3T3-L1细胞分化为脂肪细胞的蛋白质组学及其部分相关蛋白功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章鉴定3T3-L1脂肪细胞分化相关的蛋白质
     肥胖是最常见的疾病之一,2005年世界卫生组织估计全世界肥胖患者超过10亿。大量研究表明肥胖与2型糖尿病、心血管疾病和癌症有着密切联系。肥胖正成为全球一个严重的健康问题。近十多年来,人们对脂肪组织的认识发生了革命性的改变。脂肪组织不仅仅是一个惰性的剩余代谢能量贮藏器官,同时它也是一个活跃的内分泌器官,能分泌多种脂肪激素,调节机体代谢、能量平衡、心血管等多种功能。目前的研究认为脂肪组织在肥胖和2型糖尿病的发生发展中起着重要作用,因此,调节脂肪细胞分化成为了治疗上述疾病的可能策略之一。然而,调控脂肪细胞分化的分子基础仍不清楚。
     同位素标记相对和绝对定量(iTRAQ)技术是近年来新开发的一种蛋白质组学定量研究技术。具有高通量、高灵敏度、高重复性、定量准确等多种优点。激素诱导3T3-L1成纤维细胞分化为脂肪细胞是一个成熟的体外脂肪细胞分化模型,但是迄今未见iTRAQ技术用于其研究的文献报导。在本部分研究中,我们运用iTRAQ-coupled2D LC-MS/MS对3T3-L1成纤维细胞诱导分化为脂肪细胞的机制进行研究。共定量了近1000种蛋白质,其中106个蛋白质在脂肪细胞分化过程中有明显改变。这些蛋白质主要涉及代谢酶、结构蛋白及信号转导相关蛋白。部分差异蛋白包括C/EBPs、cAMP反应元件结合蛋白(CREB)和脂蛋白脂肪酶(LPL)等和以前报道的类似。除此之外,我们新发现了HEXB、DPP7、PTTG1IP、PRDX5、EPDR1、SPNB2、 STEAP3、NIBAN、ACADM、RPS19、NEDD4、KANK2、LOC10045699、 EG432502、NUCB1、MBC2、FBN1、CALU、CAPG、TPP1等这些涉及脂肪分化的蛋白质。我们的结果为肥胖与2型糖尿病的治疗提供了新的方向。
     第二章部分蛋白质分子差异表达水平的验证及功能研究
     在上述研究中,通过iTRAQ技术我们发现了106个差异表达蛋白。为了确保筛选到真正的差异蛋白,我们通过western blot和/或real-time PCR对12个蛋白(Destrirn、Nucleolin、Zyx protein、Transgelin2、VDAC2、VDAC3、Cytochrome b5、PCX、Annexin A1、Ribosomal protein SA、EEF1A1、β-actin)的质谱结果进行了验证。PCX是一个存在于线粒体中的代谢酶。PCX在糖异生、脂肪生成、胰岛素分泌和神经递质的合成中均起着作用。VDAC2是线粒体内外膜的线粒体通透性转运孔复合体的组成部分。VDAC以两种方式调控线粒体介导的细胞死亡,一是作为线粒体通透性转运孔复合体的主要组成调控细胞死亡,另一是与Bcl-2家族蛋白质相互作用调控细胞死亡。文献报道凋亡与脂肪细胞分化存在一定关系。因此,我们运用siRNA技术进一步探讨了PCX和VDAC2在脂肪分化中的作用。结果表明,调节PCX或VDAC2均有助于抑制脂肪细胞分化过程,为肥胖和2型糖尿病的治疗提供了新的药物靶点。
     第三章3T3-L1脂肪细胞分泌神经肽Y及其调控的研究
     神经肽Y(NPY)是一个含有36个氨基酸的多肽,参与调节代谢平衡。NPY主要在中央和外周神经系统合成。最近研究发现,脂肪组织也能合成和分泌NPY。然而脂肪组织分泌NPY的途径和调节均不清楚。在这项工作中,我们运用全内反射成像技术、荧光测钙、共聚焦成像技术等技术,研究了3T3-L1脂肪细胞的NPY分泌囊泡的转运和分泌,特别是囊泡的定位及其他细胞因子对脂源性NPY的合成和分泌的调节作用,并通过western blot和ELISA验证了我们的观察。结果发现瘦素、TNF-α和肾上腺素参与调节脂肪细胞源性NPY的分泌。NPY与脂联素的分泌囊泡很大程度是相同的,而与抵抗素和瘦素,仅小部分共定位在同一分泌囊泡。此外,通过给予一些不同的信号通路抑制剂,我们发现TNF-α或瘦素经由JNK和NF-KB信号通路调节脂源性NPY的分泌。最后,我们证实Ca2+信号调控脂肪细胞源性NPY的调节性分泌,但不影响其组成性分泌。这些结果表明脂肪细胞源性NPY是一种新的脂肪激素。它的分泌受到机体不同来源的信号分子及脂肪细胞自分泌的调节。脂肪细胞源性NPY与其他脂肪激素可能构成了一个复杂的网络,协同调节机体的摄食及能量代谢等多种功能。
Chapter1Comparative proteome analysis of3T3-L1adipocyte differentiation using iTRAQ-coupled2D LC-MS/MS
     Obesity is one of the most frequent physiological disorders that is associated with a wide variety of conditions including type Ⅱ diabetes, cardiovascular diseases and cancer. It is characterized by excess of body fat mass, which is mostly stored in adipose tissue. There are indications that obesity is fast becoming a serious health problem worldwide. Accumulating evidence has indicated that adipocyte differentiation, an increase in fat cell number, plays an important role in obesity, and adipose tissue is a highly active endocrine organ capable of secreting a number of signal molecules called adipokines (including leptin, adiponectin, resistin, etc.). In summary, adipose tissue is critical in obesity and type Ⅱ diabetes. Blocking of adipocyte differentiation is one of the anti-obesity strategies targeting on strong rise in fat storage and secretion of adipokine(s). However, the molecular basis of adipocyte differentiation and its regulation remains obscure. Recently, there has been great progress in comparative proteomic approaches, including DIGE, iTRAQ,18O, ICAT, and SILAC. Among these methods, iTRAQ technology has gained great popularity in quantitative proteomics applications due to its high sensitivity and accurate quantitation and reproducibility. Therefore, we exposed3T3-L1cell line to appropriate hormonal inducers as adipocyte differentiation model. To our best knowledge, there is no report that profiled proteome during3T3-L1adipocyte differentiation using iTRAQ-coupled2D LC-MS/MS. Using iTRAQ-coupled2D LC-MS/MS, a successfully exploited high-through proteomic technology, we nearly quantitated1000protein species and found106significantly altered proteins during adipocyte differentiation. The great majority of