大鼠骨髓间充质干细胞转染Nkx2.5、GATA4、TBX5启动心肌细胞分化机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:心血管疾病是目前世界上危害人类健康的主要疾患之一,具有极高的发病率。一旦发生急性心肌梗塞(acute myocardial infarction, AMI)或其他心脏病等,会造成功能性心肌细胞数量下降,瘢痕组织形成,心室发生重构,从而导致心功能下降,甚至最终诱发心力衰竭而危及生命。采用细胞移植,将外源性的有功能细胞移植到梗死心肌,发挥其综合生物学作用,从而改善心脏功能,这是个具有极大潜力的治疗方法。在过去几十年中,人类为寻找一种能够修复损伤心肌、恢复心功能的干细胞投入了极大的热情和努力,目前研究最多的骨髓间充质干细胞(bone marrowmesenchymal stem cells, BMSCs)属于成体干细胞(adult stem cells, ASCs),与其他干细胞相比具有明显的优势:①可以自体移植,不涉及伦理道德问题。②易于分离,体外培养具有高度的扩增能力,并且在体外多次传代后基因稳定性良好。③具有多向分化潜能。④具有低免疫原性和可移植性。因此,BMSCs是用于心血管疾病干细胞移植治疗的较理想的种子细胞。
     BMSCs体外向心肌细胞分化的方法大致有三种:①药物诱导;②与心肌细胞共培养;③基因修饰。然而诱导效率低仍是目前存在的问题,如何能够提高诱导分化的效率成为科研人员研究的热点。
     对BMSCs进行基因修饰,从分子水平促进BMSCs的心肌细胞分化,是近几年随着分子生物学技术发展而新兴的诱导方法,旨在通过启动某个或某些关键基因,激活心肌分化基因调控网络,实现BMSCs向心肌细胞分化的目的。心脏早期转录因子在心脏发育早期表达,其中最主要的有Nkx2.5、GATA4、TBX5等,它们调控许多心脏结构蛋白基因的表达,对心脏正常发育具有十分重要的作用,曾被作为外源基因导入胚胎干细胞等,促进其向心肌细胞方向分化。
     用于MSCs向心肌细胞分化的药物诱导剂,文献报道有5-氮胞苷(5-azacytidine,5-aza)、二甲基亚砜(dimethylsulfoxide, DMSO)、胰岛素、地塞米松、抗坏血酸等。其中,5-aza是目前最常用的诱导剂,但作为肿瘤治疗药物也存在细胞毒性大等不利于临床应用的问题。近年我们研究了一种人体激素——催产素(Oxytocin, OT)对干细胞向心肌细胞分化的诱导能力。研究发现,在心血管方面,OT除了具有降压等调节作用外,对于心脏的发生也具有一定影响。并且能够诱导P19细胞、P19CL6细胞、胚胎干细胞、心脏来源的Sca-1阳性细胞、心旁细胞等多种细胞向心肌细胞分化。
     本实验采用心脏早期转录因子Nkx2.5、GATA4、TBX5转染BMSCs、诱导剂OT诱导或两种方法联合应用,探讨Nkx2.5、GATA4、TBX5对BMSCs向心肌细胞分化的作用和影响,为实现BMSCs高效心肌细胞分化提供实验依据,为干细胞移植修复心肌损伤提供良好的细胞来源。
     方法:
     1骨髓间充质干细胞的分离、培养和鉴定
     采用贴壁分离筛选法与换液、严格控制消化时间的传代方法结合,分离、纯化、扩增培养SD大鼠BMSCs。从三个方面对分离扩增培养的BMSCs进行鉴定:(1)观察培养细胞的黏附生长特点;(2)流式细胞技术联合检测细胞表面分子CD90、CD29、CD45的表达情况;(3)体外诱导细胞向脂肪细胞、骨细胞、软骨细胞分化,检测其多向分化潜能。
     2外源基因Nkx2.5、GATA4、TBX5诱导骨髓间充质干细胞向心肌细胞分化
     实验分组:A1组(转染pEGFP-N1-Nkx2.5)、A2组(转染pEGFP-N1空质粒)、A3组(空白组);B1组(转染pVP22-GATA-4/myc-His)、B2组(转染pcDNA3.1空质粒)、B3组(空白组);C1组(转染pcDNA3.1-TBX5)、C2组(转染pcDNA3.1空质粒)、C3组(空白组)。转染前通过预实验确定最佳细胞转染密度、最佳转染体系,采用阳离子转染试剂Lipofectamine2000转染各组BMSCs。转染后48h经Western blot检测各组外源基因表达。转染后继续培养4w,免疫细胞化学、Western blot检测各组细胞心肌肌钙蛋白T(cardiac troponin T, cTnT)、连接蛋白43(connexin43,Cx43)的表达。分别取P3BMSCs和转染组转染后继续培养1w、2w、3w、4w的细胞标本,Real Time PCR检测心肌相关基因Cx43、β-肌球蛋白重链(β-myosin heavy chain, β-MHC)、肌球蛋白轻链-2(myosin light chain-2,MLC-2)的表达。3外源基因Nkx2.5、GATA4、TBX5联合催产素诱导骨髓间充质干细胞向心肌细胞分化
     实验分组:①转染组:又分为Nkx2.5组(转染pEGFP-N1-Nkx2.5)、GATA4组(转染pVP22-GATA-4/myc-His)和TBX5组(转染pcDNA3.1-TBX5);②转染+药物诱导组:又分为Nkx2.5+OT组(转染pEGFP-N1-Nkx2.5+OT诱导)、 GATA4+OT组(转染pVP22-GATA-4/myc-His+OT诱导)、TBX5+OT组(转染pcDNA3.1-TBX5+OT诱导);③单纯药物诱导组(OT诱导组);④空白组。采用阳离子转染试剂Lipofectamine2000转染各组BMSCs。转染后继续培养4w,免疫细胞化学、Western blot检测各组细胞cTnT、Cx43的表达;透射电镜技术检测各组细胞超微结构变化。
     结果:
     1骨髓间充质干细胞的分离、培养和鉴定
     分离原代细胞48h首次换液后,贴壁细胞呈圆形、多角形、梭形,细胞生长缓慢。3~4d后贴壁细胞分裂增殖迅速,相邻细胞逐渐相互汇合,9~11d细胞汇合可达80%,呈旋涡状或放射状排列。传代后BMSCs贴壁比原代细胞快,细胞呈均匀分布生长。随着细胞换液和传代,贴壁细胞形态逐渐趋于一致;传代至第3代时BMSCs形态基本单一,呈梭形。
     流式细胞仪检测生长良好的P3细胞中CD90+/CD29+/CD45-细胞达99%以上,说明获得的BMSCs具有较高的均一性,细胞纯度较高。
     BMSCs成脂诱导1w后,部分细胞内有数量较多的小脂滴积聚,以后细胞中的脂滴变大、增多,含有大量脂滴的脂肪样细胞逐渐增多;2w后,用脂肪特异性结合染料油红O染色检测,细胞胞质中的脂滴被染为橘红色。BMSCs成骨诱导后,细胞逐渐转变为多角形或不规则形,细胞逐渐汇合,排列紧密,呈铺路石状;2w后,用可以和钙发生显色反应的茜素红进行细胞化学染色,细胞外基质中有被染成红色的钙化点。BMSCs成软骨诱导后,局部部分细胞逐渐转变为圆形或椭圆形,并且增殖迅速,聚集生长;2w后,局部形成多个结节样结构,用可将硫酸化蛋白聚糖染为蓝色的阿尔新蓝染色检测,将软骨结节样结构染成蓝色。
     2外源基因Nkx2.5、GATA4、TBX5诱导骨髓间充质干细胞向心肌细胞分化
     通过预实验发现:以4×10~4/cm~2密度传代,在次日转染时达到90%~95%汇合;质粒DNA(μg)和转染试剂Lipofectamine2000(μl)的比率为1:2.5,此条件下转染可取得较好的效果。
     转染48h后,Western blot检测A1、A2、A3各组Nkx2.5:EGFP融合蛋白表达,结果表明转染组A1组有外源性Nkx2.5表达,而空质粒组A2组、空白组A3组均无表达;检测B1、B2、B3各组myc蛋白表达,结果表明转染组B1组有外源性GATA4表达,而空质粒组B2组、空白组B3组均无表达;检测C1、C2、C3各组TBX5蛋白表达,结果表明三组均有TBX5表达,其中转染组C1组比空质粒组C2组、空白组C3组TBX5表达显著增高(P<0.05)。证明脂质体能够成功介导质粒pEGFP-N1-Nkx2.5、pVP22-GATA-4/myc-His、pcDNA3.1-TBX5转染BMSCs。
     外源基因转染培养4w后形态学观察,A1组、B1组、C1组细胞呈长梭形,部分细胞增大、增宽,随着培养时间延长,局部细胞密集重叠生长,当细胞密度达到一定程度后,细胞不再增殖,各组细胞形态改变相似;A2组、A3组、B2组、B3组和C2组、C3组细胞也有局部少量细胞密集重叠生长。
     外源基因转染培养4w后,免疫细胞化学检测结果表明:A1组、B1组、C1组部分细胞呈cTnT阳性,cTnT阳性细胞的胞质中可见棕黄色丝网状及颗粒样结构,以局部密集重叠生长部及放射周边的细胞中cTnT呈强阳性。A1组、B1组、C1组部分细胞呈Cx43阳性,Cx43阳性细胞的胞质中可见棕褐色颗粒,以局部密集重叠生长部及放射周边的细胞中Cx43呈强阳性。A2组、A3组、B2组、B3组和C2组、C3组只有少量细胞cTnT、Cx43表达阳性。各组进行积分吸光度(IA)值统计结果显示:A1组、A2组、A3组比较,转染组A1组cTnT、Cx43表达最高,空质粒A2组、空白组A3组cTnT、Cx43表达较低,与A1组相比均有显著差异(P<0.05);B1组、B2组、B3组比较,转染组B1组cTnT、Cx43表达最高,空质粒B2组、空白组B3组cTnT、Cx43表达较低,与B1组相比均有显著差异(P<0.05);C1组、C2组、C3组比较,转染组C1组cTnT、Cx43表达最高,空质粒C2组、空白组C3组cTnT、Cx43表达较低,与C1组相比均有显著差异(P<0.05)。
