胰淀素对优降糖作用于胰岛βTC3细胞ATP敏感性钾通道的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪50年代初磺脲类降糖药(Sulfonylurea Drug,SuD/SUs)用于临床以来,每年约有5%~10%接受其治疗的糖尿病患者产生药物继发失效,五年失效率达50%,其发生原因及机制还未明确,对此学者们从不同角度进行了研究,其中有关胰岛β细胞淀粉样蛋白沉积导致胰岛素分泌障碍,使SUs继发失效的学说引起关注。胰淀素(Amylin)的生理功能尚不完全清楚,但已发现在高糖刺激下其分泌量远远超过胰岛素,局部胰淀素浓度增高成为胰岛内淀粉样蛋白形成的前提,有报道高浓度胰淀素抑制大鼠胰岛细胞分泌胰岛素,使SUs促胰岛细胞分泌胰岛素作用减弱,因此认为胰淀素分泌异常是导致胰岛β细胞分泌功能障碍、SUs继发失效的原因之一。本研究应用全细胞膜片钳技术观察了胰淀素对胰岛βTC3细胞ATP敏感性钾通道(ATP-sensitive Potassium Channels,K~+-ATP channels)的影响,探讨其影响胰岛素分泌及SUs作用的机制。
     目的:应用全细胞膜片钳技术,在单个细胞水平上观察胰岛βTC3细胞K~+-ATP通道的电学特性、胰淀素对葡萄糖和SUs对该通道作用的影响。
     方法:胰岛βTC3细胞系复苏后,选择有光泽、形态良好的直径约10-15μm的细胞进行膜片钳实验。当封接电阻达1GΩ以上时吸破细胞膜,补偿电容、电流及串联电阻,形成全细胞记录模式,设置钳制电压为—40mV,每隔1分钟给予细胞一系列不同去极化电压刺激后记录电流及图形,在不同实验条件观察电流及图形的变化。电刺激脉冲的给出及数据采入等均通过Pulse软件包和DAQ-2B数据采集接口装置一起构成的IBBDigitizer数字化系统完成,采集信号均经5kHz滤波后输入计算机处理,所有电流数据均经P/N漏减处理,用t检验进行统计学分析,以均数±标准差((?)±S)表示,P<0.05为差异显著,P<0.01为差异极显著。
     结果:
     1.建立了单个胰岛βTC3细胞膜上K~+-ATP通道的检测方法:选择出适合检测胰岛βTC3细胞膜上K~+-ATP通道的细胞外液及电极内液,确定了全细胞膜片钳实验的参数。
     2.观察了5mmol/L葡萄糖和16.7mmol/L葡萄糖时胰岛βTC3细胞膜上K~+-ATP通道电流的情况以及优降糖作用后该通道的变化:在5mmol/L葡萄糖作用下,胰岛βTC3细胞膜上K~+-ATP通道电流呈弱的内向整流性质,其电流存在时间依赖性失活,16.7mmol/L葡萄糖可使电流降低;3nmol/L优降糖可使K~+-ATP通道电流减小。
     3.0.1、1、10μmol/L胰淀素对5mmol/L葡萄糖条件下胰岛βTC3细胞膜上K~+-ATP通道的影响与对照组比无明显变化。10μmol/L胰淀素使16.7mmol/L葡萄糖作用下的K~+-ATP通道最大电流减低程度降低,与对照组相比具有统计学意义;10μmol/L胰淀素使3nmol/L优降糖作用下的K~+-ATP通道最大电流减低程度降低,与对照组相比具有统计学意义。
     结论:
     1.葡萄糖,优降糖是使胰岛βTC3细胞膜上K~+-ATP通道关闭的物质。
     2.高浓度胰淀素抑制高糖和优降糖刺激胰岛素分泌的作用与抑制K~+-ATP通道关闭有关。
Since the the beginning of 50s at the last century when the sulfonylurea drug was used clinically,5%~10%of DM patients have been found secondary failure of sulfonylureas each year.Both the cause and mechanism need to be disclosed.The researchers have studied on it from different angles.The hypothesis that increased deposit of amyloid peptide on pancreaticβcells,which will cause insulin secretion deficiency and secondary failure of sulfonylureas,has received much concern.The physiological function of amylin was unclear now,while its secretion was found much more than the insulin secretion after the stimulation of high level glucose.The increased secretion of amylin had become the premise of the deposit of amyloid peptide in local area of islet.It was reported that high level of amylin inhibited the secretion of insulin from pancreaticβcells,meanwhile weakened the function of sulfonylureas on insulin secrition.It was hypothesized that the abnormal amylin secretion was one of the reasons that caused insulin secretion deficiency and secondary failure of sulfonylureas.In this study,we used whole-cell patch clamp technique to observe the influence of amylin on insulin secretion and the effect of sulfonylureas inβTC3 cells.