differentially expressed proteins were related to metabolism enzymes, structural molecules, and proteins involved in signal transduction. In addition to previously reported differentially expressed molecules including CCAAT/Enhancer Binding Proteins (C/EBPs), cAMP response element-binding protein (CREB), and lipoprotein lipase (LPL), we firstly revealed previously unknown altered proteins during adipogenic process (e.g., HEXB, DPP7, PTTG1IP, PRDX5, EPDR1, SPNB2, STEAP3, NIBAN, ACADM, RPS19, NEDD4, KANK2, LOC10045699, EG432502, NUCB1, MBC2, FBN1, CALU, CAPG, and TPP1etc.). Our data provide valuable information for further understanding of adipogenesis.
     Chapter2The validation and function of the partially differential proteins
     Using iTRAQ-coupled2D LC-MS/MS, a successfully exploited high-throughput proteomic technology, we found106significantly altered proteins during adipocyte differentiation. Twelve proteins (Destrin; Nucleolin; Zyx protein; Transgelin2; VDAC2; VDAC3; Cytochrome b5; PCX; Annexin A1; Ribosomal protein SA; EEF1A1and β-actin) were validated by western blot and/or real-time PCR analysis. Furthermore, the association of PCX and VDAC2, two altered proteins, with adipocyte conversion was analyzed using siRNA method. PCX is a regulatory metabolic enzyme that provides acetyl-CoA and NADPH for the de novo biosynthesis of fatty acids. PCX plays a role in lipogenesis and gluconeogenesis, in glucose-induced insulin secretion by pancreatic islets, and in the biosynthesis of neurotransmitters. VDAC2is a component of the permeability transition pore complex (PTPC) of the mitochondrial membranes. The subsequent dissipation of mitochondrial inner membrane potential and release of cytochrome c through the outer mitochondrial membrane are critical events in the early stages of apoptosis. Furthermore, VDAC2significantly inhibited apoptosis mediated by BAK. In additional, ligands to VDACs induce non-apoptotic cell death selectively in some tumour cells harbouring activating mutations in the RAS-RAF-MEK pathway. Our results showed that both PCX and VDAC2could contribute considerably to adipogenesis. These data provide new targets for future investigation studies with respect to obesity and type Ⅱ diabetes.
     Chapter3Neuropeptide Y, a new adipokine:localization, synthesis, secretion and regulation in3T3-L1adipocytes
     Neuropeptide Y (NPY) is a36-amino-acid peptide involved in the regulation of metabolic homeostasis. NPY is mainly synthesized in the central and peripheral nervous systems. Recently, it was found that adipose tissue synthesizes and secretes NPY. Adipose tissue has been recognized as a highly active endocrine organ secreting a variety of signaling molecules called adipokines. Nevertheless, the regulation, secretory pathways and potential endocine effects of NPY in adipose tissue are poorly elucidated. In this work, we have studied several key aspects of NPY from3T3-L1adipocytes, specifically the localization of NPY vesicles, the effect of adipokine on NPY secretion and the influence of TNF-a and epinephrine (E) on adipocyte-derived NPY in vitro. It was found that NPY and adiponectin molecules are compartmentalized into same secretory vesicles. NPY, leptin and resistin molecules are compartmentalized into different secretory vesicles. The synthesis, vesicles trafficking, and the secretion of of NPY are increased by TNF-a or leptin via JNK and NF-κB pathways. Finally, we demonstrated that TNF-a increased NPY secretion by an additional50%. Acute NPY secretion is Ca2+dependent. In contrast, basal NPY secretion is calcium independent. Taken together, these results suggest that adipose-derived NPY is highly regulated by different signal molecules and may have implications for central feedback of adiposity signals.
