAg was then obtained. After purified and digested by restricted enzymes, the S gene of HBsAg was successfully cloned into pBI121, which was a kind of plant expression vector. The recombinant plasmid was transformed into E. coli strain JM109 and then transformed into Agrobacterium tumefaciens LBA4404 by heat shock, which can be used for plant transformation. In the same time, we had an attempt in tissue culture of cucumber (Cucumis sativus L.) in two different ways and the effect of the explant tissue type, age of explant and hormone ratio in the medium on callus induction was investigated. We found that buds directly regenerated from cotyledon explants is suitable for plant transformation due to its high regenerating rate and quickly seedling, which established a basis for further study on the transformation of cucumber.
    
    
    
    S gene of HBV subtype adr used in this research is the prevailing subtype in Chinese people, which make it more aiming in the precaution of HBV. This work can have certain impact on the development of cucumber-derived HBV vaccine and make a change in immunological concept and an improvement in the traditional immunological methods.
引文
[1] 李景泰,林万明,王国卿。临床医学分子生物学现状和未来。北京:科学技术出版社,1992,189-196
    [2] 王跃驹、李刚强、刘德虎。利用转基因植物生产乙肝口服疫苗。生物技术通报,1997,5:21-27
    [3] 侯云德。分子病毒学。北京:学苑出版社,1990,323-333
    [4] 郭仁译,病毒性肝炎——现状与难点,北京医科大学和中国协和医科大学联合出版社,北京1995,15-39
    [5] Seeger C, William S, Mason HS. Hepatitis B virus biology. Microbiology and Molecular Biology Reviews, 2000,64(1): 51-68
    [6] Murray D, Krahn S.et al. Universal Hepatitis Vaccination: the economicics of prevention. Can Med Assoc J, 1992,146(1): 19-21
    [7] 张瑾,王文栋。乙肝疫苗的研究概况。生物学通报,1998,33(7):26-27
    [8] 刘德虎。利用转基因植物生产药用蛋白。生物技术通报,1999,4:1-5
    [9] Curtiss R, Cardineau GA. World intellectual property organization 1990, PCT/US89/03799
    [10] McGarvery PB, Hammond J. et al. Expression of the rabies virus glycoprotein in transgenic tamatos. Biotechnology, 1995,13:1484-1487
    [11] Mason HS, Haq TA, Clements JD, Amtzen CJ. Edible vaccines protects mice against Eschericha Coli. heat-labile enterotoxin(LT): potatoes expessing a synthetic LT-B gene. Vaccines .1998,16(13): 1336-1338
    [12] Mason HS, Lam DMK, Arntzen CJ. Expression of hepatitis B surface antigen in transgenic plants. Proc Natl. Acad. Sci. USA, 1992,89:11745-11749
    [13] Thanavala Y, Yang YF, Lyons P, Mason HS, Arntzen CJ. Immunogenicity of transgenic plant-derived hepatitis B surface antigen. Proc Natl Acad Sci 1995, 92: 3358-3363
    [14] Kapusta J, Modelska A, Figlerowicz M.et al. A plant-derived edible vaccine agaist hepatitis B virus. FASEB.J. 1999,13:1796-1799
    
