草坪植物马蹄金的器官培养及原生质体培养研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马蹄金(Dichondra repens Forst.)是一种优良的地被兼观赏草坪草种。马蹄金的器官和原生质体培养在生物技术育种中作为品种快繁、变异体筛选以及体细胞杂交和遗传转化的主要技术基础,必将引起人们的广泛关注和高度重视,但目前尚无明确的报道。本文以国内外大面积推广栽培的马蹄金为材料,对其子叶、下胚轴、叶片及原生质体培养进行了研究,建立了较为系统的器官和原生质体培养体系,为开辟这一优良的草坪植物的育种新途径提供了重要的理论基础和技术基础。现将本文的主要研究结果分述如下:
     1.以马蹄金的无菌苗的子叶、下胚轴和叶片为外植体,研究了不同的激素组合对愈伤的诱导的影响,其中子叶以1.0mg/L 2.4-D+0.2mg/L6-BA或0.2mg/L KT组合处理,下胚轴以1.0mg/L2.4-D+0.2mg/L 6-BA或0.2mg/L KT、0.5mg/L NAA+0.5mg/L 6-BA组合处理,叶片以1.5mg/L
     2.4-D+0.2mg/L KT、1.0mg/L 2.4-D+0.2mg/L 6-BA的激素组合处理效果最好。出愈率均为100%,而且生长势也很好。在子叶和下胚轴的诱导中,添加0.5mg/L NAA还可以直接诱导出不定根。同时研究得出,MS、B_5培养基是马蹄金子叶、下胚轴和叶片外植体诱导愈伤的理想培养基。
     2.研究了不同的激素组合对愈伤分化的影响,子叶的愈伤在MS附加O.1mg/L 2.4-D、2mg/L 6-BA和3mg/L AgNO_3的培养基上分化效果最好,分化率达20.7%,而下胚轴在各种激素浓度组合下均未见分化。
     3.采用光照条件下12d龄的子叶,在含纤维素酶(Cellulose R-10)2%、果胶酶(Pectinase)0.8%的酶解液中,甘露醇为0.5M的渗透压条件下,酶解9h的原生质体的产量最高,活力最强。
     4.研究了不同类型的培养基、不同的培养密度和培养基中不同的激素组合对原生质体的生长发育的影响,结果表明:以1.0×10~5/ml的密度培养在完全去掉NH_4NO_3的KM_8P培养基中,附加0.5mg/L 2.4-D、0.5mg/L6-BA和0.5mg/L NAA时,对原生质体的分裂和愈伤的形成极为有利。
    
    草坪植物马蹄金的器官培养及原生质体培养研究
     5.参试的四种培养方式以液体浅层培养法的效果最佳,其原生质体
    恢复分裂早,分裂频率高达203%,植板率最高为1.33%,固体平板培养
    尽管能使原生质体分裂,但分裂的细胞不能持续分裂形成小愈伤,同时伴
    随有出芽分裂现象。
     6.在原生质体来源的愈伤的分化中,比较了不同的激素组合对实生
    苗再生的影响,其中以o.Zmg/LZ,4一n+4mg/L6一BA和o.Zmg/L NAA+4m
    g/L6一BA的两种激素组合效果较好,分化率分别为22.2%和20.0%。再生
    的无根苗在附加0.2m岁L的Ms培养基上即可形成完整的植株。
Creeping dichondra (Dichondra repens Forest.) may be considered as a kind of excellent turfgrass and ground cover plants. It's organ culture and protoplast culture, being an important basic technique of rapid clonal propagation , selection of mutative plants , somatic hybridzation and genetic transformation, would be attached extensive attention, but still no definite report up to now. This article used "creeping dichondra", a cultivar being cultivated home and abroad, as material and studied it's cotyledon, hypocotyl, young leaf and protoplast culture and systematically established a series of technique of organs and protoplasts, which will provide important theoretic and technical bases for biotechnology breeding of creeping dichondra. The main results are as follows:
    1. By studies on effects of different hormone combinations on the induction of calli from different explants, the results indicated the combinations of 1.0 mg/L 2.4-D + 0.2mg/L 6-BA or 0.2mg/L KT were the best for cotyledons, 1.0 mg/L 2.4-D + 0.2mg/L 6-BA or 0.2mg/L KT and 0.5mg/L NAA + 0.5mg/L 6-BA for hypocotyls, 1.5mg/L 2.4-D + 0.2mg/L KT and 1.0mg/L 2.4-D + 0.2mg/L 6-BA for young leaves with 100 % of callus ratio and good growth. For cotyledon and hypocotyls, the adventitious roots could be induced when 0.5mg/L NAA existed. It also could be find that MS was perfect culture medium of the induction of calli of the cotyledon, hypocotyls, young leaf.