引文
[1]James PT, Rigby N, Leach R. International Obesity Task Force. The obesity epidemic, metabolic syndrome and future prevention strategies. Eur J Cardiovasc Prev Rehabil,2004;11:3-8.
    [2]Bray GA, Tartaglia LA. Medicinal strategies in the treatment of obesity. Nature. 2000;404:672-677.
    [3]Thompson D, Wolf AM. The medical-care cost burden of obesity. Obes Rev. 2001;2:189-197.
    [4]Trujillo ME, Scherer PE. Adipose tissue-derived factors:Impact on health and disease. Endocrine Reviews.2006;27:762-778.
    [5]Miner JL. The adipocyte as an endocrine cell. Journal of Animal Science. 2004;82:935-941.
    [6]Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature.2006;444:847-853.
    [7]Cock TA, Auwerx J. Leptin:cutting the fat off the bone. Lancet.2003; 362: 1572-1574.
    [8]Rondinone CM. Adipocyte-derived hormones, cytokines, and mediators. Endocrine.2006;29:81-90.
    [9]Bornstein SR, Abu-Asab M, Glasow A, et al. Immnohistochemical and ultrastructural localization of leptin and leptin receptor in human white adipose tissue and differentiating human adipose cells in primary culture. Diabetes. 2000;49:532-538.
    [10]Lago F, Dieguez C, Gomez-Reino J, Gualillo O. Adipokines as emerging mediators of immune response and inflammation. Nature Clinical Practice Rheumatology.2007;3:716-724.
    [11]Lago F, Gomez R, Gomez-Reino JJ, Dieguez C, Gualillo O. Adipokines as novel modulators of lipid metabolism. Trends in Biochemical Sciences. 2009;34:500-510.
    [12]Kim SH, Park HS. Lee MS, et al. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells. Biochem Biophys Res Commun. 2008:372:108-113.
    [13]Hackl H. Burkard TR, Sturn A, et al. Molecular processes during fat cell development revealed by gene expression profiling and functional annotation. Genome Biol.2005;6:R108.
    [14]Shao DL, Lazar MA. Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. Journal of Biological Chemistry. 1997:272:21473-21478.
    [15]Zhou YT, Wang ZW, Higa M, Newgard CB, Unger RH. Reversing adipocyte differentiation:Implications for treatment of obesity. Proceedings of the National Academy of Sciences of the United States of America.1999;96:2391-2395.
    [16]Ge K, Cho YW, Guo H, et al. Alternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor gamma-stimulated adipogenesis and target gene expression. Mol Cell Biol. 2008:28:1081-1091.
    [17]Zhang H, Zhao C, Li X, et al. Study of monocyte membrane proteome perturbation during lipopolysaccharide-induced tolerance using iTRAQ-based quantitative proteomic approach. Proteomics;10:2780-2789.
    [18]Hu HD, Ye F, Zhang DZ, Hu P, Ren H, Li SL. iTRAQ quantitative analysis of multidrug resistance mechanisms in human gastric cancer cells. J Biomed Biotechnol;2010:571343.
    [19]Akerblad P, Mansson R, Lagergren A, et al. Gene expression analysis suggests that EBF-1 and PPARgamma2 induce adipogenesis of NIH-3T3 cells with similar efficiency and kinetics. Physiol Genomics.2005;23:206-216.
    [20]Renes J, Bouwman F, Noben JP, Evelo C, Robben J, Mariman E. Protein profiling of 3T3-L1 adipocyte differentiation and (tumor necrosis factor alpha-mediated) starvation. Cell Mol Life Sci.2005;62:492-503.
    [21]Molina H, Yang Y, Ruch T, et al. Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy. J Proteome Res. 2009;8:48-58.
    [22]Choi KL, Wang Y, Tse CA, Lam KS, Cooper GJ, Xu A. Proteomic analysis of adipocyte differentiation:Evidence that alpha2 macroglobulin is involved in the adipose conversion of 3T3 L1 preadipocytes. Proteomics.2004;4:1840-1848.
    [23]Jitrapakdee S. St Maurice M, Rayment I. Cleland WW, Wallace JC.Attwood PV. Structure, mechanism and regulation of pyruvate carboxylase. Biochem.1. 2008;413:369-387.
    [24]Wu WW. Wang G, Baek SJ, Shen RF. Comparative study of three proteomic quantitative methods, DIGE, cICAT. and iTRAQ, using 2D gel-or LC-MALDI TOF/TOF. J Proteome Res.2006;5:651-658.
    [25]Ye F, Than A, Zhao YY, Goh KH, Chen P. Vesicular storage, vesicle trafficking, and secretion of leptin and resistin:the similarities, differences, and interplays. Journal of Endocrinology;206:27-36.
    [26]Atiar Rahman M, Kumar SG, Lee SH, Hwang HS, Kim HA, Yun JW. Proteome analysis for 3T3-L1 adipocyte differentiation. J Microbiol Biotechnol. 2008;18:1895-1902.
    [27]Roh C, Roduit R, Thorens B, Fried S, Kandror KV. Lipoprotein lipase and leptin are accumulated in different secretory compartments in rat adipocytes. Journal of Biological Chemistry.2001:276:35990-35994.
    [28]Wilson-Fritch L, Burkart A, Bell G, et al. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol.2003:23:1085-1094.