    
    [15] 刘玉乐。人乙肝病毒表面抗原基因在转基因烟草中的表达。中国科学(B辑),1993,23(3):252-255
    [16] Richter L J, Thanavala Y, Arntzen C J, Mason HS. Production of hepatitis B surface antigen in transgenic plant for oral immunization. Nat Biotechnol, 2000, 18(1): 1167-1171
    [17] Domansky N, Ehsani P, Salmanian AH. et al. Organ-specific expression of hepatitis B surface antigen in patato. Biotechnol Lett, 1995,17(8): 863-866
    [18] Marshall H. Edible vaccine for hepatitis B.Trends Immunol, 2001, 22(2): 71
    [19] Chikwamba R, Cunnick J, Hathaway D, McMurray J, Mason H, Wang K. A functional antigen in a practical crop: LT-B producing maize protects mice against Escherichia coli heat labile enterotoxin. Transgenic Research, 2002,11: 423-429
    [20] Lauterslager TGM, Florack DEA, vander Wal TJ, Molthoff JW, Langeveld JPM et. al. Oral immunisation of naive and primed animals with transgenic potato tubers expressing LT-B. Vaccine, 2001, 19:2749-2755
    [21] Mason HS, Ball JM, Shi JJ.et al. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc Natl Acad Sci, USA, 1996,93:5335-5340
    [22] 王凌健。利用转基因胡萝卜表达肺结核疫苗。植物学报,2001,43(2):132-137
    [23] Avakawa T. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nature Biotechnol, 1998,16:292-297
    [24] Avakana T. Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Research, 1997,6:403-413
    [25] Daniell H, Lee S-B, Panchal T, Wiebe PO. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol, 2001, (311): 1001-1009
    [26] Yusibov V, Hooper DC, Spitsin SV, Fleysh N, Kean RB, Mikheeva T, Deka D Karasev A, Cox S, Randall J. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine, 2002, 20(25-26): 3155-3164
    [27] Carrillo C, Wigdorovitz A, Oliveros JC, Zamorano PI. et al. Protective immune response to foot-and-mouth disease virus with VP1 expressed in transgenic plants. J. Virology, 72(2): 1688-1690
    
    
    [28] Dus Santos M J, Wigdorovitz A, Trono K, Raǘl D. Ros, Franzone PM, Gil F, Moreno J, Carrillo C, Escribano JM, Borca MV. A novel methodology to develop a foot and mouth disease virus (FMDV) peptide-based vaccine in transgenic plants. Vaccine, 2002 (20): 1141-1147
    [29] Wigdorovitz A, Carrillo C, Dus Santos M J, Trono K, Peralta A,. Go~-mez MC, Ros RD, Franzone PM, Sadir AM, Escribano JM, Borca MV. Induction of a protective antibody response to Foot and Mouth Disease Virus in mice following oral or parenteral immunization with Alfalfa transgenic plants expressing the viral structural protein VP 11. Virology, 1999(255): 347-353
    [30] Dalsgaard K, Uttenthal A, Jones TD, Xu F, Merryweather A, Hamilton WD, Langeveld JP, Boshuizen RS, Kamstrup S, Lomonossoff GP, Porta C, Vela C, Casal JI, Meloen RH, Rodgers PB. Plant-derived vaccine protects target animals against a viral disease. Nat Biotechnol, 1997,15(3): 248-252
    [31] Aziz MA, Singh SP, Kumar A, Bhatnagar R. Expression of protective antigen in transgenic plants: a step towards edible vaccine against anthrax. Biochemical and Biophysical Research Communications, 2002 (299) :345-351
    [32] Huang Z, Dry I, Webster D, Strugnell R, Wesselingh S. Plant-derived measles virus hemagglutinin protein induces neutralizing antibodies in mice. Vaccine, 2001 (19): 2163-2171
    [33] Muller S, Claude P, Fred F, Benjamin D, Fabienne B. Immunogenic measles antigens expressed in plants: role as an edible vaccine for adults. Vaccine, 2003, 21(7-8): 816-819
    [34] 宋东光、王光清、汪训明。Patatin启动子驱动的乙肝病毒表面抗原基因在马铃薯中的表达。高技术通讯,2000,10(2):18-20
    [35] 赵春晖、王荣、赵长生。含与不含前导序列的乙肝病毒表面抗原在转基因番茄中表达的研究。农业生物技术学报,8(1):85-88
    [36] 赵春晖、冯斌、王关林。乙肝病毒表面抗原植物表达载体的构建。辽宁师范大学学报,1999,22(3):240-243
    [37] Simon MA. Exploring transgenic plants as a new vaccine source. Science, 1995, 268:658
    