     外源基因转染培养4w后,Western blot结果显示转染组cTnT蛋白呈明显高表达,空质粒组、空白组几乎无表达。统计结果与免疫细胞化学cTnT检测结果一致。
     Real Time PCR结果显示: A1、B1、C1组Cx43表达水平趋势变化相似,均于第1w开始逐渐增高,第2w或3w时表达最高,之后表达回落。β-MHC在A1组表达水平于第1w至第3w时显著高于P3BMSCs(P<0.05),第4w时表达减弱,与P3BMSCs比较无差异(P>0.05);B1组β-MHC表达水平第1w、第2w时与P3BMSCs间均无显著差异(P>0.05),第3w时表达显著增高,与P3BMSCs有显著差异(P<0.05),第4w时回落,与P3BMSCs无显著差异(P>0.05);β-MHC在C1组表达水平从第1w开始呈逐渐增高趋势,第4w时表达最高,但前3w与P3BMSCs组比较无差异(P>0.05),第4w时表达与P3BMSCs比较有显著差异(P<0.05)。MLC-2表达水平在A1、C1组第1w时与P3BMSCs比较无显著差异(P>0.05),第2w时表达显著增高,至第3w时逐渐回落,与P3BMSCs比较有显著差异(P<0.05),第4w时表达减弱;B1组MLC-2表达水平第1w、2w时与P3BMSCs比较均无显著差异(P>0.05),第3w时显著增高,与P3BMSCs有显著差异(P<0.05),第4w时回落,与P3BMSCs间比较无显著差异(P>0.05)。3外源基因Nkx2.5、GATA4、TBX5联合催产素诱导骨髓间充质干细胞向心肌细胞分化
     外源基因转染培养4w后,倒置显微镜形态学观察发现,转染组、转染+药物诱导组及OT诱导组细胞均呈长梭形,部分细胞增大、增宽,随着培养时间延长,局部细胞密集重叠生长,当细胞密度达到一定程度后,细胞不再增殖,各组细胞形态改变相似;空白组细胞也有局部少量细胞密集重叠生长。
     外源基因转染培养4w后,免疫细胞化学检测cTnT、Cx43表达结果显示,转染组(Nkx2.5组、GATA4组、TBX5组)、转染+药物诱导组(Nkx2.5+OT组、GATA4+OT组、TBX5+OT组)、OT诱导组部分细胞呈cTnT阳性,cTnT阳性细胞的胞质中可见棕黄色丝网状及颗粒样结构,以局部密集重叠生长部及放射周边的细胞中cTnT呈强阳性。转染组、转染+药物诱导组、OT诱导组部分细胞呈Cx43阳性,Cx43阳性细胞的胞质中可见棕褐色颗粒,以局部密集重叠生长部及放射周边的细胞中Cx43呈强阳性。空白组只有少量细胞cTnT、Cx43表达阳性。各组积分吸光度(IA)值统计结果显示:转染组(Nkx2.5组、GATA4组、TBX5组)、转染+药物诱导组(Nkx2.5+OT组、GATA4+OT组、TBX5+OT组)、OT诱导组、空白组比较,cTnT在转染组呈明显的高表达,转染+药物诱导组表达最高,OT诱导组也有较高表达,空白组仅有少量表达,各诱导组与空白组之间比较均有显著差异(P<0.05);Cx43表达水平在转染组、转染+药物诱导组均较高, OT诱导组也有明显表达,空白组仅有少量表达,各诱导组与空白组之间比较均有显著差异(P<0.05)。
     外源基因转染培养4w后,Western blot结果显示:转染+药物诱导组cTnT蛋白表达最高,转染组呈明显的高表达,OT诱导组也有较明显表达,空白组几乎无表达,各诱导组与空白组之间比较均有显著差异(P<0.05)。统计结果与免疫细胞化学cTnT检测结果一致。
     透射电镜下可见未转染的P3BMSCs和空白组细胞呈长梭形,细胞质中细胞器较丰富,可见较多核糖体及线粒体、粗面内质网、溶酶体等,少数细胞间偶见缝隙连接。转染组、转染+药物诱导组和OT诱导组细胞呈梭形,细胞核呈卵圆形,较大,位于细胞中央,细胞质中细胞器丰富,可见较多线粒体、核糖体、粗面内质网、溶酶体等;细胞核周的细胞质内出现一些平行排列的肌丝样结构,部分细胞周边突起和细胞末端可见大量密集排列的肌丝样结构,隐约可见电子密度高与电子密度低区域交错排列;细胞侧面或细胞末端可见较多明显的缝隙连接。其中,转染组和转染+药物诱导组细胞内肌丝样结构和缝隙连接更多、更明显,OT诱导组细胞内肌丝样结构和缝隙连接相对较少。
     结论:
     1成功分离、扩增及鉴定了SD大鼠BMSCs。
     2应用阳离子脂质体转染试剂Lipofectamine2000介导质粒pEGFP-N1-Nkx2.5、pVP22-GATA-4/myc-His、pcDNA3.1-TBX5成功转染入SD大鼠BMSCs。
     3SD大鼠BMSCs分别转染心脏早期转录因子Nkx2.5、GATA4、TBX5后,能够促进BMSCs向心肌细胞分化,在基因和蛋白水平表达心肌源性特异标志物cTnT、Cx43、β-MHC、MLC-2,具有发育早期的心肌细胞结构特点。
     4OT作为诱导剂能够促进SD大鼠BMSCs向心肌细胞分化,具有发育早期心肌细胞结构特点。
     5心脏早期转录因子转染+OT诱导联合应用,有促进BMSCs向心肌细胞方向分化的叠加效应,cTnT蛋白表达水平有较明显增高,但Cx43蛋白表达没有明显变化。
Objective: Cardiovascular disease, with a high incidence, is greatlyharmful to human health. In acute myocardial infarction (AMI), the loss offunctional myocardial cells and the formation of scar tissue lead to ventricularreconstruction, even heart failure and life-threatening. It is a very promisingtreatment to transplant exogenous functional cells into infarcted myocardiumto improve cardiac function. In the past decades, many kinds of stem cellswere tried as cell sources for cell transplantation therapy. Bone marrowmesenchymal stem cell (BMSC) is one of the best candidates. BMSCs,classified in adult stem cells (ASCs), have obvious advantages compared withother stem cells:①They can be used for autologous transplantation, withoutinvolving ethical controversy.②They can be isolated easily, then amplifyhighly in vitro. They are genetic stable for several passages in vitro.③Theyhave multilineage differentiation potential.④They have low-immunogenicityand portability. So, BMSCs are ideal seed cells for stem cell transplantationtherapy for cardiovascular disease.
     There are three methods to induce BMSCs to differentiate intomyocardial cells in vitro:①be induced by drug;②be co-cultured withmyocardial cells;③be modified genetically. However, the differentiationefficiency is still low and how to improve it is becomming the research focus.
     With the development of molecular biology techniques, it is a newmethod to modify BMSCs genetically to promote the cardiomyocytedifferentiation. It is aimed to start one or some of the key genes and activategene regulatory networks of cardiac differentiation. Cardiac-specific earlytranscription factors, such as Nkx2.5, GATA4, TBX5, regulate geneexpression of cardiac structure and play an important role in normal development of the heart. They have been transfected into embryonic stemcells (ESCs) to promote the cardiomyocyte differentiation.