    [29]Zhang J, Xia WL, Ahmad F. Regulation of pyruvate carboxylase in 3T3-L1 cells. Biochem J.1995;306 (Pt 1):205-210.
    [30]Kawachi H, Moriya NH, Korai T, et al. Nitric oxide suppresses preadipocyte differentiation in 3T3-L1 culture. Mol Cell Biochem.2007;300:61-67.
    [31]Jitrapakdee S, Slawik M, Medina-Gomez G, et al. The peroxisome proliferator-activated receptor-gamma regulates murine pyruvate carboxylase gene expression in vivo and in vitro. J Biol Chem.2005;280:27466-27476.
    [32]Li SL, Ye F, Cai WJ, et al. Quantitative proteome analysis of multidrug resistance in human ovarian cancer cell line. J Cell Biochem; 109:625-633.
    [33]Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature.2008;452:181-186.
    [34]Kang HJ, Jung SK, Kim SJ, Chung SJ. Structure of human alpha-enolase (hENO1), a multifunctional glycolytic enzyme. Acta Crystallogr D Biol Crystallogr.2008;64:651-657.
    [35]Karakas SE, Almario RU, Kim K. Serum fatty acid binding protein 4, free fatty acids, and metabolic risk markers. Metabolism.2009:58:1002-1007.
    [36]Hoogenboom BW, Suda K, Engel A, Fotiadis D. The supramolecular assemblies of voltage-dependent anion channels in the native membrane. J Mol Biol. 2007:370:246-255.
    [37]Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ. VDAC2 inhibits BAK. activation and mitochondrial apoptosis. Science.2003;301:513-517.
    [38]Canova-Davis E, Waskell L. The identification of the heat-stable microsomal protein required for methoxyflurane metabolism as cytochrome b5. J Biol Chem. 1984:259:2541-2546.
    [39]Stayton PS, Fisher MT, Sligar SG. Determination of cytochrome b5 association reactions. Characterization of metmyoglobin and cytochrome P-450cam binding to genetically engineered cytochromeb5. J Biol Chem.1988;263:13544-13548.
    [40]Brasaemle DL, Levin DM, Adler-Wailes DC, Londos C. The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochim Biophys Acta.2000:1483:251-262.
    [41]Sleat DE, Zheng H, Qian M, Lobel P. Identification of sites of mannose 6-phosphorylation on lysosomal proteins. Mol Cell Proteomics.2006;5:686-701.
    [42]Urzua U, Roby KF, Gangi LM, Cherry JM, Powell JI, Munroe D.I. Transcriptomic analysis of an in vitro murine model of ovarian carcinoma: functional similarity to the human disease and identification of prospective tumoral markers and targets. J Cell Physiol.2006;206:594-602.
    [43]Ohgami RS, Campagna DR, Greer EL, et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet.2005;37:1264-1269.
    [44]Amzallag N, Passer BJ, Allanic D, et al. TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem.2004;279:46104-46112.
    [45]Bootman MD, Berridge MJ. The elemental principles of calcium signaling. Cell. 1995:83:675-678.
    [46]Elbashir Sm Fau-Harborth J, Harborth J Fau-Lendeckel W, Lendeckel W Fau-Yalcin A, Yalcin A Fau-Weber K, Weber K Fau-Tuschl T, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.
    [47]Kim KB, Kim BW, Choo HJ. et al. Proteome analysis of adipocyte lipid rafts reveals that gClqR plays essential roles in adipogenesis and insulin signal transduction. Proteomics.2009;9:2373-2382.
    [48]Tan SH, Reverter A, Wang Y. Byrne KA, McWilliam SM, Lehnert SA. Gene expression profiling of bovine in vitro adipogenesis using a cDNA microarray. Funct Integr Genomics.2006;6:235-249.
    [49]Zamzami N, Kroemer G. The mitochondrion in apoptosis:how Pandora's box opens. Nat Rev Mol Cell Biol.2001;2:67-71.
    [50]Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447:864-868.
    [51]Tatemoto K, Carlquist M, Mutt V. Neuropeptide-Y-a Novel Brain Peptide with Structural Similarities to Peptide-Yy and Pancreatic-Polypeptide. Nature. 1982;296:659-660.
    [52]Zukowska-Grojec Z, Karwatowska-Prokopczuk E, Fisher TA, Jin H. Mechanisms of vascular growth-promoting effects of neuropeptide Y:role of its inducible receptors. Regulatory Peptides.1998;75-6:231-238.
    [53]Kalra SP, Kalra PS. NPY and cohorts in regulating appetite, obesity and metabolic syndrome:beneficial effects of gene therapy. Neuropeptides. 2004;38:201-211.
    [54]Silva AP, Kaufmann JE, Vivancos C, et al. Neuropeptide Y expression, localization and cellular transducing effects in HUVEC. Biology of the Cell. 2005;97:457-467.
    [55]Duggan AW, Hope PJ, Lang CW. Microinjection of Neuropeptide-Y into the Superficial Dorsal Horn Reduces Stimulus-Evoked Release of Immunoreactive Substance-P in the Anesthetized Cat. Neuroscience.1991;44:733-740.
    [56]Miruma H, Saito A, Kusakabe T, Takenaka T, Kawakami T. Neuropeptide Y inhibits axonal transport of particles in neurites of cultured adult mouse dorsal root ganglion cells. Journal of Physiology-London.2002;543:85-97.
