几丁质酶基因对黄瓜遗传转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜是人们喜食的蔬菜作物之一,在我国蔬菜周年供应上占有重要地位,但易受多种真菌病害的危害而使产量降低,品质下降。传统的育种方法周期长、耗资大、效率低、受抗性基因资源匮乏的限制、还易出现抗性退化的现象,用现有品种资源进行有性杂交育种很难尽快得到具有抗性的优良品种。因此,本研究通过基因工程手段,利用农杆菌介导法将菜豆几丁质酶基因导入黄瓜,建立了黄瓜高效的植株再生体系和遗传转化体系,探讨了影响植株再生频率和遗传转化效率的主要因素,确立了最佳的植株再生和遗传转化条件,获得了阳性转基因植株。主要研究结果如下:
     1外植体和6-BA浓度对器官发生的影响 子叶节是最佳的外植体;最适宜的芽诱导培养基为MS+6-BA0.5mg/L。
     2黄瓜遗传转化的最适宜条件 子叶节预培养1~2天,在含有6-BA0.5mg/L、乙酰丁香酮(AS)100μmol/L、pH5.2的MS培养基上进行培养,遗传转化效率最高。最佳的选择压力为卡那霉素30mg/L。
     3转基因植株的检测 用几丁质酶两端序列合成的引物对To代再生植株进行PCR检测,结果“长春密刺”的78株再生植株中,有30株为阳性,占再生植株的38.7%。PCR检测结果可初步证明目的基因已整合到黄瓜基因组中。
Cucumber is one kind of favorite vegetables and plays an important role in vegetable supply, but it was suffered from many kinds of Fungi easily, which can decrease its yield and deteriorate its quality. Traditional method of breeding has many disadvantages, such as long period, huge investment and low efficiency. It is also restricted to the shortage of resistant genes. There is devolution of resistance in resistant cultivar. Cucumber exist serious hamper of sexual hybridization. So it is difficult to obtain the superior cultivar with high resistance. This study established a highly efficient regeneration system of cucumber and then transfer the fungi-resistant gene (bean chitinase gene) into cucumber, which mediated by Agrobacterium tumefaciens. This has not been studied in previous reports in China. The integration of target gene into cucumber genome was analyzed. The factors influencing regeneration rate and transformation rate were discussed.
    The results was summarized as follows:
    1 Effect of explants and concentration of 6-BA on organgenesis The best explants was cotyledonary nodes; The optimum shoot inducing medium is MS+6-BA0.5mg/L.
    2 The optimum procedure in cucumber transformation as follows: The cotyledonary nodes was pre-cultured for 1~2 days, co-cultivated in medium including 6-BA 0.5mg/L and AS l00$mol/L, pH 5.2. The optimum concentration of kanamycin used in resistant shoots selection was 30mg/L.
    3 Detection of transforming regenerated cucumber 30 of 78 regenerated plants of "Chang Chun Mi Ci" were positive and the percentage is 38.7%. The results of PCR demonstrated the integration of target gene into cucumber genome primarily.