     The drug inducers for MSCs cardiomyocyte differentiation include5-azacytidine (5-aza), dimethylsulfoxide (DMSO), the combination of insulin,dexamethasone, ascorbic acid. The commonly used agent,5-aza, is notsuitable for clinical treatment because of the cell toxicity. In recent years, wehave researched the possibility of oxytocin (OT) as a drug inducer of stemcell’s cardiomyocyte differentiation. Researches show that in addition of theability to regulate blood pressure, OT plays a role on heart development. OThas been used to induce P19cells, P19CL6cells, ESCs, adult cardiacSca-1-positive cells and cardiac side population cells into cardiomyocytes.
     Therefore, in this study we try to transfect BMSCs with Nkx2.5, GATA4,TBX5, or use OT as the inducer, or use the combination of two methods. Theaim is to explore the relationship between Nkx2.5, GATA4, TBX5andcardiomyocyte differentiation of BMSCs, and to provide effective strategy fortransforming various BMSCs into myocardial cells.
     Methods:1The isolation, culture, and characterization of BMSCs
     SD rat BMSCs were isolated by the whole bone marrow culture,amplified by serial subcultivation and purified by digestion time control andsubcultivation. We characterized BMSCs in three aspects:①the adheredcultured cells were observed;②the expression of CD90, CD29, CD45weredetected by flow cytometry;③the multilineage differentiation potential wasdetected by adipogenic, osteoblasts and chondrogenic differentiation in vitro.2Exogenous genes of Nkx2.5, GATA4, TBX5induced BMSCs todifferentiate into myocardial cells.
     Experimental groups: A1group (transfected with pEGFP-N1-Nkx2.5),A2group (transfected with pEGFP-N1empty plasmid), A3group (blankgroup); B1group (transfected with pVP22-GATA-4/myc-His), B2group(transfected with pcDNA3.1empty plasmid), B3group (blank group); C1group (transfected with pcDNA3.1-TBX5), C2group (transfected with pcDNA3.1empty plasmid), C3group (blank group). Before transfection,preliminary experiment was used to determine the suitable cell seeding densityand the best transfection system. Using the cationic liposome reagent,Lipofectamine2000, plasmid was transfected into BMSCs. Exogenous geneexpression were detected with western blot after48hours of transfection.After4weeks of transfection and the following culture, the expression ofcardiac troponins T (cTnT) and connexin43(Cx43) were detected withimmunocytochemical staining and Western blot. Real Time PCR was used todetect the expression of Cx43, β-myosin heavy chain (β-MHC), myosin lightchain-2(MLC-2) in P3BMSCs and experimental groups.3Combination of exogenous genes of Nkx2.5, GATA4, TBX5and oxytocininduced BMSCs into myocardial cells.
     Experimental groups:①transfection groups: Nkx2.5group (transfectedwith pEGFP-N1-Nkx2.5), GATA4group (transfected withpVP22-GATA-4/myc-His), TBX5group (transfected withpcDNA3.1-TBX5);②transfection+induced drug groups: Nkx2.5+OT group(transfected with pEGFP-N1-Nkx2.5+OT induction), GATA4+OT group(transfected with pVP22-GATA-4/myc-His+OT induction), TBX5+OT group(transfected with pcDNA3.1-TBX5+OT induction);③OT group (OTinduction);④blank group. Using Lipofectamine2000, plasmid wastransfected into BMSCs. After4weeks of transfection and the followingculture, the expression of cTnT and Cx43were detected withimmunocytochemical staining and Western blot, and the ultrastructuralchanges of the cells were observed.
     Results:1The isolation, culture, and characterization of BMSCs
     The first time to exchange the medium of primary cells was at48hoursafter islation. The adherent cells were round or polygonal or spindle-shaped.After3to4days, primary cells began to proliferate rapidly. After9to11days,cells arranged swirlingly or radially, reaching80%confluence. Passage cellsgrew rapidly. With medium exchange and passage, the morphology of adherent cells was becoming identical. The third passage cells werespindle-shaped.
     Flow cytometry results showed that CD90+/CD29+/CD45-cells were upto99%of P3BMSCs.
     During adipogenic induction, small lipid droplets accumulated andbecame larger gradually in some cells. The induced cells were positive for oilred O staining after2weeks. During osteogenic induction, BMSCs graduallytransformed to polygonal or irregular-shaped cells and grew intensively. Theinduced cells were positive for alizarin red staining after2weeks. Duringcartilage induction, the local part of BMSCs gradually changed into round oroval and grew rapidly and intensively to form nodular structures. After2weeks, the nodular structures were positive for alcian blue staining.
     2Exogenous genes of Nkx2.5, GATA4, TBX5induced BMSCs todifferentiate into myocardial cells.
     The experiment confirmed that the appropriate cell seeding density is4×104/cm2, the best transfection system is the plasmid DNA(μg) andLipofectamine2000(μl) at a ratio of1:2.5.
     Results of Western blot at48hours after transfection showed thatNkx2.5-EGFP fusion protein expressed in A1group, whereas none in groupA2or A3. The myc protein expressed in B1group, while none in group B2orB3. The TBX5protein expressed in group C1, C2and C3, but that in C1groupwas the highest (P<0.05). The results showed that plasmid pEGFP-N1-Nkx2.5,pVP22-GATA-4/myc-His and pcDNA3.1-TBX5can transfect BMSCs bycationic liposome reagent.
     Four weeks after the exogenous gene transfection and the followingculture, some cells of group A1, B1and C1elongated and widened, and thelocal cells grew intensively. Few cells in the other groups changed similarly.
     Four weeks after the exogenous gene transfection and the followingculture, immunocytochemistry results showed that cTnT and Cx43expressedin group A1, B1and C1. There were brown filament-like or granular structuresin the cytoplasm of cTnT positive cells, and tan particles in the cytoplasm of Cx43ones. Few positive cells were in the other groups. The cTnT and Cx43expressed in group A1, A2and A3, but these in A1group were the highest(P<0.05). The cTnT and Cx43expressed in group B1, B2and B3, but these inB1group were the highest (P<0.05). The cTnT and Cx43expressed in groupC1, C2and C3, but these in C1group were the highest (P<0.05).
     Four weeks after the exogenous gene transfection and the followingculture, Western blot results showed that cTnT expressions of transfectedgroups were significinatly higher than those of empty plasmid groups andblank ones. The results were identical with immunocytochemistry results.
     Real Time PCR results showed that Cx43expression level trends of A1,B1and C1group were similar. They increased gradually at1~(st)week, reached apeak at2~(nd)or3~(rd)week, followed by expression down. β-MHC expressionlevel of group A1from1~(st)to3~(rd)week were significantly higher than that of P3BMSCs (P<0.05), then decreased at4~(th)week, without significant differencewith that of P3BMSCs (P>0.05). β-MHC expression of group B1was highestat3rdweek (P<0.05), then decreased. There were no significant differenceamong1~(st),2~(nd),4~(th)week and P3BMSCs (P>0.05). β-MHC expression of groupC1increased gradually and was highest at4~(th)week (P<0.05). There were nosignificant difference among1~(st),2~(nd), week and P3BMSCs (P>0.05). MLC-2expression levels of group A1and C1at1~(st)week had no significant differencewith that of P3BMSCs (P>0.05), then significantly increased at2ndweek(P<0.05), decreased gradually at3rdweek. The expression was weak at4~(th)week, without significant difference with that of P3BMSCs (P>0.05). MLC-2expression of group C1was highest at3rdweek (P<0.05), then decreased.There were no significant difference among1~(st),2~(nd),4~(th)week and P3BMSCs(P>0.05).
     3Combination of exogenous genes of Nkx2.5, GATA4, TBX5and oxytocininduced BMSCs into myocardial cells.
     Four weeks after the exogenous gene transfection and the followingculture, some cells of all the groups except blank one elongated and widened,and the local cells grew intensively. Few cells in blank group changed similarly.
     Four weeks after the exogenous gene transfection and the followingculture, immunocytochemistry results showed that cTnT and Cx43expressedin all the groups except blank one. There were brown filament-like or granularstructures in the cytoplasm of cTnT positive cells, and tan particles in thecytoplasm of Cx43ones. Few positive cells were in blank group. The cTnTexpressions of transfection groups and OT group were high, oftransfection+induced drug groups were the highest, of blank group were little.There were significant difference between induced groups and blank group(P<0.05). The Cx43expressions of transfection groups, transfection+induceddrug groups and OT group were high, of blank group were little. There weresignificant difference between induced groups and blank group (P<0.05).
     Western blot results showed that the cTnT expressions of transfectiongroups and OT group were high, of transfection+induced drug groups werethe highest, of blank group were little. There were significant differencebetween induced groups and blank group (P<0.05). The results were identicalwith immunocytochemistry results.