    [57]Turtzo LC, Marx R, Lane MD. Cross-talk between sympathetic neurons and adipocytes in coculture. Proceedings of the National Academy of Sciences of the United States of America.2001;98:12385-12390.
    [58]Arora S, Anubhuti. Role of neuropeptides in appetite regulation and obesity-A review. Neuropeptides.2006:40:375-401.
    [59]Kuo LE. Kitlinska JB. Tilan JU, et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nature Medicine.2007:13:803-811.
    [60]Kos K. Harte AL, James S, et al. Secretion of neuropeptide Y in human adipose tissue and its role in maintenance of adipose tissue mass. American Journal of Physiology-Endocrinology and Metabolism.2007;293:E1335-E1340.
    [61]Yang KP, Guan HY, Arany E, Hill DJ, Cao XA. Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Y1 receptor. Faseb Journal.2008;22:2452-2464.
    [62]Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes-Role of free fatty acids and tumor necrosis factor alpha. Arteriosclerosis Thrombosis and Vascular Biology. 2005:25:2062-2068.
    [63]Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature.2000;404:661-671.
    [64]Kalra SP, Kalra PS. Neuropeptide Y-A physiological orexigen modulated by the feedback action of ghrelin and leptin. Endocrine.2003;22:49-55.
    [65]Gasman S, ChasserotGolaz S, Popoff MR, Aunis D, Bader MF. Trimeric G proteins control exocytosis in chromaffin cells-G(o) regulates the peripheral actin network and catecholamine secretion by a mechanism involving the small GTP-binding protein Rho. Journal of Biological Chemistry.1997;272:20564-20571.
    [66]Steyer JA, Horstmann H, Almers W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature.1997;388:474-478.
    [67]Zhang EM, Xue RH, Soo J, Chen P. Effects of phorbol ester on vesicle dynamics as revealed by total internal reflection fluorescence microscopy. Pflugers Archiv-European Journal of Physiology.2008;457:211-222.
    [68]Silva AP, Cavadas C, Baisse-Agushi B, Spertini O, Brunner HR, Grouzmann E. NPY, NPY receptors, and DPP Ⅳ activity are modulated by LPS, TNF-alpha and IFN-gamma in HUVEC. Regulatory Peptides.2003;116:71-79.
    [69]Kielar D, Clark JSC, Ciechanowicz A, Kurzawski G, Sulikowski T, Naruszewicz M. Leptin receptor isoforms expressed in human adipose tissue. Metabolism- Clinical and Experimental.1998;47:844-847.
    [70]Serradeil-Le Gal C. Lafontan M, Raufaste D. et al. Characterization of NPY receptors controlling lipolysis and leptin secretion in human adipocytes. Febs Letters.2000;475:150-156.
    [71]Cammisotto PG, Bukowiecki LJ. Mechanisms of leptin secretion from white adipocytes. American Journal of Physiology-Cell Physiology.2002;283:C244-C250.
    [72]Kastin AJ, Akerstrom V. Nonsaturable entry of neuropeptide Y into brain. American Journal of Physiology-Endocrinology and Metabolism.1999;276: E479-E482.
    [73]Baranowska B, Radzikowska M, Wasilewska-Dziubinska E, Roguski K, Borowiec M. Disturbed release of gastrointestinal peptides in anorexia nervosa and in obesity. Diabetes Obesity & Metabolism.2000;2:99-103.
    [74]Chen GQ, Goeddel DV. TNF-R1 signaling:A beautiful pathway. Science. 2002;296:1634-1635.
    [75]Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death and Differentiation.2003;10:45-65.
    [76]Wang JH, Wang F, Yang MJ, et al. Leptin regulated calcium channels of neuropeptide Y and proopiomelanocortin neurons by activation of different signal pathways. Neuroscience.2008;156:89-98.
    [77]Gaillard P, Jeanclaude-Etter I, Ardissone V, et al. Design and synthesis of the first generation of novel potent, selective, and in vivo active (benzothiazol-2-yl) acetonitrile inhibitors of the c-Jun N-terminal kinase. Journal of Medicinal Chemistry.2005;48:4596-4607.
    [78]Yan F, Polk DB. Aminosalicylic acid inhibits I kappa B kinase alpha phosphorylation of I kappa B alpha in mouse intestinal epithelial cells. Journal of Biological Chemistry.1999;274:36631-36636.
    [79]Dai Y, Rahmani M, Dent P, Grant S. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-kappa B activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage. XIAP downregulation, and c-jun n-terminal kinase 1 activation. Molecular and Cellular Biology.2005;25:5429-5444.
    [80]Pierce JW, Schoenleber R, Jesmok G, et al. Novel inhibitors of cytokine-induced I kappa B alpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. Journal of Biological Chemistry.1997;272:21096-21103.
    [81]May V, Brandenburg CA, Braas KM. Differential Regulation of Sympathetic Neuron Neuropeptide-Y and Catecholamine Content and Secretion. Journal of Neuroscience.1995; 15:4580-4591.
    [82]Eurin J, Barthelemy C, Masson F, Soualmia H, Sarfati E, Carayon A. Bradykinin-induced neuropeptide Y release by human pheochromocytoma tissue. Neuropeptides.2002;36:257-262.