引文
1 陈三凤,李季伦.几丁质酶研究历史和发展前景.微生物学通报.1993,20(3):156~160
    2 董云洲,段胜军,赵连元等.用基因枪转化花粉获得转基因谷子和玉米.中国农业科学.1999,32(2):9~13
    3 冯勤,杨美珠,郑学勤等.根癌土壤杆菌介导的咖啡转化.生物工程学报.1992.8(3):255~260
    4 傅荣昭,孙勇如,贾士荣主编.植物遗传转化技术手册.北京:中国科学技术版社,1994:
    5 高必达.植物几丁酶的分子生物学研究进展.湖南农业大学学报.1996,22(6):587~602
    6 郭春源.Ri质粒植物基因工程.生物学通报.1997,32(10):22~23
    7 郭元林,向平.转基因技术在作物育种上的应用.西南农业学报.1997.10(4):109~113
    8 巩振辉,Miller J. J. ,何玉科.拟南芥转移新方法—真空渗入法的研究.西北植物学报.1996.16(3):277~283
    9 贾士荣,傅幼英,林云 生物工程学报 (1985)1(4):54~58
    10 蓝海燕,王长海,张丽华.导入β-1,3~葡聚糖酶及几丁质酶基因的转基因可育油菜及其抗真菌瘸的研究.物工程学报.2000,16(2):142~146
    11 蓝海燕,田颖川,王长海.表达β-1,3~葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究.遗传学报.2000,27(1):70~77
    12 刘金元,时香玉,陈晓等.利用基因枪技术转化小麦、玉米的研究.山东农业科学.1999,2:5~8
    13 施和平,李玲,潘瑞炽.极性和NAA浓度对发根农杆菌遗传转化黄瓜子叶的影响.热带亚热带植物学报.1997.5(3):43~47
    14 陶余敏,唐锡华.农杆菌转化单子叶植物的可能性及问题.植物生理学通讯.1992,28(6):402~406
    15 汤辉仙,贾士荣,尹长城等.实验生物学报.1988,21(3):285~293
    16 汤辉仙,贾士荣,尹长城等核农学报.1988,2(3):139~146
    17 王艳飞,杜胜利,魏惠军,黄瓜组织培养的研究进展.天津农业科学.1997,3:10~15
    18 王慧中,赵培沽.周晓云.转WMV~2 CP基因黄瓜植株的再生.植物生理学报.2000,26(3):267~272
    19 王关林,方宏筠主编.植物基因工程原理与技术.北京:科学出版社,1998:228~229
    20 薛万新,巩振辉,阿布都艾尼等.油菜基因转移适宜苗态建成方法研究.西北农业大学学报.1999,27(3):6~8
    21 许耀,王艇,李宝健.根癌农杆菌介导的外源基因转化植物萌动种胚的研究.实验生物学报.1991,24(2):109-114
    22 许新萍,卫剑文,基因枪转化籼稻的影响因素.中山大学学报(自然科学版).1998,37(1):88~92
    23 余阳俊,朱其杰.黄瓜成熟胚离体培养中的胚状体诱导和植株再生.植物生理学通讯.1992,28(1):37~39
    
    
    24 张广辉,巩振辉,薛万新等.大白菜和油菜真空渗入遗传转化法初报.西北农业大学学报.1998,26(4):1~4
    25 赵军良,马蓉丽,李昌华.黄瓜子叶组织培养再生植株.山西农业科学.1996,24(1):39-41
    26 张承妹,陆家安.黄瓜组织培养与诱导四倍体再生植株.上海农业学报.1995,11(3):31~36
    27 张兴国,刘佩瑛.黄瓜原生质体培养再生胚状体和植株研究.西南农业大学学报.1998,20(4):287~292
    28 梅茜,张兴国.黄瓜组织培养研究.西南农业大学学报.2002,24(3):266~267
    29 赵泓,刘凡 姚磊 简单快捷建立高频黄瓜子叶离体再生体系 生物技术 2000,10(2):9~11
    30 陈峥,金红 程奕 杜胜利 魏爱民 提高黄瓜农杆菌遗传转化体系再生频率的研究天津农业科学 2001 7(4):47~49
    31 王慧中,赵培洁 周晓云 转WMV 2CP基因黄瓜植株的再生 植物生理学报 2000 26(3):267~272
    32 Benhamou, et al. Plant Physiol. 1990, 92:1108
    33 Boller.J, Gehri A, Mauch F, et al. Plant Cell. 1993, 157: 22
    34 Broglie.KE, Chet.I, et al. Science. 1991, 254: 1194
    35 Cade,R.M., T.C.Wehner, and F.A.Blazich. Effect of Explant Age and Growth Regulator Concentration on Adventious Shoot Formation from Cotyledonary Tissue of Cucumber J. Amer.Soc.Hort.Sci. 1990, 115:691~696
    36 Chen.M, cheng.H, Hos, et al. Plant Mol Biol. 1993, 22:491~506
    37 Cheng.M, Fry.J, Party.S, et al. Genetic Transformation of Wheat Mediated by Agrobacterium tumefaciens. Plant Physicol. 1997, 115: 971~980
    38 C.M.Colijn~Hooymans, J.C.Hakkert, J.Jansen and J.B.M Custers. Plant Cell. Tissue and Organ Culture. 1994, 39: 211~217
    39 Chee PP, Slightom JL. Transfor and Expression of Cucumber Mosaic Virus Coat Protein Gene in the Genome of Cucumis sativas. J Amer Soc Hort Sci. 1991, 116 (6): 1~6
    40 Collinge DB, Kragh KM, Mikkelsen JD, et al. Plant Chitinases. Plant J. 1993, 3(1): 31~40