     Objective Using whole-cell patch clamp technique to study the characteristics of K~+-ATP channels and the influence of amylin on K~+-ATP channels on plasma membrane of singleβTC3 cells.And also study the effects of glucose and glibenclamide on the K~+-ATP channels with and without the pretreatment of amylin.
     Method After pancreaticβTC3 cells were resuscitated,selected bright and good shaped cells with diameter between 10-15μm as experiment object.After sealing resistance was over 1GΩ,we sucked the plasma membrane and made it brocken,then the whole-cell recording mode became.The clamp voltage was kept to—40mV.Give a series of stimulation to the cells every one minute,we would record the current and figure.We would observe the change of the current and figure in diffrent experimental conditions.The giving of the electrical stimulation pulse and the obtaining of the data were completed through the IBBDigitizerdigital system which were composed by pulse software package and DAQ-2B data acquisition interface.After the collection signal was filtered at 5kHz,it was disposed by the computer.All the current data was disposed by P/N leak subtraction.statistical analysis was conducted by using t-test,P<0.05 showed significant difference,P<0.01 showed extremely significant difference.
     Result
     1.Establish the detection method for K~+-ATP channels on plasma membrane of singleβTC3 cells:select suitable extracellular solution and intracellular solution for the detection,determine the experimental parameters for the whole-cell patch clamp.
     2.The condition of 5mmol/L and 16.7mmol/L concentration glucose on K~+-ATP channels and the variation of the channels after the effect of glibenclamide were observed and found:on the condition of 5mmol/L glucose,the current of K~+-ATP channels presented a weak inword rectifier current,the current had time-dependent deactivate manner.16.7mmol/L concentration glucose could decrease the current;Glibenclamide could decrease the current of the K~+-ATP channels.
     3.On the condition of 5mmol/L glucose,the effect of amylin with different concentrations(0.1、1、10μmol/L) on the K~+-ATP channels was observed and found:On the condition of 5mmol/L glucose,amylin had not obviousely change the current.After 10μmol/L amylin acted,16.7mmol/L concentration glucose made the degree of the maximum current decreased lower than without amylin,and had statistical significance compared with control group.After 10μmol/L amylin acted,3nmol/L glibenclamide made the degree of the maximum current decreased lower than without amylin,and had statistical significance compared with control group.
     Conclusions
     1.Glucose and glibenclamide were the substances who could close the K~+-ATP channels on pancreaticβcells.
     2.High concentration amylin inhibited the function of glucose and glibenclamide on stimulating insulin secretion was related to inhibiting the closing of K~+-ATP channels.
引文
[1]Genuth S.Management of the adult onset diabetic with sulfonylurea drug failure.Endocrinol Metab Clin North Am,1992,21:351-370.
    [2]胡绍文,郭瑞林.实用糖尿病学[M].北京:人民军医出版社,1998:106.
    [3]Neher Erwin,Sakmann Bert.Single channel currents recorded,second Edition.Plenum Press,New York,1995.
    [4]陈军译,李济硕校,膜片钳实验技术系列讲座.神经解剖杂志,1994,10:360-369.
    [5]Hohmeier HE,Newgard CB.Cell lines derived from pancreatic islet.Mol Cell Endocrinol,2004,228:121-128.
    [6]Neher Erwin,Sakmann Bert.The patch clamp technique.Scientific American,1992,226:44-52.
    [7]贾宏钧,王钟林,杨期东.离子通道与心脑血管疾病[M].北京:人民卫生出版社,2001:9.