     Observation of the ultrastructure by transmission electron microscopyshowed P3BMSCs and blank group cells were spindle-shaped and riched withmany cell organelles such as ribosomes, mitochondria, rough endoplasmicreticulum, lysosomes in the cytoplast. Gap junctions were visible occasionallybetween a few of cells. The cells of transfection groups, transfection+OTgroups and OT group were spindle-shaped and riched with many cellorganelles such as mitochondria, ribosomes, rough endoplasmic reticulum,lysosomes in the cytoplast. The oval nucleus located in the cell central. Manyparalleled myofilament-like structures with dense zone appeared around thenucleus and more were in the side or end of the cytoplast. More gap junctionswere observed in the side or end of the cells. More myofilament-like structuresand gap junctions appeared in the cells of transfection groups andtransfection+OT groups than those in the cells of OT group.
     Conclusion:
     1SD rat BMSCs were isolated, amplified and characterized successfully.
     2The plasmids of pEGFP-N1-Nkx2.5, pVP22-GATA-4/myc-His andpcDNA3.1-TBX5transfected BMSCs by cationic liposome reagent,Lipofectamine2000.
     3SD rat BMSCs were transfected with the heart early transcription factorof Nkx2.5, GATA4and TBX5, and differentiated toward myocardial cells.The differentiated cells expressed myocardial specific markers, cTnT, Cx43,β-MHC and MLC-2, in both gene level and protein level, and had earlymyocardial cells’ structural characteristics.
     4OT induced SD rat BMSCs to differentiate toward myocardial cells.The differentiated cells had early myocardial cells’ structural characteristics.
     5There were superimposed effect of cardiomyocyte differentiationbetween Nkx2.5, GATA4or TBX5transfection and OT induction. Thecombination method gained the highest expression level of cTnT, but didn’t ofCx43.
引文
1Tropel P, Noel D, Platet N, et al. Isolation and characterisation ofmesenchymal stem cells from adult mouse bone marrow. Exp Cell Res,2004,295(2):395~406
    2Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for definingmultipotent mesenchymal stromal cells: the International Society forCellular Therapy position statement. Cytotherapy,2006,8:315~317
    3Pfeffer MA, Braunwald E. Ventricular remodeling after myocardialinfarction: experimental observations and clinical implications. Circulation,1990,81:1161~1172
    4Pittenger,M.F.,Mackay,A.M.,Beck,S.C., et al. Multilineage Potentialof adult human mesenchymal stem cells. Science,1999,284:143~147
    5Picinich SC, Mishra PJ, Mishra PJ, et al. The therapeutic potential ofmesenchymal stem cells. Cell-&tissue-based therapy. Expert Opin BiolTher,2007,7(7):965~973
    6Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow(MSCs) isolated from different strains of inbred mice vary in surfaceepitopes, rates of proliferation, and differentiation potential. Blood,2004,103:1662~1668
    7Stolzing A, Sethe S, Scutt AM. Stressed stem cells: temperature responsein aged mesenchymal stem cells. Stem Cell and Development,2006,15(4):478~487
    8Li X, Yu X, Lin Q, Deng C, et al. Bone marrow mesenchymal stem cellsdifferentiate into functional cardiac phenotypes by cardiacmicroenvironment. J Mol Cell Cardiol,2007,42(2):295~303
    9Zhang J, Qi H, Wang H, et al. Engineering of Vascular GraftsWithGenetically Modified Bone Marrow Mesenchymal Stem Cells on Poly(Propylene Carbonate) Graft. Artif Organs,2006,30(12):898~905
    10Yoshimura H, Muneta T, Nimura A, et al. Hideya Yoshimura. Comparisonof rat mesenchymal stem cells derived from bone marrow, synovium,periosteum, adipose tissue, and muscle. Cell Tissue Res,2007,327(3):449~462
    11Anokhina EB, Buravkova LB. Heterogeneity of stromal precursor cellsisolated from rat bone marrow. Tsitologiia,2007,49(1):40~47
    12Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymalstem cells derived from adult marrow. Nature,2002,418(6893):41~49
    13Green LJ, Mould AP, Humphries MJ. The Integrin β subunit. Int JBiochem Cell Biol,1998,30:179~184
    14Shi XM, Blair HC, Yang X, et al. Tandem repeat of C/EBP binding sitesmediates PPARgamma2gene transcription in glucocorticoid-inducedadipocyte differentiation. Cell Biochem,2000,76(3):518~527
    15Cui Q, Wang GJ, Balian G. Steroid-induced adipogenesis in apluripotential cell line from bone marrow. Bone Joint Surg,1992,79(7):1054~1063
    16Taira M, Nakao H, Takahashi J, et al. Effects of two vitamins, two growthfactors and dexamethasone on the proliferation of rat bone marrow stromalcells and osteoblastic MC3T3-E1cells. Oral Rehabil,2003,30(7):697~701
    17Otsuka E, Yamaguchi A, Shigehisa H, et al. Characterizations ofosteoblastic differentiation of stromal cell line ST2that is induced byascorbic acid. Am Physiol,1999,277(cell physio146):C132~C138
    18Beresford JN, Graves SE, Smoothy CA. Formation of mineralized nodulesby bone derived cells in vitro: A model of bone formation. Am J MedGenet,1993,45(2):163~178
    19Fortier LA, Nixon AJ, Williams J, et al. Isolation and chondrocyticdifferentiation of equine bone marrow-derived mesenchymal stem cells.Am J Vet Res,1998,59(9):1182~1187
    20Johnstone B, Hering TM, Caplan AI, et al. In vitro chondrogenesis of bonemarrow-derived mesenchymal progenitor cells. Exp Cell Res,1998,238(1):265~272
    21Mackay AM, Beck SC, Murphy JM, et al. Chondrogenic differentiation ofcultured human mesenchymal stem cells from marrow. Tissue Eng,1998,4(4):415~428
    22Mello MA, Tuan RS. Effects of TGF-beta1and triiodothyronine oncartilage maturation: in vitro analysis using long-term high-densitymicromass cultures of chick embryonic limb mesenchymal cells. J OrthopRes,2006,24(11):2095~2105
    23Diduch DR, Coe MR, Joyner C, et al. Two cell lines from bone marrowthat differ in terms of collagen synthesis, osteogenic characteristics, andmatrix mineralization. J Bone Joint surg Am,1993,75:92~105
    1Liu XH, Bai CG, Xu ZY, et al. Therapeutic potential of angiogeninmodified mesenchymal stem cells: angiogenin improves mesenchymalstem cells survival under hypoxia and enhances vasculogenesis inmyocardial infarction. Microvasc Res,2008,76(1):23~30
    2Tang YL, Tang Y, Zhang YC, et al. Improved graft mesenchymal stemcell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1vector. J Am Coll Cardiol,2005,46(7):1339~1350
    3Tsubokawa T, Yagi K, Nakanishi C, et al. Impact of anti-apoptotic andanti-oxidative effects of bone marrow mesenchymal stem cells withtransient overexpression of heme oxygenase-1on myocardial ischemia.Am J Physiol Heart Circ Physiol,2010,298(5):H1320~1329
    4Haider H, Jiang S, Idris NM, et al. IGF-1-overexpressing mesenchymalstem cells accelerate bone marrow stem cell mobilization via paracrineactivation of SDF-1alpha/CXCR4signaling to promote myocardial repair.Circ Res,2008,103(11):1300~1308
    5Pons J, Huang Y, Takagawa J, et al. Combining angiogenic gene and stemcell therapies for myocardial infarction. J Gene Med,2009,11(9):743~753
    6Deuse T, Peter C, Fedak PW, et al. Hepatocyte growth factor or vascularendothelial growth factor gene transfer maximizes mesenchymal stemcell-based myocardial salvage after acute myocardial infarction.Circulation,2009,120(11Suppl):S247~254
    7Noiseux N, Gnecchi M, Lopez-Ilasaca M, et al. Mesenchymal stem cellsoverexpressing Akt dramatically repair infarcted myocardium and improvecardiac function despite infrequent cellular fusion or differentiation. MolTher,2006,14(6):840~850
    8Lou J, Xu F, Merkel K, et al. therapy: adenovirus-mediated human bonemorphogenetic protein-2gene transfer induces mesenchymal progenitorcell proliferation and differentiation in vitro and bone formation in vivo. JOrthop Res,1999,17(1):43~50
    9C Madeira, RD Mendes, SC Ribeiro, et al. Nonviral gene delivery tomesenchymal stem cells using cationic Liposomes for gene and celltherapy. J Biomed Biotechnol,2010, doi:10.1155/2010/735349
    10Bruneau BG. Transcriptional regulation of vertebrate cardiacmorphogenesis. Circ Res,2002,90(5):509~519
    11Vincentz JW, Barnes RM, Firulli BA, et al. Cooperative interaction ofNkx2.5and Mef-c transcription factors during heart development. DevDyn,2008,237(12):3809~3819
    12Leong FT, Freeman LJ, Keavney BD. Fresh fields and pathways new:recent genetic insights into cardiac malformation. Heart,2009,95(6):442~447
    13Schluterman MK, Krysiak AE, Kathiriya IS, et al. Screening andbiochemical analysis of GATA4sequence variations identified in patientswith congenital heart disease. Am J Med Genet A,2007,143A(8):817~823