    41 Colijn~Hooymans CM, Bouwer R, Dons J J M. Plant Cell Tissue Organ Culture. 1998a, 12: 147~150
    42 Colijn~Hooymans CM, Bouwer R, Orczyk W, etal. Plant Sci. 1988b, 57(1): 63~71
    43 De Wit PJGM. Melecular Characterization of Gene~for-Gene System in Plant Fungus Interactions and the Application of Avirulence Genes in Control of Plant Pathogens. Ann Rev Phytopathol. 1992, 30: 391
    44 Flach J, Pilet PE, Jolles P. What's New in Chitinase Research? Experientia. 1992, 15;48(8):701~716
    45 Gonalves D, Chee P, Provvidenti R, et al. Comparison of Coat Protein Mediated and
    
    Genetically Derived Resistance in Cucumbers to Infection by Cucumber Mosaic Virus under Field Conditions with Natural Challenge Inoculations by Vectors. Bio/Techonlogy. 1992, 10(12): 1562~1570
    46 Horsch, R.B., N.L.Hoffmarm, J.E.Fry. Simple and General Method for Transferring Genes into Plants. Science. 1985, 227: 1229~1231
    47 Hoffman RM, Turner JG. Occurrence and Specificity of an endo-polyalacturonase Inhibitor in Pisum sativum. Physiol Plant Pathol(1984) 24: 49
    48 Howie W. Joe L. Fransgenic Research. 1994, 3(2): 90
    49 H.Lou and S.Kako. Somatic Embryogenesis and Plant Regeneration in Cucumber. HortScience. 1994, 29(8): 906~909
    50 H.Lou, S.Kako. Role of High Sugar Concentrations in Inducing Somatic Embryogenesis from Cucumber Cotyledons. Scientia Horticulturae. 1995, 64: 11~20
    51 Ishicla Y, SaitoH, Ohta S, et al. High Efficiency Transformation of Maize (Zea mays L. ) Mediated by Agrobacterium tumcfaciens. Nature Biotechnology. 1996, 14: 745~750
    52 Jach G, Logemann S, et al. Biopractece. 1992, (1): 33
    53 Jia SR, Fu YY, Lin YJ. Plant Physiol. 1986, 124:393~398
    54 J.Schhulze, C.Balko, B.Zellner. et al. Biolistice Transformation of Cucumber Using Embryogenic Suspension Cultures: Longterm Expression of Reporter Genes. Plant Science. 1995, 112: 197~206
    55 Jach G, Gornhardt B, Mundy J, et al. Enhanced Quantitative Resistance against Fungal Disease by Combinatorial Expression of Different Barley Antifungal Proteins in Transgenic Tobacco. Plant J. 1995, 8(1): 97~109
    56 Jongedijk E, Tigelear H, et al. Euphytica. 1995, 85:173
    57 Leah R, To mmerup H, Svendsen Ib. et al. Biochemical and Molecular Charaterization of Three Baeley Seed Proteins with Antifungal Properties. J Biol Chem. 1991, 266:1564
    58 Lin W, Anuratha CS, et al. Biotechnology. 1995, 13: 686
    59 Ladyman J A R, Girard B. Cucumber Somatic Embryo Development on Various Gelling Agents and Carbonhydrate Source. HortScience. 1992, (27): 2, (164~165): 12
    60 Majeau N, Trudel J, Asselin A. Plant Sci. 1990, 68:9
    61 Mahalakshmi A,Khurana P. Agrobacterium~mediated Gene Delivery in Various Tissues and Genetypes of Wheat (Triticum aestirum L. ). Journal of Plant Biochemistry and Biotechnology. 1995, 4(2): 55~59