    2. The results of different hormone combinations on the differentiation of calli have been studied. The best condition was MS with 0.1mg/L 2.4-D, 2.0mg/L 6-BA and 3.0mg/L AgNO3, in which the ratio of differentiation was 20.7%. But the calli from hypocotyls could not differentiate through fair and foul.
    3. The highest protoplast yield and best activity was obtained from the solution of Cellulose R-10 2.0%, Pectinase 0.8% and 0.5M Mannitol with the treatment of 9h for the 12d cotyledon in the light.
    
    
    4. The results of different culture media, the culture density and the concentration and hormone combination on the division and growth of protoplast have been studied. Under the condition of 1.0 105/ml and KM8P without NH4NO3, 0.5mg/L 2.4-D, 0.5mg/L NAA and 0.5mg/L 6-BA is the best and beneficial of the division of protoplasts and the growth of calli.
    5. The thin layer method is very good in four of culture methods, in which the protoplasts divided early and had the highest frequency of division of 20.3% and the higest frequency of plating of 1.33%. For the solid embedded method, the protoplasts also divided early, but not divided continuatively into micro-calli, at the same time, bud division appeared.
    6. The effects of different hormone combinations on the differentiation of calli from protoplasts also have been discussed. Accordingly, the two hormone combinations of 0.2mg/L 2.4-D+ 4.0mg/L 6-BA and 0.2mg/L NAA + 4.0mg/L 6-BA had the frequency of differentiation of 22.2%, 20.0%, the seedlings without roots could become rooted on the MS of 0.2mg/L NAA.
引文
1.于林清,何茂泰,王照兰.甘草组织培养快速繁殖技术研究。中国草地,1999,1:12-14,18
    2.中国科学院植物志编辑委员会.中国植物志。北京,科学出版社,979,64(1):8-10
    3.中国科学院植物所主编.中国高等植物图鉴(第三册)。北京,科学出版社,1980,524
    4.王义彰.草坪的光合作用与抗性生理。草业科学,1991,8(4):30-33
    5.王义彰,吴晓东,周守标.马蹄金与匍茎翦股颖光合生理生态比较研究。草业学报,1994,3(4):1-5
    6.王喆之,张苏锋,胡正海.陆地棉胚性愈伤组织原生质体的制备、培养及植株再生。植物学报,1998,40(3):234-240
    7.王铁邦,钱迎倩,李集临,屈贵平,蔡起贵.小偃麦原生质体培养及植株再生。植物学报,1990,32(5):329-336
    8.田志宏.甘监型油菜细胞质雄性不育系的线粒体DNA多型性及原生质体融合研究。[博士学位论文]。武汉,华中农业大学,1998
    9.许智宏.植物生物技术。上海,上海科学技术出版社,1998,109-125
    10.许智宏,卫志明.植物原生质体培养和遗传操作。上海,上海科学技术出版社,1997
    11.许勇,王福均,周长久.粘毛茄子叶原生质体的培养及植株再生。植物生理学通讯.1990,4:27-30
    12.孙勇如,安锡培.植物原生质体培养研究。北京,科学出版社,1991
    13.孙吉雄.草坪学。北京,中国农业出版社,1995,55
    14.安利佳,李凤霞,张俊敏,罗希明,何孟元,郝水.豆科植物组织培养的研究。植物学报,1992,34(10):743-752
    15.任冬梅,黄学林,黄上志.细胞分裂素类物质在植物组织培养中的作用机制。植物生理学通讯,1996,32(5):373-377
    16.吕德扬,马秀叶,王超,陈英.豆科牧草百脉根原生质体和外植体植株的再生。科学通报,1986,31(10):761-763
    
    
    17.吕德扬,李凤玲,陈一明,陈英.多变小冠花(豆科牧草)原生质体平和外植体胚状体的形成和植株再生。实验生物学报,1987,20(1):31-33
    18.刘四清,蔡起贵.水飞蓟原生质体培养形成愈伤组织及组织培养再生植株。植物学报,1990,32(1):19-25
    19.刘选明,官春云,周朴华,罗泽民.油菜单倍体植株叶原生质体培养再生植株。农业生物技术学报,1999,7(1):47-50
    20.刘庆昌.王家旭,李惟基,周海鹰.甘薯及其近缘野生种的原生质体融合和种间体细胞杂种植株再生。农业生物技术学报,1994,2:91-96
    21.李浚明编译.植物组织培养教程。北京,中国农业大学出版社,1996
    22.李向辉.植物遗传操作技术。北京,科学出版社,1988