    14B hm J, Heinritz W, Craig A, et al. Functional analysis of the novel TBX5c.1333delC mutation resulting in an extended TBX5protein. BMC MedGenet,2008,9:88
    15Wang C, Cao D, Wang Q, et al. Synergistic activation of cardiac genes bymyocardin and Tbx5. PLoS One,2011,6(8):e24242
    16Borghi S, Molinari S, Razzini G, et al. The nuclear localization domain ofthe MEF2family of transcription factors shows member-specific featuresand mediates the nuclear import of histone deacetylase4. J Cell Sci,2001,114(Pt24):4477~4483
    17Meilhac SM, Esner M, Kerszberg M, et al. Oriented clonal cell growth inthe developing mouse myocardium underlies cardiac morphogenesis. JCell Biol,2004,164(1):97~109
    18Raffin M, Leong LM, Rones MS, et al. Subdivision of the cardiac Nkx2.5expression domain into myogenic and nonmyogenic compartments. DevBiol,2000,218(2):326~340
    19Raffin M, Leong LM, Rones MS, et al. Subdivision of the cardiac Nkx2-5expression domain into myogenic and nonmyogenic compartments. DevBiol,2000,218(2):326~340
    20Jamali M, Rogerson P J, Wilton S, et al. Nkx2-5Activity Is Essential forCardiomyogenesis. J Biol Chem,2001,276(45):42252~42258
    21Yamada Y, Sakurada K, Takeda Y, et al. Single-cell-derived mesenchymalstem cells overexpressing Csx/Nkx2.5and GATA4undergo the stochasticcardiomyogenic fate and behave like transient amplifying cells. Exp CellRes,2007,313(4):698~706
    22Heikinheimo M, Scandrett JM, Wilson DB. Localization of transcriptionfactor GATA-4to regions of the mouse embryo involved in cardiacdevelopment. Dev Biol,1994,164:361~373
    23Garg V, Kathiriya IS, Barnes R, et al. GATA4mutations cause humancongenital heart defects and reveal an interaction with TBX5. Nature,2003,424(24):443~447
    24Grépin C, Nemer G, Nemer M. Enhanced cardiogenesis in embryonic stemcells overexpressing the GATA-4transcription factor. Development,1997,124:2387~2395
    25Mori AD, Zhu Y, Vahora I, et al. Tbx5-dependent rheo-static control ofcardiac gene expression and morphogene-sis. Dev Biol,2006,297(2):566~586
    26Fijnvandraat AC, Lekanne Deprez RH, Christoffels VM, et al. TBX5overexpression stimulates differentiation of chamber myocardium inP19C16embryonic carcinoma cells. J Muscle Res Cell Motil,2003,24(2-3):211~218
    27Cancelas JA,Koevoet WL,de Koning AE,et al. Connexin-43gapjunctions are involved in multiconnexin-expressing stromal support ofhemopoietic progenitors and stem cells. Blood,2000,96(2):498~505
    28Holland MS,Stasko JA,Holland RE.Influence of extracellular matrix onbovine mammary gland progenitor cell growth and differentiation. Am JVet Res,2007,68(5):476~482
    29Xie LJ,Huang GY,Zhao XQ,et al. Histopathologieal analysis ofneonatal mouse hearts with connexin43gene defects. Nat Med J China,2005,85(18):1249~1251
    30徐振平,施相空,郭志坤,等.出生前后人心肌细胞Cx43蛋白表达.解剖科学进展,2006,12(3):232~233
    1Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can begenerated from marrow stromal cells in vitro. J Clin Invest,1999,103:697~705
    2Koninckx R, Hensen K, Dani ls A, et al. Human bone marrow stemcells co-cultured with neonatal rat cardiomyocytes display limitedcardiomyogenic plasticity. Cytotherapy,2009,11(6):778~792
    3Shim WS, Jiang S, Wong P, et al. Ex vivo differentiation of humanadult bone marrow stem cells into cardiomyocyte-like cells. BiochemBiophys Res Commun,2004,324(2):481~488
    4金亮,王百忍,段晓莉,等.催产素对BALB/c小鼠胸腺细胞增殖的促进作用.细胞与分子免疫学杂志,2001,17(2):131~132
    5Jankowski M, Danalache B, Wang D, et al. Oxytocin in cardiacontogeny. Proc Natl Acad Sci USA,2004,10:13074~13079
    6Paquin J, Danalache BA, Jankowski M, et al. Oxytocin inducesdifferentiation of P19embryonic stem cells to cardiomyocytes. ProcNatl Acad Sci,2002,99(14):9550~9555
    7Fathi F, Murasawa S, Hasegawa S, et al. Cardiac differentiation ofP19CL6cells by oxytocin. Int J Cardiol,2009,134(1):75~81
    8Hatami L, Valojerdi MR, Mowla SJ. Effects of oxytocin oncardiomyocyte differentiation from mouse embryonic stem cells. Int JCardiol,2007,117(1):80~89
    9Matsuura K, Nagai T, Nishigaki N, et al. Adult cardiac Sca-1-positivecells differentiate into beating cardiomyocytes. J Biol Chem,2004,279(12):11384~11391
    10Oyama T, Nagai T, Wada H, et al. Cardiac side population cells have apotential to migrate and differentiate into cardiomyocytes in vitro andin vivo. J Cell Biol,2007,176(3):329~341
    11Danalache BA, Paquin J, Donghao W, et al. Nitric oxide signaling inoxytocin-mediated cardiomyogenesis. Stem Cells,2007,25(3):679~688
    12Cassoni P, Sapino A, FortunatiN, et al. Oxytocin inhibits theproliferation of MDA-MB231human breast-cancer cells via cyclicadenosine monophosphate and protein kinase A. Int J Cancer,1997,72:340~344
    13Cassoni P, Sapino A, StellaA, et al. Presence and significance ofoxytocin receptors in human neuroblastomas and glial tumors. Int JCancer,1998,77:695~700
    14Cassoni P, Fulcheri E, Carcangiu M L, et al. Oxytocin receptors inhuman adenocarcinomas of the endometrium: presence and biologicalsignificance. J Pathol,2000,190:470~477
    15Copland J A, Ives K L, Simmons, D J, et al. Functional oxytocinreceptors discovered in human osteoblasts. Endocrinology,1999,140:4371~4374
    16Geenen V, Kecha O, Brilot F, et al. The thymic repertoire ofneuroendocrine-related self antigens: biological role in T-cellselection and pharmacological implications.Neuroimmuno-modulation,1999,6:115~125
    17Martens H, Kecha O, Charlet-Renard C, et al. Neurohypophysialpeptides stimulate the phosphorylation of pre-T cell focal adhesionkinases. Neuroendocrinology,1998,67:282~289
    18Thibonnier M, Conarty D M, Preston J A, et al. Human vascularendothelial cells express oxytocin receptors. Endocrinology,1999,140:1301~1309
    19Plecas B, Popovic A, Jovovic D, et al. Mitotic activity and celldeletion in ventral prostate epithelium of intact and castratedoxytocin-treated rats. J Endocrinol Invest,1992,15:249~253
    20Cassoni P, Sapino A, Munaron L, et al. Activation of functionaloxytocin receptors stimulates cell proliferation in human trophoblastand choriocarcinoma cell lines. Endocrinology,2001,142:1130~1136
    21路艳蒙,傅文玉,朴英杰,等.人骨髓间充质干细胞的超微结构电子.显微学报,2002,21(4):373~376
    22成令忠.组织学(第二版).1993:191~192
    23成令忠,钟翠平,蔡文琴,等.现代组织学.2003:365
    24Smolich JJ. Ultrastructural and functional features of the developingmammalian heart: a brief overview. Reprod Fertil Dev,1995,7(3):451~461
    1Pfeffer MA, Braunwald E. Ventricular remodeling after myocardialinfarction: experimental observations and clinical implications. Circulation,1990,81:1161~1172
    2Cedar SH. The function of stem cells and their future roles in healthcare.Br J Nurs,2006,15(2):104~107
    3Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development offibroblast colonies in monolayer cultures of guinea-pig bone marrow andspleen cells. Cell Tissue Kinet,1970,3:393~403
    4Friedenstein AJ, Chailakhyan RK, Latsinik NV, et al. Stromal cellsresponsible for transferring the microenvironment of the hemopoietictissues: cloning in vitro and retransplantation in vivo. Transplantation,1974,17:331~340
    5Mendez-Ferrer S, Michurina TV, et al. Mesenchymal and haematopoieticstem cells form a unique bone marrow niche. Nature,2010,466:829~834
    6Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cellniche and control of the niche size. Nature,2003,425:836~841
    7Raaijmakers MH, Mukherjee S, Guo S, et al. Bone progenitor dysfunctioninduces myelodysplasia and secondary leukaemia. Nature,2010,464:852~857
    8Piersma AH, Brockbank KG, Ploemacher RE, et al. Characterization offibroblastic stromal cells from murine bone marrow. Exp Hematol,1985,13:237~243
    9Caplan AI. Molecular and cellular differentiation of muscle, cartilage, andbone in the developing limb. Prog Clin Biol Res,1986,217B:307~318
    10Caplan AI. Mesenchymal stem cells. J Orthop Res,1991,9:641~650
    11Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bonemarrow mesenchymal stem cells exposed to5-azacytidine. Muscle Nerve,1995,18:1417~1426
    12Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adulthuman mesenchymal stem cells. Science,1999,284:143~147
    13Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migratethroughout forebrain and cerebellum, and they differentiate into astrocytesafter injection into neonatal mouse brains. Proc Natl Acad Sci USA,1999,96:10711~10716
    14Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografteddirectly to rat liver are differentiated into human hepatocytes withoutfusion. Blood,2005,106:756~763