    62 Mclnnes E, Morgan A J, Mulligan B J, et al. Roots Induced on Cucumber Cotyledons by the Agropine Ri Plasmid TR-DNA Exhibit the Transformed Phenotype. Plant Cell Report. 1991, 9: 647~650
    63 Meins, F. et al. Plant Molecular Biology Report. 1994, 12(2): 929
    64 Nawab Ali, Robert M.Skirvin, Walter E. Splittstoesser. Regeneration of Cucumis sativus from Cotyledons of Small Explants. HortScience. 1991, 26(7): 925
    
    
    65 Nielsem K K, Bojsem K, et al. Plant Pathol. 1994, 45 (2):89
    66 Nishibayashi S, Hayakawa T, Nakajima T, et al. CMV Protection in Transgenic Cucumber Plants with an Introduced CMV~O cp Gene. TheorApp Genet. 1996a, 93 (5-6): 672~678
    67 Punja ZK, Abbas N, Sarmento GG, et al. Plant Cell Tissue Org an Culture. 1990a, 21: 93~102
    68 Punja ZK, Tang FA, Sarmento GG. Plant Cell Rep. 1990b, 9:61~64
    69 Paula P. Chee. High Frequency of Somatic Embryogenesis and Recovery of Fertile Cucumber Plants. HortScience. 1990,25(7): 792~793
    70 Paula P. Chee. Transformation of Cucumis stativas Tissue by Agrobacterium tumefaciens and the Regeneration of Transformed Plants. Plant Cell Reports. 1990, 9:245~248
    71 Payne,G. et al. Proc.Natl.Acad.Sci.USA. 1991, 87: 98
    72 Rene Grison, et al. Nuture Biotechnology. 1996, 14:643
    73 Sarmento GG, Alpert K, Tang F A, etal. Plant Cell,Tissue and Organ Culture. 1992, 31: 185~193
    74 Shinshi, H. et al. Plant Molecular Biology. 1990, 14:357
    75 Soryu Nishbayashi, Hiroyasu Kaneko, and Takahiko Hayakawa. Trans~formation of Cucumber (Cucumis stativas L. ) Plants using Agro~bacterium tumefaciens and Regeneration from Hypocotyl Explants. Plant Cell Reports. 1996, 15: 809~814
    76 Schlumbaum A, Mauch F, et al. Nature. 1986, 324: 365
    77 S.H.T.Raharjo,M.O.Hernandez, Y.Y.Zhang. Transformation of Pickling Cucumber with Chintinase~encoding Genes using Agrobacterium tumefaciens. Plant Cell Reports. 1996, 15: 591~596
    78 Trulson A J, Simpson RB, Shahin EA. Transformation of Cucumber (cucumis sativa L.) Plants with Agrolacterium rhizogenes. Theor Appl Genet. 1986, 73: 11~15
    79 Tian Wen Zhong, et al. Rice Transformation with a Phytoalexin Gene and Bioassay of the Transgene Plants. Acta botanica Sinica. 1998, 40(9): 803~808
    80 Tahei Y, Kitade S, Nishizawa Y, et al. Transgenic Cucumber Plants Harboring a Rice Chitinase Gene Exhibit Enhanced Resistance to Gray Mold (Botrytis cinerea) [J]. Plant Cell Reports. 1997, 17(3): 159~164
    81 Vigers A J, Roberts W K, Selitrennikoff C P. A New Family of Plant Antifungal Proteins. Mol Plant-Microb Inter. 1991, 4:315
    82 Woloshuk CP, et al. Plant Cell. 1991, 3:619
    83 Wubben J P, Joosten M H A J, Van Kan J A L, et al. Physiol.Mol.Plant Pathot. 1992, 41(1): 23
    84 Y.Tabei, S.Kitade, et al. Plant Cell Report. 1998, 17: 159
    85 Zhu Q, Lamb C J. Isolation and Characterization of a Rice Gene Encoding a Basic Chitinase. Mol Gen Genet. 1991, 226(1~2): 289~296
    86 Ziv M, Gadasi G. Plant Sci. 1986, 47:115~122