    23.李韬,戴朝曦.提高马铃薯原生质体细胞分裂频率的研究。作物学报,2000,26(6):593-598
    24.谷瑞升,蒋湘宁.郭仲琛.植物离体培养中器官发生调控机制的研究进展。植物学通报,1999,16(3):1-4
    25.陆漱韵,刘庆昌.李惟基.甘薯育种学。北京,中国农业出版社,1998,368-380
    26.张鹏,傅爱根,王爱国.AgNO_3在植物离体培养中的作用及可能的机制。植物生理学通讯,1997,33(5):376-379
    27.张根发,黄百渠,王丽,罗希明.郑晓峰,何孟元,郝水.大赖草悬浮细胞原生质体再生植株。植物学报,1993,35(6):422-428
    28.张根发,周延清,张飞雄,李效宁.光棘豆悬浮细胞原生质体培养影响因素的研究。植物研究,1999,19(3):313-317
    29.张谦,郑国锠.埃斯基红豆草下胚轴愈伤组织原生质体的培养与植株再生。西北植物学报,1994,14(2):97-100
    30.陈喜文.苎麻原生质体培养再生植株的研究。见:李宗道主编.苎麻生物技术研究进展。长沙,湖南科学技术出版社,1996,73-107
    31.陈文品,吴琴生.刘大钧.苇状羊茅原生质体的培养研究。中国草地,1991,3:75-76
    32.佘建明,吴敬音,周邗扬,王海波,陈志贤,李淑君,岳建雄.氮源和激素对陆地棉原生质体细胞胚胎发生和发育的影响。江苏农业学报,1991,7(4):20-24
    33.何茂泰,于林清.牧草生物技术的研究及实用化前景。生物工程进展,1997,17(2):63-64
    34.肖尊安,沈德绪,林伯年.中华猕猴桃原生质体再生植株。植物学报,1992,34(10):736-742
    
    
    35.周惠芬,王义彰.培养马蹄金提高城市环境。草业科学,1998,15(4):67-68,72
    36.周守标,朱胜东,王义彰.马蹄金光合特性及有性繁殖的初步研究。安徽师范大学学报(自然科学版),1996,19(1):36-41
    37.杨永华.陆军.马建平.臧红花愈伤组织的诱导及其细胞培养的研究。生物技术,1996,6(3):15-17
    38.杨剑波,李莉,施俊.吴家道,许智宏,卫志明.植物原生质体培养中的粘连现象与其质膜电性。见:简玉瑜主编.农业科学集刊(第二集),农作物原生质体培养专集。北京,中国农业出版社,1995,152-155
    39.罗希明,谢雪菊.红豆草悬浮培养细胞原生质体再生植株。中国草地,1993,1:63-67
    40.罗希明,谢雪菊,陈忠亮.沙打旺、红豆草和野火球外植体一次培养再生植株。中国草地,1991,6:79,47
    41.罗希明,赵桂兰,简玉琦.大豆原生质体的植株再生。植物学报,1990,32(8):616-621
    42.罗科,罗鹏.诸葛菜叶柄原生质体培养再生植株。生物工程学报,1992,8(2):174-177
    43.罗建平,贾敬芬,顾月华,刘兢.沙打旺胚性原生质体培养优化及高频再生植株。生物工程学报,2000,16(1):17-21
    44.胡果生.草坪。海口,南方出版社,1999,50-52
    45.胡中华,刘师汉.草坪与地被植物。北京,中国林业出版社,1995,111-112
    46.赵颖,梁海曼.植物原生质体培养及有关生理基础问题。广西植物,1994,14(1):74-80
    47.贾士荣.罗美中,林云.黄瓜胚性细胞悬浮培养及其原生质体的植株再生。植物学报,1988,30(5):463-467
    48.黄学林,李筱菊.高等植物组纵离体培养的形态建成及其调控。北京,科学出版社,1997,26-27
    49.崔凯荣,裴新梧,秦琳,王君健,王亚馥.ABA对枸杞体细胞胚发生的调节作用。实验生物学报,1998,31(2):195-199
    50.韩雪梅.草莓试管苗分化培养基优化的研究。生物技术,1997,7(2):27-29
    51.韩善华,郑国锠.油菜(Brassica napus L.)叶片植株的再生。实验生物学报,1983,16(1):1-4
    52.程振东,卫志明,许智宏.甘蓝型油菜下胚轴原生质体培养的研究。生物工程
    
    学报,1994,10(1):30-33
    53.董晋江.夏镇澳.谷子原生质体培养再生植株。科学通报,1990,(7):538-540
    54.蒯本科,张云芳,张文胜,陈文峻,马忠化.草坪草基因工程科研究进展及其应用前景。见:陈佐忠,周禾,刘自学编.面向21世纪的中国草业科学与草坪业。北京,中国农业大学出版社,1999,35-37
    55.颜昌敬.植物组织培养手册。上海,上海科学出版社,1990,190
    56.潘瑞炽.植物激素的作用机理。植物生理生化进展,1982,1:90.101
    57.薛红卫,卫志明,许智宏。甘蓝下胚轴原生质体高效成株系统的建立。实验生物学报,1994,27(3):259-265
    58. Adaohambanasco EN, Roscoe DH. Alginate: an alternative to agar in plant protoplast culture. Plant Sci Lett, 1981,25:61-66
    59. Ahuja PS, Hadiuzzaman S, Davey MR and Cocking AC. Prolific plant regeneration from protoplasts derived tissues of Lotus corniculatus L. (Birds-foot Trifoll), Plant Cell Rep, 2:101-104
    60. Alexander R, Dubert F. The isolation, purification and culture of Brassica napus cv. Lingot cotyledon protoplasts, In: Protoplasts, 1983-Poster proceedings, Potrykus I, Harms CT, Hinnen A, Hutter R, King PJ and Shittito RD, Eds, Birkhauser Verlag, Basel, 1983,62
    61. Asano Y and K Sugiura. Plant regeneration from suspension culture-derived protoplasts of Agrostis alba L.(redtop). Plant Sci, 72: 267-273