    [83]Abdel-Samad D, Jacques D, Perreault C, Provost C. NPY regulates human endocardial endothelial cell function. Peptides.2007;28:281-287.
    [1]Miner JL. The adipocyte as an endocrine cell. Journal of Animal Science,2004. 82(3):935-941.
    [2]Rondinone CM. Adipocyte-derived hormones, cytokines, and mediators. Endocrine,2006.29(1):81-90.
    [3]Yang K, Guan H, Arany E, Hill DJ, Cao X. Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Yl receptor. FASEB J,2008.22(7):2452-64.
    [4]Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin:a protein secreted by visceral fat that mimics the effects of insulin. Science 2005;307:426-30.
    [5]James PT, Rigby N, Leach R. International Obesity Task Force. The obesity epidemic,metabolic syndrome and future prevention strategies. Eur J Cardiovasc Prev Rehabil,2004.11(1):3-8.
    [6]Astrup A, Finer N. Redefining type 2 diabetes:'diabesity' or 'obesity dependent diabetes mellitus'? Obes Rev,2000.1(2):57-59.
    [7]Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature,2006.444(7121):847-853.
    [8]Steppan CM, Bailey ST, Bhat S, et al., The hormone resistin links obesity to diabetes. Nature,2001.409(6818):307-312.
    [9]Bokarewa M, Nagaev I, Dahlberg L, et al. Resistin, an adipokine with potent proinflammatory properties. J Immunol,2005.174:5789-5795.
    [10]Adeghate E. An update on the biology and physiology of resistin. Cell Mol Life Sci,2004.61(19-20):2485-2496.
    [11]Masuzaki H, Ogawa Y, Sagawa N, Hosoda K, Matsumoto T, Mise H, et al. Nonadipose tissue production of leptin:leptin as a novel placenta-derived hormone in humans. Nat Med 1997;3:1029-33.
    [12]Yura S, Sagawa N, Ogawa Y, Masuzaki H, Mise H, Matsumoto T. et al. Augmentation of leptin synthesis and secretion through activation of protein kinases A and C in cultured human trophoblastic cells. J Clin Endocrinol Metab 1998;83:3609-14.
    [13]Wang J, Liu R, Hawkins M, Barzilai N, Rossetti L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 1998:393:684-8.
    [14]Cnop M, Landchild MJ, Vidal J, Havel PJ, Knowles NG, Carr DR, et al. The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations:distinct metabolic effects of two fat compartments. Diabetes 2002;51:1005-15.
    [15]Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab 2000;11:327-32.
    [16]Ahima RS, Kelly J, Elmquist JK, Flier JS. Distinct physiologic and neuronal responses to decreased leptin and mild hyperleptinemia. Endocrinology 1999;140:4923-31.
    [17]Vicennati V, Vottero A, Friedman C, Papanicolaou DA. Hormonal regulation of interleukin-6 production in human adipocytes. Int J Obes Relat Metab Disord 2002;26:905-11.
    [18]Rentsch J, Chiesi M. Regulation of ob gene mRNA levels in cultured adipocytes. FEBS Lett 1996;379:55-9.
    [19]Perusse L, Collier G, Gagnon J, Leon AS, Rao DC, Skinner JS. et al. Acute and chronic effects of exercise on leptin levels in humans. J Appl Physiol 1997:83:5-10.
    [20]Ahima RS, Osei SY. Leptin signaling. Physiol Behav 2004;81:223-41.
    [21]Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004;89:2548-56.
    [22]Friedman JM. Modern science versus the stigma of obesity. Nat Med 2004;10:563-9.
    [23]Trayhurn P, Hoggard N, Mercer JG, Rayner DV. Leptin:fundamental aspects. Int J Obes Relat Metab Disord 1999;23(Suppl 1):22-8.
    [24]Shimabukuro M, Koyama K, Chen G, Wang M-Y, Trieu F, Lee Y, et al. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. PNAS 1997;94:4637-41.
    [25]Flier JS. What's in a name? In search of leptin's physiologic role. J Clin Endocrinol Metab 1998;83:1407-13.
    [26]Ahima RS. Body fat, leptin, and hypothalamic amenorrhea. N Engl J Med 2004;351:959-62.
    [27]Szanto I, Kahn CR. Selective interaction between leptin and insulin signaling pathways in a hepatic cell line. PNAS 2000;97:2355-60.
    [28]Kamohara S, Burcelin R. Halaas JL, Friedman JM, Charron MJ. Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 1997;389:374-7.
    [29]Rossetti L, Massillon D, Barzilai N. Vuguin P, Chen W, Hawkins M, et al. Short term effects of leptin on hepatic gluconeogenesis and in vivo insulin action..1 Biol Chem 1997;272:27758-63.
    [30]Liu L, Karkanias GB, Morales JC, Hawkins M, Barzilai N, Wang J,Rossetti L. Intracerebroventricular leptin regulates hepatic but not peripheral glucose fluxes. J Biol Chem 1998;273:31160-7.
    [31]Hennige AM, Stefan N, Kapp K, Lehmann R, Weigert C, Beck A, et al. Leptin down-regulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1. FASEB J 2006;20:1206-8.
    [32]Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin. Science 1996;274:1185-8.