    [8]Yan LZ,Figueroa DJ,Austin CP,et al.Expression of voltage-gated potassium channels in human and rhesus pancreatic islets.Diabetes.2004,53:597-607.
    [9]Wang S,Xing TR,Tang M L,et al.Effects of Cd2+ on transient outward and delayed rectifier potassium currents in acutely isolated rat hippocampal CA 1 neurons.PUBMED,2007-11-28.
    [10]Panten U,Schwanstecher M,Schwanstecher C.Sulfonyluera receptors and mechanism of sulfonylurea action.Exp Clin Endocrinol Diabetes,1996,104(1):1-9.
    [11]Rachman J,Levy JC Barrow BA,et al.Relative hyperproinsulinemia of NIDDM persists despite the reduction of hyperglycemia with insulin or sulfony lurea therapy.Diabetes,1997,46:1557-1562.
    [12]B.A.Williams,P.A.Smith.K.Leow,S.Shimizu,et al.Two types of potassium by ATP in pancreatic B cells isolated from type 2 diabetic human.J Physilogy.1993,423:265-273.
    [13]Komatsu M,Schermerhom T,Noda M,et al.Augmentation of insulin release by glucose in the absence of extracellular Ca~(2+):new insights into stimulus-secretion coupling.Diabetes,1997,46(12):1928-1938.
    [14]Stanley M,Kevin DG David WB.Electorphysiology of stimulus-secretion coupling in human B cells.Diabetes,1992,41:1221-1228.
    [15]Frances MA,Peter P,Paul AS,et al.Stimulus-secretion coupling in pancreatic beta-cells,J of Cellular Biochem,1994,55:54-65.
    [16]Valdeolmillos M,Nadal A,Contreras D,et al.The relationship between glucose-induced K~+-ATP channel closure and the rise in [Ca~(2+)]_i in single mouse pancr eatic beta cells[J].J Physiol(Lond),1992,445(9):173-186.
    [17]Michael WR,Mary EL,Robert JM.Voltage-dependent intracellular calcium release from mouse islets stimulated by glucose.The J of Biochem,1993,269(14):9953-9956.
    [18]Ravier MA,Gilon P,Henquin JC.Oscillations of insulin secretion can be triggered by imposed oscillstions of cytoplasmic Ca~(2+)or metabolism in normal mouse islets.[J]Diabetes,1999,48:2374-2382.
    [19]Newgard CB,Mcgarry JD.Metabolic coupling factors in pancreatic betacell signal transduction.Annu Rev Biochem,1995,64:1220-1227.
    [20]Frances MA,Peter P,Paul AS,et al.Stimulus-secretion coupling in pancreatic beta-cells,J of Cellular Biochem,1994,55:54-65.
    [21]Valdeolmillos M,Nadal A,Contreras D,et al.The relationship between glucose-induced K~+-ATP channel closure and the rise in [Ca~(2+)]_i in single mouse pancreatic beta cells[J].J Physiol(Lond),1992,445(9):173-186.
    [22]Hoppener JW,Aren B,Lips CJ.Islet amyloid and Type 2 diabetes mellitus.N Engl J Med,2000,343(6):411-419.
    [23]Kahn SE,Andrikopoulos S,Verchere CB.Islet amyloid:A long-recognize d but underapp reciated pathological feature of type2 diabetes.Diabetes,1999,48(2):241-253
    [24]Juhi CB,Porksen N,Sturis J,et al.High frequency oscillations in circulating amylin concentaration in healthy humans.Am J Physiol Endocrinol Metab,2000,278:1494-1497.
    [25]Lukinins A,Wilander E,Westermark GT,et al.Colocalization of islet amyloid polypeptide and insulin in the beta cells ecretory granules of the human panceratic islet.[J]Diabetologia,1998,32(2):2404.
    [26]Janciauskiene S,Ahren B.Fibrillar islet amylold polypeptide differentially affects oxidative mechanisms and lipoprotein uptake in correlation with cytotoxi city in two insulin-producing cell linesF[J].Biochem Biophys Res Commun,2000,267(2):619-625.
    [27]Quist A,Doudevski I,Lin H,et al.Amyloid ion charmels:a common structural link for protein-misfolding disease.Proc Natl Acad Sci USA.2005,102:10427-10432.