    62. Bidney DL, Shepard JF. Colony development from sweet potato petiole protoplasts and mesophyll cells. Plant Sci. Lett, 1980, 18:335-342
    63. Binding H, Nehls R, Jorgensen J. Protoplast regeneration in higher plants. In: Fujiwara A eds. Plant Tissue Culture. Tokyo, 1982, 575-578
    64. Boyes CJ, Zapata F J, Sink KC. Isolation, culture and regeneration to plants of callus protoplast of Salpiglosis Simuta L. Z.Pflanzenphysiol, 1980, 99:471-474
    65. Caboche M. Nutritional requirements of protoplast derived, haploid tabocco cells grown at low cell densities in liquid medium. Planta,1980, 149:7-18
    66. Chuong PV, Pauls KP, Beversdorf WP.A simple culture method for Brassica hypocotyls protoplasts. Plant Cell Reports, 1985, 4:4-6
    67. Creemers-Molenaar T, J.P.M Loeffe and M.A.C.M. Zaal. Isolation, culture and regeneration of Lolium perenne and Loliun multiflorum protoplasts. Curr. Plant Sci, Biotech. Agric. 1988, 7:53-54
    
    
    68. Dalton SJ. Plant regeneration from cell suspension protoplasts of Festuca arundinacea Schreb.(tall fescue) and Lolium perenne L.(perennial ryegrass). J. Plant Physiol, 1988a, 132:170-175
    69. Dalton SJ. Regeneration of plants from protoplasts of Lolium (Ryegrass) and Festuca (Fescues), p, 46-68. In: Y.P.S. Bajaj(ed.) Plant protoplasts and genetic engineering. Springer-Verlag, Berlin, 1993
    70. Dong JZ, Perras MR, Abrams SR, Dunstan DI. Induced gene expression following ABA uptake in embryogenic suspension cultures of Picea glauca, Plant physiology and Biochemistry. 1996, 34: 579-587
    71. Dublin P. In: Vasil IK et al(eds), Cell culture and Somatic Cell Ggenetics of Plant, Vol 1, Academic Press, lnc, 1984, 27
    72. Firoozabady E. The effects of cell cycle parameters on cell wall regeneration and cell division of cotton protoplasts.J. Exp Bot, 1986, 37:1211-1217
    73. Gamborg OL, Shyluk L, Kartha KK. Factors affecting the isolation and callus formation in protoplasts from the shoot apices of Pisum sativum L. Plant Sci. Lett, 1975, 4:285-292
    74. Grapy L, Chupeau MC, Chupeau Y. The isolation and culture of leaf protoplasts of Cichorium intybus and their regeneration into plants. Z.Pflanzenphysiol, 1982, 107: 123-131
    75. Gupta HS and Pattanayak A. Plant regeneration from mesophyll protoplasts of the wild rice species Oryza granulata.J. plant phtsio, 141:245-247
    76. Hagen G. Auxin-induced expression of soybean GH_3 promoter in transgenic tobacco plants. Plant Mol. Biol. 1991,17:567-579
    77. Hart GM, Menis F. Trans-acting factors involved in tobacco β-1,3-gluconase gene expression. Plant Physiol, (supple), 1991, 96(1): 96
    78. Horn ME, RD Shillito, BV Conger and CT Harms. Transgenic plants of orchardgrass (Dactylis glomerata L.) from protoplasts. Plant Cell Rep, 1988, 7:469-472