    
    [38] Liu LM, MacPherson GG. Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo. J Exp Med, 1993, 177: 1299
    [39] 杨倩,周广礼。动物粘膜免疫新进展。畜牧与兽医。2001,33(5):38-40
    [40] Neutra MR, Pringault E, Kraehenbuhl JP. Antigen sampling across epithelial barriers and induction of mucosal immune response. Annu Rev Immunol. 1996,14: 275-300
    [41] Ogra PL, Faden H, Welliver RC. Vaccination strategies for mucosal immune response. Clinical microbiology reviews, 2001,14(2): 430-445
    [42] Kagnoff MF. Mucosal immunology: new frontiers. Immunology today, 1996,17(2): 57
    [43] Aizpurua HJ. Oral vaccination: identification of classes of proteins which provoke an immune response upon oral feeding. J.Exp.Med, 1988,167:440-451
    [44] Russel-Jones GJ. Recent advances in mucosal immunology. Plenum Press. 1987, 216B: 1971-1799
    [45] 耿德贵、王义琴、李文彬、孙勇如。利用转基因植物生产口服疫苗的研究现状。生物工程进展,2002,22(1):19-21
    [46] 胡泽华。口服疫苗输送研究的概况。湖北民族学院学报(医学版),2002,19(1):51-53
    [47] 吴乃虎。基因工程原理。北京:科学出版社,2000,238-260
    [48] A.N.格拉泽、二介堂弘、陈守文、喻子牛等译。微生物生物技术——应用微生物学基础原理。北京:科学出版社,2002:216-221
    [49] 崔娜,王莉。植物分子生物学中的双元系统。沈阳师范学院学报(自然科学版),2001,19(4):50-54
    [50] 王关林,方宏筠。植物基因工程原理与技术。科学出版社,205—233
    [51] Yu J, Langridge WH. Novel approaches to oral vaccines: Delivery of antigens by edible plants. Curr Infectious Dis Rep, 2000, 2(1): 73-77
    [52] Walmsley AM, Arntzen CJ. Plants for delivery of edible vaccines. Current opinion in Biotechnology, 2000, 13: 1126
    [53] Giddings G, Allison G, Brooks D, Carter A. Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol, 2000,18(11): 1167-1171
    
    
    [54] 焦润身。展望即将到来的分子农业生物工程学报,2001,17(4):361-364
    [55] Koprowski H, Yusibov V. The green revolution: plants as heterologous expression vectors. Vaccine, 2001, 19:2735-2741
    [56] Mason HS, Warzecha H, Tsafrir M, Arntzen CJ. Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends in Molecular Medicine, 2002, 8(7): 324-329
    [57] Annick M, Ursula W, Heimo B. Edible genetically modified microorganisms and plants for improved health. Current Opinion in Biotechnology, 2001,12(5):510-515
    [58] Tacket CO, Mason HS. A review of oral vaccination with transgenic vegetables. Microbes and Infection, 1999, 1(10): 777-783
    [59] Franken E, Teuschel U, Hain R. Targeting of plant-derived vaccine antigens to immunoresponsive mucosal sites. Vaccine, 2003, 21, (7-8): 809-811
    [60] Shen WJ, Forde BG. Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Research. 1989, 17(20): 8385
    [61] 贾士荣,付幼英,林云。黄瓜子叶原生质体培养获得体细胞胚发生和再生植株。生物工程学报,1985,1(4):54-58
    [62] 贾士荣,罗美中,林云。黄瓜胚性细胞悬浮培养及原生质体的植株再生。植物学报 1988,30(5):463-467
    [63] 余阳俊,朱其杰。黄瓜成熟胚离体培养中的胚状体诱导和植株再生。植物生理学通讯,1992,28(1):37-39
    [64] 张兴国,刘佩英。黄瓜原生质体培养再生胚状体和植株研究。西南农业大学学报,1998,20(4):288-292
    [65] 赵军良,马蓉丽。黄瓜子叶组织培养再生植株。山西农业科学,1996,24(1):39-41
    [66] 刘伟华,石锐。黄瓜Ri-DNA转化根的植株再生。生物技术,1998,8(4):23-25
    [67] 赵秀娟,吴定华。黄瓜的组织培养。华南农业大学学报,1998,19(4):125-126
    