    [28]Shaoping Z,Juxi L,Geraldine M.et al.Increased expression and activation of c-jun contributes to human amylin-induced apoptosis in pancreatic islet β-cells[J].J Mol Biol.2002,324(2):271-285.
    [29]汪大望,权金星,沈飞霞,等.胰淀素对人胰岛β细胞凋亡的影响及其分子机制的初步研究[J].中国病理生理杂志.2005,21(3):550-554.
    [30]何庆,王保平,刘铭,等.胰淀素对胰岛细胞凋亡及相关基因表达的影响[J].天津医药,2004,32(6):356-358.
    [31]Clark A,Nillsson WC,Islet amyloid:a complication of islet dysfunction or an aetiological factor in Type 2 diabetes?Diabetologia,2004,147(2):157-162.
    [32]Janson J,Soeller WC,Roche PC,et al.Spontaneous diabetes mellitus in trans genic mice expressing human islet amyloid polupeptide.Proc Natl Acad Sci US A,1996,93:7283-7287.
    [33]Akesson B,Panagiotidis G,Westermark P,et al.Islet amyloid poly peptide inhibits glucagon release and exerts adual action on insulin release from isolate islets[J].Regul Pept,2003,111(1-3):55-60.
    [34]田景琰,张宏利,顾燕云,等.胰淀素对大鼠胰岛素和胰高血糖素分泌的影响[J].上海交通大学学报(医学版),2006,26(8):856-859.
    [35]朱铁虹,尹潍,张玉华等.胰淀素对大鼠胰岛素分泌的影响及其机理的探讨[J].中华内分泌代谢杂志,1998,14(3):186-189.
    [36]周琳,薛耀明.胰淀素致大鼠胰岛细胞功能损伤的实验研究[J].第一军医大学学报,2003;23(9):922-924.
    [37]Satin LS.New Mechanisms for sulfonylurea control of insulin secretion.Endocrine,1996,4:191-198
    [38]Mobley DL,Cox DL,Singh RR,et al.Modeling amyloid beta-peptide insertion into lipid bilayers.Biophys J,2004,86(6):3585-3597.
    [39]Joseph I,Kourie,Christinel,Henry,et al.Architecture of the Alzheimer's A β P ion channel pore β-amyloid Ca~(2+)-channel hypothesis for neuronal death in Alzheimer disease.Journal of membrane biology,2004,197:33-48.
    [40]Hiddinga HJ,Eberhardt NL,Intracellular amyloidhenesis by human islet amyloid polypeptide induces apoptosis in COS cells[J].Am J Pathol,1999,154(4):1077-1088.
    [41]Janson J,Richard AS,Peter B,et al.The mechamism of islet amyloid poly peptide toxicity is membrance disruption by intermediatesized toxic amyloid particles[J].Diabetes,1999,48:491-498.
    [42]Evans JL,Goldfine ID,Maddus BA,et al.Oxedative stress and stress-activated signaling pathways:a unifying hypothesis of type 2 diabetes.Endocr Rev,2002,23(5):599-622.
    [43]Sakuraba H,Mizukami H,Yagihashi N,et al.Reduced β-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Typ e 2 diabetic patients[J].Diabetologia,2002,45:85-96.
    [44]朱铁虹,尹潍,高淑伟.磺脲类降糖药继发性失效的2型糖尿病患者血浆胰淀素水平[J].中华内分泌代谢杂志,2003,,19(1):29-30.
    [45]何戎华.磺脲类降糖药治疗失效的研究进展.国外医学内分泌学分册,1995,15:81-83.
    [46]Lukinius A,Wilander E,Westermark GT,et al.Co-localization of islet a myloid polypeptide and insulin in the beta-cell secretory granules of the human pancretic islets.Diabetologia,1989,32:240-244.
    [47]Clark A,Leiwis CE,Willis AC,et al.Islet amyloid fomed from diabetes associated peptide may be pathogenic in type Ⅱ diabetes.Lancet,1987,2:231-234.
    [48]黄丹珊,胰淀素对磺脲类口服降糖药的抑制效应.全国首届内分泌专业中青年论文交流会汇编.北京,1994,194-196.