    15Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cellsdifferentiate to a cardiomyocyte phenotype in the adult murine heart.Circulation,2002,105:93~98
    16Xu W, Zhang X, Qian H, et al. Mesenchymal stem cells from adult humanbone marrow differentiate into a cardiomyocyte phenotype in vitro. ExpBiol Med (Maywood),2004,229:623~631
    17Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromalcells suppress T-lymphocyte proliferation induced by cellular ornonspecific mitogenic stimuli. Blood,2002,99:3838~3843
    18Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cellimplantation in a swine myocardial infarct model: engraftment andfunctional effects. Ann Thorac Surg,2002,73:1919~1925
    19Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneicmesenchymal stem cells restore cardiac function in chronic ischemiccardiomyopathy via trilineage differentiating capacity. Proc Natl Acad SciUSA,2009,106:14022~14027
    20Schuleri KH, Feigenbaum GS, Centola M, et al. Autologous mesenchymalstem cells produce reverse remodelling in chronic ischaemiccardiomyopathy. Eur Heart J,2009,30:2722~2732
    21Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind,placebo-controlled, dose-escalation study of intravenous adult humanmesenchymal stem cells (prochymal) after acute myocardial infarction. JAm Coll Cardiol,2009,54:2277~2286
    22Trachtenberg B, Velazquez DL, Williams AR, et al. Rationale and designof the transendocardial injection of autologous Human cells (bone marrowor mesenchymal) in chronic ischemic left ventricular dysfunction and heartfailure secondary to myocardial infarction (TAC-HFT) trial: a randomized,double-blind, placebocontrolled study of safety and efficacy. Am Heart J,2011,161:487~493
    23Hare JM. Translational development of mesenchymal stem cell therapy forcardiovascular diseases. Tex Heart Inst J,2009,36:145~147
    24赵春华.干细胞原理、技术与临床.北京:化学工业出版社,2006
    25Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for definingmultipotent mesenchymal stromal cells: the International Society forCellular Therapy position statement. Cytotherapy,2006,8:315~317
    26Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow(MSCs) isolated from different strains of inbred mice vary in surfaceepitopes, rates of proliferation, and differentiation potential. Blood,2004,103:1662~1668
    27Gronthos S, Simmons PJ, Graves SE, et al. Integrin-mediated interactionsbetween human bone marrow stromal precursor cells and the extracellularmatrix. Bone,2001,28:174~181
    28Jones EA, Kinsey SE, English A, et al. Isolation and characterization ofbone marrow multipotential mesenchymal progenitor cells. ArthritisRheum,2002,46:3349~3360
    29Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and functionof mesenchymal stem cells. Nat Rev Mol Cell Biol,2011,12:126~131
    30Dean RJ. Moseley AB. Mesenchymal stem cells: biology and potentialclinical uses. Experim Hematol,2000,28:875~884
    31Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cellsin human bone marrow and dental pulp. J Bone Miner Res,2003,18:696~704
    32Gindraux F, Selmani Z, Obert L, et al. Human and rodent bone marrowmesenchymal stem cells that express primitive stem cell markers can bedirectly enriched by using the CD49a molecule. Cell Tissue Res,2007,327(3):471~483
    33Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on humanmarrow-derived mesenchymal cells are detected by monoclonal antibodies.Bone,1992,13:69~80
    34Galmiche MC, Koteliansky VE, Briere J, et al. Stromal cells from humanlong-term marrow cultures are mesenchymal cells that differentiatefollowing a vascular smooth muscle differentiation pathway. Blood,1993,82:66~76
    35Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adulthuman mesenchymal stem cells. Science,1999,284:143~147
    36Conget PA, Minguell JJ. Phenotypical and functional properties of humanbone marrow mesenchymal progenitor cells. J Cell Physiol,1999,181:67~73
    37Sordi V, Malosio ML, Marchesi F, et al. Bone marrow mesenchymal stemcells express a restricted set of functionally active chemokine receptorscapable of promoting migration to pancreatic islets. Blood,2005,106:419~427
    38Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression andimmunologic properties of differentiated and undifferentiatedmesenchymal stem cells. Exp Hematol,2003,31:890~896
    39Nardi NB, Camassola M. Isolation and culture of rodent bonemarrowderived multipotent mesenchymal stromal cells. Methods Mol Biol,2011,698:151~160
    40Hatzistergos KE, Quevedo H, Oskouei BN, et al. Bone marrowmesenchymal stem cells stimulate cardiac stem cell proliferation anddifferentiation. Circ Res,2010,107:913~922
    41Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: Paradoxes ofpassaging. Exp Hematol,2004,32:414~425
    42Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adiposetissue: implications for cell-based therapies. Tissue Eng,2001,7:211~228
    43De Bari C, Dell’Accio F, Tylzanowski P, et al. Multipotent mesenchymalstem cells from adult human synovial membrane. Arthritis Rheum,2001,44:1928~1942
    44Sabatini F, Petecchia L, Tavian M, et al. Human bronchial fibroblastsexhibit a mesenchymal stem cell phenotype and multilineagedifferentiating potentialities. Lab Invest,2005,85:962~971
    45Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in humanumbilical cord blood. Br J Haematol,2000,109:235~242
    46Zvaifler NJ, Marinova-Mutafchieva L, Adams G, et al. Mesenchymalprecursor cells in the blood of normal individuals. Arthritis Res,2000,2:477~488
    47Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineagedifferentiation potential of human mesenchymal stem cells derived fromumbilical cord and bone marrow. Stem Cells,2007,25:1384~1392
    48da Silva ML, Chagastelles PC, Nardi NB. Mesenchymal stem cells residein virtually all post-natal organs and tissues. J Cell Sci,2006,119:2204~2213
    49Tropel P, Noel D, Platet N, et al. Isolation and characterisation ofmesenchymal stem cells from adult mouse bone marrow. Exp Cell Res,2004,295(2):395~406
    50Kuci S, Kuci Z, Kreyenberg H, et al. CD271antigen defines a subset ofmultipotent stromal cells with immunosuppressive andlymphohematopoietic engraftment-promoting properties. Haematologica,2010,95:651~659
    51Hamamoto H, Gorman JH III, Ryan LP, et al. Allogeneic mesenchymalprecursor cell therapy to limit remodeling after myocardial infarction: theeffect of cell dosage. Ann Thorac Surg,2009,87:794~801
    52Devine SM, Hoffman R. Role of mesenchymal stem cells in hematopoieticstem cell transplantation. Curr Opin Hematol,2000,7:358~363
    53Majumdar MK, Keane-Moore M, Buyaner D, et al. Characterization andfunctionality of cell surface molecules on human mesenchymal stem cells.J Biomed Sci,2003,10:228~241
    54Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cellproliferation by human marrow stromal cells: implications intransplantation. Transplantation,2003,75:389~397
    55Krampera M, Cosmi L, Angeli R, et al. Role for interferon-gamma in theimmunomodulatory activity of human bone marrow mesenchymal stemcells. Stem Cells,2006,24:386~398
    56Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediatedimmunosuppression occurs via concerted action of chemokines and nitricoxide. Cell Stem Cell,2008,2:141~150
    57Chabannes D, Hill M, Merieau E, et al. A role for heme oxygenase-1in theimmunosuppressive effect of adult rat and human mesenchymal stem cells.Blood,2007,110:3691~3694
    58Sato K, Ozaki K, Oh I, et al. Nitric oxide plays a critical role insuppression of T-cell proliferation by mesenchymal stem cells. Blood,2007,109:228~234
    59Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health anddisease. Nat Rev Immunol,2008,8:726~736
    60Raffaghello L, Bianchi G, Bertolotto M, et al. Human mesenchymal stemcells inhibit neutrophil apoptosis: a model for neutrophil preservation inthe bone marrow niche. Stem Cells,2008,26:151~162
    61Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibitdifferentiation and function of monocyte-derived dendritic cells. Blood,2005,105:4120~4126
    62Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulateallogeneic immune cell responses. Blood,2005,105:1815~1822
    63Spaggiari GM, Capobianco A, Abdelrazik H, et al. Mesenchymal stemcells inhibit natural killer-cell proliferation, cytotoxicity, and cytokineproduction: role of indoleamine2,3-dioxygenase and prostaglandin E2.Blood,2008,111:1327~1333
    64Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cellsmodulate B-cell functions. Blood,2006,107:367~372