    
    [68] Tabei Y. Transgenic cucumber plants haboring a rice chitinase gene exhibit enhanced resisitsnce to gray mold (Botrytis cinerea). Plant Cell Reports, 1998.17(3): 159-164
    [69] Nishibayashi S, Kaneko H, Hayakawa T. Transformation of cucumber (Cucumis sativus L.) plants using Agrobacterium tumefaciens and regeneration from hypocotyl explants. Plant Cell Reports, 1996,15(11): 809-814
    [70] Chee PP, Slightom JL. Transformation of cucumber tissues by microprojectile bombardment: identification of plants containing functional and non-functional transferred genes. Gene. 1992,118(2): 255-260
    [71] Raharjo SHT. et al. Transformation of Pickling Cucumber with chitinase-encoding genes using Agrobacterium tumefaciens. Plant Cell Reports, 1996, 15(8): 102-105
    [72] Levis W, Handley OL. Chambliss. In vitro propaggation of cucumis sativus L. HortScience, 1979,14(1): 22-23
    [73] Todd CW, Robert DL. In vitro adventitious shoot and root formation of cultivars and lines of cucumis sativus L. HortScience, 1981,16(6): 759-760
    [74] Rhonda LG, William AD. The influence of cotyledons in axillary and adventitious shoot rroduction from cotyledonary nodes of cucumis sativus L. (cucumber). Journal of Experimental Botany, 1991, 42 (242): 1131-1135
    [75] Colijn-Hooymans CM, Hakkert JC, Jansen. J, Custers J.B.M. Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages. Plant Cell, Tissue and Organ Culture, 1994, 39:211-217
    [76] J.萨姆布鲁克;E.F.弗里奇;T.曼奇阿蒂斯[美]。分子克隆试验指南第二版。北京:科学出版社,2000
    [77] F.奥斯伯;R.布伯特;R.E.金斯顿;D.D.穆尔;J.G.赛德曼;J.A.史密斯;K.斯特拉尔[美]。精编分子生物学实验指南。北京:科学出版社,2000
    [78] 王申五。基因诊断技术 非放射性操作手册。北京:北京医科大学、中国协和医科大学联合出版社。1993年7月,36—43
    [79] 温进坤、韩梅。医学分子生物学理论与研究技术 第二版。北京:科学出版社,2002,473—493
    
    
    [80] Christoph S, Mason WS. Hepatitis B virus biology. Microbiology and Molecular Biology Reviews, 2000, 64(1): 51-68
    [81] Crowe JS. Cooper HJ, Smith MA. Improved clonging efficiency of polymerase chain reaction (PCR) products after proteinase K digestion. Nucleic Acids Research, 1990,19:184
    [82] 王会文。蚯蚓纤溶酶基因在甲醇酵母中的克隆与表达。理学硕士学位论文
    [83] 刘建荣,赵晓瑜,静天玉。利用蛋白酶K消化PCR产物提高克隆效率。河北大学学报1997,117(增刊):36—39
    [84] 张承妹、陆家安。黄瓜(Cucumis Sativus L.)组织培养与四倍体诱导再生植株。上海:上海农业学报 1995,11(3):31-36
    [85] Mohiuddin AKM, Chowdhury MKU, Zaliha C. et al. Influence of silver nitrate (ethyleneinhibitor) on cucumber in vitro shoot regeneration. Plant Cell Tiss Org Cult, 1997, 51:75-78
    [86] Punja ZK, Abbas N, Sarmento GG. et al. Regeneration of cucumis sativusvar.sativus and C.sativus. var. hardwickii, C.melo, and C. metuliferus from explants through somatic embryogenesis and organogenesis. Plant Cell Tiss Org. Cult, 1990, 21:93-102
    [87] 贾士荣,曹冬孙。转基因植物。植物学通报,1992(9):3-15
    [88] 梅茜,张兴国。黄瓜组织培养研究。西南农业大学学报,2002,24(3):266—267
    [89] 陆玲,周燮。ABA与GA3对黄瓜离体子叶和石刁柏茎生根的影响。植物生理学报,1992,18(2):173—178
    [90] 庞基良、孙坚红、梁海曼。黄瓜离体子叶切块培养直接分化花芽。生物技术,1994,4(6):9-11
    [91] Palmer CE. Enhanced shoot regeneration from Brassica campestris by silver nitrate. Plant cell reports, 1992,11 (11): 541-545