    [33]Berti L, Kellerer M, Capp E. Haring HU. Leptin stimulates glucose transport and glycogen synthesis in C2C12 myotubes:evidence for a P13-kinase mediated effect. Diabetologia 1997:40:606-9.
    [34]Wlodarski K, Wlodarski P. Leptin as a modulator of osteogenesis. Ortop Traumatol Rehabil.2009.11(1):1-6. Review.
    [35]Licinio J, Negrao AB, Mantzoros C, Kaklamani V, Wong ML, Bongiorno PB, Mulla A, Cearnal L, Veldhuis JD, Flier JS, McCann SM, Gold PW. Synchronicity of frequently sampled,24-h concentrations of circulating leptin, luteinizing hormone, and estradiol in healthy women.Proc Natl Acad Sci U S A. 1998.95(5):2541-6.
    [36]Bluher S, Shah S, Mantzoros CS. Leptin deficiency:clinical implications and opportunities for therapeutic interventions. J Investig Med.2009.57(7):784-8.
    [37]Rajala MW, Obici S, Scherer PE, et al. L Adipose-derived resistin and gut-derived resistin-like molecule-selectively impair insulin action on glucose production. J Clin Invest,2003.111:225-230.
    [38]Flier JS. Diabetes. The missing link with obesity? Nature,2001.409 (6818): 292-293.
    [39]Qatanani M, Szwergold NR, Greaves DR, et al. Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. J Clin Invest,2009.119(3):531-539.
    [40]Lago F, Dieguez C, Gomez-Reino J, et al., Adipokines as emerging mediators of immune response and inflammation. Nature Clinical Practice Rheumatology, 2007.3(12):716-724.
    [41]Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to Clq, produced exclusively in adipocytes. J Biol Chem 1995;270:26746-9.
    [42]Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin:an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 2002;13:84-9.
    [43]Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, et al. Structure-function studies of the adipocyte-secreted hormone acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J Biol Chem 2003;278:9073-85.
    [44]Tsao T-S, Murrey HE, Hug C, Lee DH, Lodish HF. Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related' protein of 30 kDa (Acrp30). J Biol Chem 2002; 277:29359-62.
    [45]Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 2004;279:12152-62.
    [46]Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The dipocytesecreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001;7:947-53.
    [47]Fruebis J, Tsao T-S, Javorschi S, Ebbets-Reed D, Erickson MRS, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. PNAS 2001;98:2005-10.
    [48]Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7:941-6.
    [49]Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 2003; 52:1355-63.
    [50]Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30.J Clin Invest 2001;108:1875-81.
    [51]Stefan N, Stumvoll M, Vozarova B, Weyer C, Funahashi T, Matsuzawa Y. et al. Plasma adiponectin and endogenous glucose production in humans. Diabetes Care 2003;26:3315-9.
    [52]Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Ravussin E,Weyer C, et al. Plasma adiponectin levels are not associated with fat oxidation in humans. Obes Res 2002;10:1016-20.
    [53]Wang C, Mao X, Wang L, Liu M, Wetzel MD, Guan K-L, et al. Adiponectin sensitizes insulin signaling by reducing p70 S6 kinasemediated serine phosphorylation of IRS-1.J Biol Chem 2007;282:7991-6.
    [54]Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin:an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 2002; 13:84-9.
    [55]Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, J.-i. Miyagawa K, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999;257:79-83.
    [56]Fasshauer M, Kralisch S, Klier M, Lossner U, Bluher M, Klein J, et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocyte. Biochem Biophys Res Commun 2003;301:1045-50.
    [57]Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPAR {gamma} ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001;50:2094-9.
    [58]Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 1996;271:10697-703.
    [59]Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 2001;50:1126-33.
    [60]Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000;20:1595-9
    [61]Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 2001:86:3815-9.
    [62]Rasouli N, Yao-Borengasser A, Miles LM, Elbein SC. Kern PA. Increased plasma adiponectin in response to pioglitazone does not result from increased gene expression. Am J Physiol Endocrinol Metab 2006;290:E42-6.
    [63]Seo JB, Moon HM, Noh MJ, Lee YS, Jeong HW, Yoo EJ. et al.Adipocyte determination-and differentiation-dependent factor 1/sterol regulatory element-binding protein 1c regulates mouse adiponectin expression. J Biol Chem 2004;279:22108-17.
    [64]Qiao L, MacLean PS, Schaack J, Orlicky DJ, Darimont C, Pagliassotti M, et al. C/EBP{alpha} regulates human adiponectin gene transcription through an intronic enhancer. Diabetes 2005;54:1744-54.
    [65]Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxol-C/enhancer-binding protein{alpha} transcriptional complex. J Biol Chem 2006; 281:39915-24.
    [66]Hug C, Wang J, Ahmad NS, Bogan JS, Tsao T-S, Lodish HF. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. PNAS 2004;101:10308-13.
    [67]Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al.Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003;423:762-9.
    [68]Liu Y, Michael MD, Kash S, Bensch WR, Monia BP, Murray SF, et al.Deficiency of adiponectin receptor 2 reduces diet-induced insulin resistance but promotes type 2 diabetes. Endocrinology 2007; 148:683-92.
    [69]Bjursell M, Ahnmark A, Bohlooly-Y M, William-Olsson L, Rhedin M, Peng X-R, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes 2007;56:583-93.