    65Traggiai E, Volpi S, Schena F, et al. Bone marrow-derived mesenchymalstem cells induce both polyclonal expansion and differentiation of B cellsisolated from healthy donors and systemic lupus erythematosus patients.Stem Cells,2008,26:562~569
    66Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cellssuppress lymphocyte proliferation in vitro and prolong skin graft survivalin vivo. Exp Hematol,2002,30:42~48
    67Chapel A, Bertho JM, Bensidhoum M, et al. Mesenchymal stem cellshome to injured tissues when co-infused with hematopoietic cells to treat aradiationinduced multi-organ failure syndrome. J Gene Med,2003,5:1028~1038
    68Le Blanc K, Frassoni F, Ball, et al. Mesenchymal stem cells for treatmentof steroid-resistant, severe, acute graft-versus-host disease: a phase II study.Lancet,2008,371:1579~1586
    69Huang XP, Sun Z, Miyagi Y, et al. Differentiation of allogeneicmesenchymal stem cells induces immunogenicity and limits theirlong-term benefits for myocardial repair. Circulation,2010,122:2419~2429
    70Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature,2008,451:937~942
    71Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors innormal and irradiated mouse hematopoietic organs. Exp Hematol,1976,4:267~274
    72Augello A, De Bari C. The regulation of differentiation in mesenchymalstem cells. Hum Gene Ther,2010,21:1226~1238
    73Caplan AI. Bone development and repair. BioAssays,1987,6:171~175
    74Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation ofpurified, culture-expanded human mesenchymal stem cells in vitro. J CellBiochem,1997,64:295~312
    75Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, andthe osteogenic potential of purified human mesenchymal stem cells duringextensive subcultivation and following cryopreservation. J Cell Biochem,1997,64:278~294
    76Pereira RF, Halford KW, O’Hara MD, et al. Cultured adherent cells frommarrow can serve as long-lasting precursor cells for bone, cartilage, andlung in irradiated mice. Proc Natl Acad Sci U S A,1995,92:4857~4861
    77Mackay AM, Beck SC, Murphy JM, et al. Chondrogenic differentiation ofcultured human mesenchymal stem cells from marrow. Tissue Eng,1998,4:415~428
    78Derfoul A, Perkins GL, Hall DJ, et al. Glucocorticoids promotechondrogenic differentiation of adult human mesenchymal stem cells byenhancing expression of cartilage extracellular matrix genes. Stem Cells,2006,24:1487~1495
    79Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblastsand bone diseases. Gene,2004,341:19~39
    80Day TF, Guo X, Garrett-Beal L, et al. Wnt/beta-catenin signaling inmesenchymal progenitors controls osteoblast and chondrocytedifferentiation during vertebrate skeletogenesis. Dev Cell,2005,8:739~750
    81Etheridge SL, Spencer GJ, Heath DJ, et al. Expression profiling andfunctional analysis of Wnt signaling mechanisms in mesenchymal stemcells. Stem Cells,2004,22:849~860
    82Boland GM, Perkins G, Hall DJ, et al. Wnt3a promotes proliferation andsuppresses osteogenic differentiation of adult human mesenchymal stemcells. J Cell Biochem,2004,93:1210~1230
    83Arita NA, Pelaez D, Cheung HS. Activation of the extracellularsignalregulated kinases1and2(ERK1/2) is needed for theTGFbeta-induced chondrogenic and osteogenic differentiation ofmesenchymal stem cells. Biochem Biophys Res Commun,2011,405:564~569
    84Martin I, Muraglia A, Campanile G, et al. Fibroblast growth factor-2supports ex vivo expansion and maintenance of osteogenic precursorsfrom human bone marrow. Endocrinology,1997,138:4456~4462
    85Tokunaga A, Oya T, Ishii Y, et al. PDGF receptor beta is a potent regulatorof mesenchymal stromal cell function. J Bone Miner Res,2008,23:1519~1528
    86Li X, Yu X, Lin Q, et al. Bone marrow mesenchymal stem cellsdifferentiate into functional cardiac phenotypes by cardiacmicroenvironment. J Mol Cell Cardiol,2007,42:295~303
    87Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generatedfrom marrow stromal cells in vitro. J Clin Invest,1999,103:697~705
    88Shim WS, Jiang S, Wong P, et al. Ex vivo differentiation of human adultbone marrow stem cells into cardiomyocyte-like cells. Biochem BiophysRes Commun,2004,324(2):481~488
    89Koninckx R, Hensen K, Dani ls A, et al. Human bone marrow stem cellsco-cultured with neonatal rat cardiomyocytes display limitedcardiomyogenic plasticity. Cytotherapy,2009,11(6):778~792
    90Horton RE, Millman JR, Colton CK, et al. Engineering microenvironmentsfor embryonic stem cell differentiation to cardiomyocytes. Regen Med,2009,4(5):721~732
    91Xu M, Wani M, Dai YS, et al. Differentiation of bone marrow stromalcells into the cardiac phenotype requires intercellular communication withmyocytes. Circulation,2004,110:2658~2665
    92Rose RA, Jiang H, Wang X, et al. Bone marrow-derived mesenchymalstromal cells express cardiac-specific markers, retain the stromalphenotype, and do not become functional cardiomyocytes in vitro. StemCells,2008,26:2884~2892
    93Pijnappels DA, Schalij MJ, Ramkisoensing AA, et al. Forced alignment ofmesenchymal stem cells undergoing cardiomyogenic differentiation affectsfunctional integration with cardiomyocyte cultures. Circ Res,2008,103:167~176
    94Yang YJ, Qian HY, Huang J, et al. Combined therapy with simvastatin andbone marrow-derived mesenchymal stem cells increases benefits ininfracted swine hearts. Arterioscler Thromb Vasc Biol,2009,29:2076~2082
    95Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cellsdifferentiate into an endothelial phenotype, enhance vascular density, andimprove heart function in a canine chronic ischemia model. Circulation,2005,111:150~156
    96Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair withintramyocardial injection of allogeneic mesenchymal stem cells aftermyocardial infarction. Proc Natl Acad Sci USA,2005,102:11474~11479
    97Makkar RR, Price MJ, Lill M, et al. Intramyocardial injection of allogenicbone marrow-derived mesenchymal stem cells withoutimmunosuppression preserves cardiac function in a porcine model ofmyocardial infarction. J Cardiovasc Pharmacol Ther,2005,10:225~233
    98Dixon JA, Gorman RC, Stroud RE, et al. Mesenchymal celltransplantation and myocardial remodeling after myocardial infarction.Circulation,2009,120: S220~S229
    99Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cellsignaling and therapy. Circ Res,2008,103:1204~1219
    100Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrinehypothesis for Akt-modified mesenchymal stem cell-mediated cardiacprotection and functional improvement. FASEB J,2006,20:661~669
    101Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for markedprotection of ischemic heart by Akt-modified mesenchymal stem cells. NatMed,2005,11:367~368
    102Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derivedstromal cells augments collateral perfusion through paracrine mechanisms.Circulation,2004,109:1543~1549
    103Mirotsou M, Zhang Z, Deb A, et al. Secreted frizzled related protein2(Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factormediating myocardial survival and repair. Proc Natl Acad Sci USA,2007,104:1643~1648
    104Li H, Zuo S, He Z, et al. Paracrine factors released by GATA-4overexpressed mesenchymal stem cells increase angiogenesis and cellsurvival. Am J Physiol Heart Circ Physiol,2010,299:H1772~H1781
    105Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. JCell Biochem,2006,98:1076~1084
    106Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cellsexpress genes encoding a broad spectrum of arteriogenic cytokines andpromote in vitro and in vivo arteriogenesis through paracrine mechanisms.Circ Res,2004,94:678~685
    107Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by humanmarrow-derived mesenchymal progenitor cells in vitro: effects ofdexamethasone and IL-1alpha. J Cell Physiol,1996,166:585~592
    108Dufourcq P, Descamps B, Tojais NF, et al. Secreted frizzledrelatedprotein-1enhances mesenchymal stem cell function in angiogenesis andcontributes to neovessel maturation. Stem Cells,2008,26:2991~3001
    109Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential ascardiac therapeutics. Circ Res,2004,95:9~20
    110Loffredo FS, Steinhauser ML, Gannon J, et al. Bone marrow-derived celltherapy stimulates endogenous cardiomyocyte progenitors and promotescardiac repair. Cell Stem Cell,2011,8:389~398
    111Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion ofbonemarrow-derived cells with Purkinje neurons, cardiomyocytes andhepatocytes. Nature,2003,425:968~973