    [49]钱玉宁,贾培红.胰淀素对大鼠糖代谢和胰岛素分泌功能的影响.中国糖尿病杂志,1993,1:21-24.
    [50]朱铁虹,尹潍,张卫华,等.胰淀素对优降糖刺激大鼠胰岛素分泌作用的影响及 其机制[J].中华内科杂志,1999,38(4):248-250.
    [51]王银霞.胰淀素对大鼠胰岛B细胞分泌胰岛素及磺脲类药物继发失效机制的研究[D].天津:天津医科大学总医院,2004.
    [1]Noma A.ATP-regulated K+ channels cardiac muscle.Nature,1983,305(5930):147-148.
    [2]Schwappach B,Zerengue N,Jan Y N,et al.Molectdar hasis for K(ATP)assembly:transmembrane interactions mediate association of a K+ channel with an ABC transporter.Neuron,2000,26:155-167.
    [3]Seghers V,Nakazaki M,Demayo F,et al.Surl knockout mice:Amodel for K(ATP)channel-independent regulation of insulin secretion.J Biol Chem,2000,275:9270-9277.
    [4]Dzeja P,Terzic A.Phosphotransfer reactions in the regulation of ATP-sensitive K+channels.FASEB J,1998,12523-529.
    [5]Baukrowitz T,Schulte U,01iver D,et al.PIP2 and PIP as determinants for ATP inhibition of KATP channels.Science,1998,282:1141-1144.
    [6]Dzeja P,Terzre A.Phosphotranfer reactions in the regulation of ATP-sensitive K+ channels.FASEB J,1998,12:523-529.
    [7]Craig S,Nunemaker,Min Zhang,et al.Insulin feedback alters mitochondrial activity through an ATP-sensitive K+ channel-dependent pathway in mouse islets and B-cells.Diabetes,2004,53:1765-1771.
    [8]Michael J,Riedel,Peter E.Saturated and cis/trans unsaturated acyl CoA ewters differentially regulate wild-type and polymorphic B cell ATP-sensitive K+ chanels.Diabetes,2005,54:2070-2078.
    [9]Kyoko Nakano,Sechiko Suga,Teruko Takeo,et al.Intracellular Ca2+modulation of ATP-sensitive K+ channel activity in acetylcholine-induced activation of rat pancreatic B-cells.Endocrinology,2002,143:569-576.
    [10]Lnes Barroso,jian'an luan,Rita P.S,et al.Candidate gene association study in type 2 diabetes indicates a role for genes involved in B-cell function as well as insulin action.Plos Biology,2003,l:041-055.
    [11]Altshuler D,Hischhom J N,Klannemark M,et al.The common PPAR gamma Pro 12Ala polymorphism is associated with decreased risk of type 2 diabetes.Nat Genet,2000,26:76-80.
    [12]Riedel MJ,Steckley DC,Light PE.Current status of the E23K Kir6.2 polymorpnhism.implication for type 2 diabetes Hum Genet,2005,116:134-145.
    [13]Love-Gregory L.Wasson J,Lin J,et al.E23K single nucleotide polymorphism in the islet ATP-sensitive potassium channel gene (Kir6.2)contributes as much to the risk of type Ⅱ diabetes in Caucasians as the PPAR gamma Pro 12Ala variant Diabetologia,2003,46:136-137.
    [14]Darendeliler.F,Fournet.JC,Bas.F,et.al.ABCC8(SURl)and.KCNJ11(KIR6.2).mutation in persistent hyperinsulininemic hypoglycemia of infancy and evaluation of different therapeutic measures.J Pediatr Endocrinol Metab,2002,15:993-1000.
    [15]Ohta Y,Tamzawa Y,lnoe H,et al.Identification and functional analyas of SUR1 variant in Japanese patients with NIDDM.Diabetes,1998,47:476-481.
    [16]Hansen T,Echwald S M,Hansen L,et al.Decreased tolbutamide-stimulated insulin secretion in healthy subjects with sequence variants in the high-affunty SUR gene.Diabetes,1998,47:598-605.
    [17]Ham E,Ulment K,Velho G,et al.Genetic studies of the SUR gene locus in NIDDM and in morbid obesity among French Caucasions.Diabetes,1997,46:688-694.