    79. Kao KN, Michayluk MR. Nutrient requirement for growth of Vicia bajastana cell and protoplasts at a very low population density in liquid medium. Planta, 1975, 126:105-110
    80. Kao KN, Gamborg OL, Michayluk MR, Keller WA, Miller RA. The effects of sugars and inorganic salts on cell regeneration and sustained division in plant protoplasts. Colloq. Intern. CNRS, 1973, 212:207-213
    
    
    81. Murashige T and Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 1962, 64(1): 8-10
    82. Mundy J, Shinozaki KY, Chua NH. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc. Natl. Acad. Sci. USA.,1990, 97:1406-1410
    83. Nelsen KA, E Larsen and E Knudsen. Regeneration of protoplast-derived green plants of Kentucky bluegrass(Poa pratensis L.). Plant Cell Rep, 1993, 12:537-540
    84. Nomura K, Nitta T, Fukei K, Fujiwara T and Komamine A. Isolation and characterization of protoplasts from carrot somatic embryos, in Fujiwara A (ed), Plant Tissue Culture, JAPTC, 1982, 587-588
    85. Power JB and MR Davey. Laboratory manual: Plant protoplasts. Dept. of Bot., Univ. of Nottingham. 1979
    86. Shillito RD, Paszkowski J and Potrykus I. Agarose plating and a bead type culture technique enable and stimulate development of protoplast derived colonies in number of plant species. Plant Cell Rep, 1983, 2: 244-247
    87. Skoog F and Miller CO. Chemical regulation of growth and organ formation in plant tissue cultivated in vitro, In Biological Action of Growth Substances. 11~(th) Symp. Soc. Exp. Biol. 1957, 11:118-131
    88. Spangenberg G, ZY Wang, J Nagel and I Potrykus. Protoplast culture and regeneration of transgenic plants in red fescue (Festuca ruba L.). Plant Sci, 1994, 97: 83-94
    89. Takamizo T, KI Suginobu and R Ohsugi. Plant regeneration from suspension culture derived protoplasts of tall fescue (Festuca arundinacea Schreb.) of a single genotype. Plant Sci.1990, 72: 125-131
    90. Terakawa T, T Sato and M Koike. Plant regeneration from protoplasts isolated from embryogenic suspension cultures of creeping bentgrass (Agrostis palustris Huds.).Plant Cell Rep. 1992,11: 457-461
    91. Walker KA, Wendeln ML and Jaworski EG. Organogenesis in callus tissue of Medicago sativa. The temporal separation of induction processes from differentation processes. Plant. Science Letters. 1979, 16:23-30
    92. Wang ZY, J Nagel, I Potrykus and G Spangenberg. Fertile plant regeneration from protoplasts of meadow fescue (Festuca pratensis Huds.). Plant Cell Rep,1993a,12:95-100
    
    
    93. Wang ZY, J Nagel, I Potrykus and G Spangenberg. Plants from cell suspension-derived protoplasts in Lolium species. Plant Sci.1993b, 94: 179-193
    94. Yamaguchi T, NakajimaT. Hormonal regulation of organ formation in cultured tissue derived from root tuber of sweet patato. Proc 8~(th) Intl conf on Plant Growth Substances, Tokyo, Japan, 1973,1121-1127