    112Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derivedhematopoietic cells generate cardiomyocytes at a low frequency throughcell fusion, but not transdifferentiation. Nat Med,2004,10:494~501
    113Noiseux N, Gnecchi M, Lopez-Ilasaca M, et al. Mesenchymal stem cellsoverexpressing Akt dramatically repair infarcted myocardium and improvecardiac function despite infrequent cellular fusion or differentiation. MolTher,2006,14:840~850
    114Anversa P, Kajstura J, Leri A, et al. Life and death of cardiac stem cells: aparadigm shift in cardiac biology. Circulation,2006,113:1451~1463
    115Pasolli HA. The hair follicle bulge: a niche for adult stem cells. MicroscMicroanal,2011,17:513~519
    116Yeung TM, Chia LA, Kosinski CM, et al. Regulation of self-renewal anddifferentiation by the intestinal stem cell niche. Cell Mol Life Sci,2011,68:2513~2523
    117Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cellsassociated with accelerated ageing. Nat Cell Biol,2008,10:452~459
    118Cheng Z, Ou L, Zhou X, et al. Targeted migration of mesenchymal stemcells modified with CXCR4gene to infarcted myocardium improvescardiac performance. Mol Ther,2008,16(3):571~579
    119Huang W, Zhang D, Millard RW, et al. Gene manipulated peritoneal cellpatch repairs infracted myocardium. J Mol Cell Cardiol,2010,48(4):702~712
    120Zhang D, Fan GC, Zhou X, et al. Over-expression of CXCR4onmesenchymal stem cells augments myoangiogenesis in the infarctedmyocardium. J Mol Cell Cardiol,2008,44(2):281~292
    121Huang J, Zhang Z, Guo J, et al. Genetic modification of mesenchymalstem cells overexpressing CCR1increases cell viability, migration,engraftment, and capillary density in the injured myocardium. Circ Res,2010,106(11):1753~1762
    122Tang J, Wang J, Zheng F, et al. Combination of chemokine and angiogenicfactor genes and mesenchymal stem cells could enhance angiogenesis andimprove cardiac function after acute myocardial infarction in rats. MolCell Biochem,2010,339(1–2):107~118
    123Liu XH, Bai CG, Xu ZY, et al. Therapeutic potential of angiogeninmodified mesenchymal stem cells: angiogenin improves mesenchymalstem cells survival under hypoxia and enhances vasculogenesis inmyocardial infarction. Microvasc Res,2008,76(1):23~30
    124Tang YL, Tang Y, Zhang YC, et al. Improved graft mesenchymal stemcell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1vector. J Am Coll Cardiol,2005,46(7):1339~1350
    125Tsubokawa T, Yagi K, Nakanishi C, et al. Impact of anti-apoptotic andanti-oxidative effects of bone marrow mesenchymal stem cells withtransient overexpression of heme oxygenase-1on myocardial ischemia.Am J Physiol Heart Circ Physiol,2010,298(5):H1320~1329
    126Kelly ML, Wang M, Crisostomo PR, et al. TNF receptor2, NOT tnfreceptor1, enhances mesenchymal stem cell-mediated cardiac protectionfollowing acute ischemia. Shock,2010,33(6):602~607
    127Bao C, Guo J, Zheng M, et al. Enhancement of the survival of engraftedmesenchymal stem cells in the ischemic heart by TNFR gene transfection.Biochem Cell Biol,2010,88(4):629~634
    128Jo J, Nagaya N, Miyahara Y, et al. Transplantation of geneticallyengineered mesenchymal stem cells improves cardiac function in rats withmyocardial infarction: benefit of a novel nonviral vector, cationizeddextran. Tissue Eng,2007,13(2):313~322
    129Li W, Ma N, Ong LL, et al. Bcl-2engineered MSCs inhibited apoptosisand improved heart function. Stem Cells,2007,25(8):2118~2127
    130Copland IB, Jolicoeur EM, Gillis MA, et al. Coupling erythropoietinsecretion to mesenchymal stromal cells enhances their regenerativeproperties. Cardiovasc Res,2008,79(3):405~415
    131Fan L, Lin C, Zhuo S, et al. Transplantation with survivin-engineeredmesenchymal stem cells results in better prognosis in a rat model ofmyocardial infarction. Eur J Heart Fail,2009,11(11):1023~1030
    132Haider H, Jiang S, Idris NM, et al. IGF-1-overexpressing mesenchymalstem cells accelerate bone marrow stem cell mobilization via paracrineactivation of SDF-1alpha/CXCR4signaling to promote myocardial repair.Circ Res,2008,103(11):1300~1308
    133Pons J, Huang Y, Takagawa J, et al. Combining angiogenic gene and stemcell therapies for myocardial infarction. J Gene Med,2009,11(9):743~753
    134Deuse T, Peter C, Fedak PW, et al. Hepatocyte growth factor or vascularendothelial growth factor gene transfer maximizes mesenchymal stemcell-based myocardial salvage after acute myocardial infarction.Circulation,2009,120(11Suppl):S247~254
    135Noiseux N, Gnecchi M, Lopez-Ilasaca M, et al. Mesenchymal stem cellsoverexpressing Akt dramatically repair infarcted myocardium and improvecardiac function despite infrequent cellular fusion or differentiation. MolTher,2006,14(6):840~850
    136Gnecchi M, He H, Melo LG, et al. Early beneficial effects of bonemarrow-derived mesenchymal stem cells overexpressing Akt on cardiacmetabolism after myocardial infarction. Stem Cells,2009,27(4):971~979
    137Mirotsou M, Zhang Z, Deb A, et al. Secreted frizzled related protein2(Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factormediating myocardial survival and repair. ProcNatl Acad Sci USA,2007,104(5):1643~1648
    138Shujia J, Haider HK, Idris NM, et al. Stable therapeutic effects ofmesenchymal stem cell-based multiple gene delivery for cardiac repair.Cardiovasc Res,2008,77(3):525~533
    139Sun L, Cui M, Wang Z, et al. Mesenchymal stem cells modified withangiopoietin-1improve remodeling in a rat model of acute myocardialinfarction. Biochem Biophys Res Commun,2007,357(3):779~784
    140Song SW, Chang W, Song BW, et al. Integrin-linked kinase is required inhypoxic mesenchymal stem cells for strengthening cell adhesion toischemic myocardium. Stem Cells,2009,27(6):1358~1365
    141Jeong JO, Han JW, Kim JM, et al. Malignant tumor formation aftertransplantation of short-term cultured bone marrow mesenchymal stemcells in experimental myocardial infarction and diabetic neuropathy. CircRes,2011,108:1340~1347
    142Price MJ, Chou CC, Frantzen M, et al. Intravenous mesenchymal stem celltherapy early after reperfused acute myocardial infarction improves leftventricular function and alters electrophysiologic properties. Int J Cardiol,2006,111:231~239
    143Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function ofintracoronary transplantation of autologous bone marrow mesenchymalstem cell in patients with acute myocardial infarction. Am J Cardiol,2004,94:92~95
    144Williams AR, Trachtenberg B, Velazquez DL, et al. Intramyocardial stemcell injection in patients with ischemic cardiomyopathy: functionalrecovery and reverse remodeling. Circ Res,2011,108:792~796
    145Miura M, Miura Y, Padilla-Nash HM, et al. Accumulated chromosomalinstability in murine bone marrow mesenchymal stem cells leads tomalignant transformation. Stem Cells,2006,24:1095~1103
    146Amado LC, Schuleri KH, Saliaris AP, et al. Multimodality noninvasiveimaging demonstrates in vivo cardiac regeneration after mesenchymalstem cell therapy. J Am Coll Cardiol,2006,48:2116~2124
    147Perin EC, Silva GV, Assad JA, et al. Comparison of intracoronary andtransendocardial delivery of allogeneic mesenchymal cells in a caninemodel of acute myocardial infarction. J Mol Cell Cardiol,2008,44:486~495
    148Halkos ME, Zhao ZQ, Kerendi F, et al. Intravenous infusion ofmesenchymal stem cells enhances regional perfusion and improvesventricular function in a porcine model of myocardial infarction. Basic ResCardiol,2008,103:525~536
    149Hashemi SM, Ghods S, Kolodgie FD, et al.A placebo controlled,dose-ranging, safety study of allogenic mesenchymal stem cells injectedby endomyocardial delivery after an acute myocardial infarction. EurHeart J,2008,29:251~259
    150Wang X, Jameel MN, Li Q, et al. Stem cells for myocardial repair with useof a transarterial catheter. Circulation,2009,120:S238~S246
    151Schuleri KH, Amado LC, Boyle AJ, et al. Early improvement in cardiactissue perfusion due to mesenchymal stem cells. Am J Physiol Heart CircPhysiol,2008,294:H2002~H2011
    152Hou D, Youssef EA, Brinton TJ, et al. Radiolabeled cell distribution afterintramyocardial, intracoronary, and interstitial retrograde coronary venousdelivery: implications for current clinical trials. Circulation,2005,112:I150~I156
    153Behfar A, Yamada S, Crespo-Diaz R, et al. Guided cardiopoiesis enhancestherapeutic benefit of bone marrow human mesenchymal stem cells inchronic myocardial infarction. J Am Coll Cardiol,2010,56:721~734