    [70]Pittas AG, Joseph NA, Greenberg AS. Adipocytokines and insulin resistance. J Clin Endocrinol Metab 2004;89:447-52.
    [71]Papanicolaou DA, Wilder RL, Manolagas SC, Chrousos GP. The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med 1998; 128:127-37.
    [72]Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6:depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 1998;83:847-50.
    [73]Arner P. Insulin resistance in type 2 diabetes—role of the adipokines. Curr Mol Med 2005;5:333-9.
    [74]Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE. Circulating interleukin-6 in relation to adiposity insulin action, and insulin secretion. Obes Res 2001;9:414-7.
    [75]Bastard J-P, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 2000;85:3338-42.
    [76]Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-{alpha}, overexpressed in human fat cells from insulinresistant subjects. J Biol Chem 2003;278:45777-84.
    [77]Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 2002;51:3391-9.
    [78]Tsigos C, Papanicolaou DA, Kyrou I, Defensor R, Mitsiadis CS,Chrousos GP. Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J Clin Endocrinol Mctab 1997;82:4167-70.
    [79]Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes:defining their role in the development of insulin resistance and betacell dysfunction. Eur J Clin Invest 2002;3:14-23.
    [80]Petersen EW, Carey AL, Sacchetti M, Steinberg GR, Macaulay SL, Febbraio MA, Pedersen BK. Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am J Physiol Endocrinol Metab 2005;288:E155-62.
    [81]Fasshauer M, Kralisch S, Klier M, Lossner U, Bluher M. Klein J, et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocyte. Biochem Biophys Res Commun 2003;301:1045-50.
    [82]Fasshauer M, Klein J, Lossner U, Paschke R. Interleukin (IL)-6 mRNA expression is stimulated by insulin, isoproterenol, tumour necrosis factor alpha, growth hormone, and IL-6 in 3T3-L1 adipocytes. Horm Metab Res 2003;35:147-52.
    [83]De Benedetti F, Alonzi T, Moretta A, Lazzaro D, Costa P, Poli V, et al. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J Clin Invest 1997:99:643-50.
    [84]Tatemoto K. Hosoya M, Habata Y, Fujii R, Kakegawa T, et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 1998:251:471-6.
    [85]Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Flinuma S,et al. Molecular properties of apelin:tissue distribution and receptor binding. Biochim Biophys Acta 2001; 1538:162-71.
    [86]Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y,et al. Characterization of apelin, the ligand for the APJ receptor.J Neurochem 2000;74:34-41.
    [87]Flosoya M, Kawamata Y, Fukusumi S, Fujii R, Flabata Y, Flinuma S,et al. Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem 2000; 275:21061-7.
    [88]O'Carroll A-M, Selby TL. Palkovits M, Lolait SJ. Distribution of mRNA encoding B78/apj. the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochimica et Biophysica Acta (BBA)—Gene Struct Expr 2000:1492:72-80.
    [89]Medhurst AD, Jennings CA, Robbins MJ, Davis RP, Ellis C,Winborn KY. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem 2003;84:1162-72.
    [90]Boucher J, Masri B, Daviaud D, Gesta S, Guigne C, Mazzucotelli A,et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 2005; 146:1764-71.
    [91]Castan-Laurell I, Boucher J, Dray C, Daviaud D, Guigne C, Valet P.Apelin, a novel adipokine over-produced in obesity:friend or foe? Mol Cell Endocrinol 2005;245:7-9.
    [92]Higuchi K, Masaki T, Gotoh K, Chiba S, Katsuragi I, Tanaka K, et al.Apelin, an APJ receptor ligand, regulates body adiposity and favors the mRNA expression of uncoupling proteins in mice. Endocrinology 2007,2690-2697.
    [93]Z. Zukowska-Grojec, E. Karwatowska-Prokopczuk, T. A. Fisher, H. Jin,Mechanisms of vascular growth-promoting effects of neuropeptide Y:role of its inducible receptors Regulatory Peptides 1998,75-6,231.
    [94]S. P. Kalra, P. S. Kalra,NPY and cohorts in regulating appetite, obesity and metabolic syndrome:beneficial effects of gene therapy Neuropeptides 2004,38, 201.
    [95]A. P. Silva, J. E. Kaufmann. C. Vivancos, S. Fakan, C. Cavadas, P. Shaw. H. R. Brunner, U. Vischer, E. Grouzmann.Neuropeptide Y expression, localization and cellular transducing effects in HUVEC Biology of the Cell 2005,97,457.
    [96]L. E. Kuo, J. B. Kitlinska, J. U. Tilan, L. J. Li. S. B. Baker. M. D. Johnson. E. W. Lee, M. S. Burnett, S. T. Fricke, R. Kvetnansky. H. Herzog, Z. Zukowska,Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome Nature Medicine 2007, 13,803.
    [97]K. Kos, A. L. Harte, S. James, D. R. Snead, J. P. O'Hare, P. G. McTernan, S. Kumar,Secretion of neuropeptide Y in human adipose tissue and its role in maintenance of adipose tissue mass American Journal of Physiology-Endocrinology and Metabolism 2007.293. E1335.
    [98]K. P. Yang, H. Y. Guan, E. Arany, D. J. Hill, X. A. Cao.Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Y1 receptor Faseb Journal 2008,22,2452.