    [18]Ham E H,Boutin P,Durand E,et al.Mussence mutation in the pancreatic islet beta cell inwardly rectifying K channel gene(Kir6.2).Diabetologia,1998,41:1511-1515.
    [19]Li Li,Yun Shi,Xueren Wang,et al.Single nucleotide polymorphisms in K_(ATP)channels.Diabetes,2005,54:1592-1597.
    [20]N.Shaat,M.Ekelund,A.Lermark,et al.Assocition of the E23K polymorphism in the KCNJ11 gene with gestational diabetes mellitus.Diabetologia,2005,48:2544-2551.
    [21]Leen N,t Hart,Timon w,et al.Variations in insulin secretion in carriers of the E23K variant in the KIR6.2 subunit of the ATP-sensitive K~+ channel in the B-cell.Diabetes,2002,51:3135-3138.
    [22]Gloyn AL,Pearson ER,Antcliff JF,et al.Activation mutations in the gene encoding the ATP-sensitive potassium channel subunit Kir6.2 and permanent nelnatal diabetes,N Engl J Med,2004,350:1838-1849.
    [23]Otto Tschritter,Michael Stumvoll,Fausto Machicao,et al.The prevalent Glu23 Lys polymorphism in the potassium inward rectifier 6.2(KIR6.2)gene is associ ated with impaired glucagons suppression in response to hyperglycemia.Diabetes,2002,51:2854-2860.
    [24]Panten U,Schwanstecher M,Schwanstecher C.Sulfonyluera receptors and mechanism of sulfonylurea action.Exp Clin Endocrinol Diabetes,1996,104(1):1-9.
    [25]胡绍文,郭瑞林.实用糖尿病学[M].北京:人民军医出版社,1998:106.
    [26]Rachman J,Levy JC Barrow BA,et al.Relative hyperproinsulinemia of NIDDM persists despite the reduction of hyperglycemia with insulin or sulfonylurea therapy.Diabetes,1997,46:1557-1562.
    [27]贾宏钧,王钟林,杨期东.离子通道与心脑血管疾病[M].北京:人民卫生出版社,2001:41.
    [28]Cook DL The beta-cell response to oral hypoglycemic agents.Diabetes Res Clin Pract,1995,28:S81-89.
    [29]殷松楼,殷寒秋,张锦等.磺脲类药物继发性治疗失效的2型糖尿病患者血浆皮质醇水平的变化.徐州医学院学报2006,26(1):55-56.
    [30]Zapecka-Dubno B,Czyzyk A,Dworka A,et al.Effect of oral antidiabetic agents on plasma Amylin level in patients with non-insulin-dependent diabetes mellitus(type2)[J].Arznei mittelorschung,1999,49(4):330-334.
    [31]Damsbo P,Clauson P,Marbury TC,Windfeld A.A double-blind randomized comparison of meal-related glycemic control by repaglinide and glyburide in well-controlled type 2 diabetic patients.Diabetes Care 1999;22:789-794.
    [32]Carola Saloranta,Kenneth Hershon,Michele Ball,et al.Efficacy and safety of nateglinide in type 2 diabetic patients with modest fasting hyperglycemia.Clinical Endocrinology & Metabolism,87,2002,87:4171-4176.
    [33]Hanefeld M,Fischer S,Julius U,et al Risk factors for myocardial infarction and death in newly detected NIDDM:the Diabetes Intervention Study,11-year follow-up.Diabetologia 1996;39:1577-1583.
    [34]American Diabetes Association.Postprandial blood glucose.Diabetes Care 2001;24:775-778.
    [35]Landgraf R,Bilo HJ,Muller PG.A comparison of repaglinide and glibenclamide in the treatment of type 2 diabetic patients previously treated with sulphonylureas.Eur J Clin Pharmacol.1999;55:165-171.
    [36]Hollander PA,Schwartz SL,Gatlin MR,et al.Importance of early insulin secretion:comparison of nateglinide and glyburide in previously diettreated patients with type 2 diabetes.Diabetes Care.2001;24:983-988.
    [37]丁雪梅,朱铁虹.唐力治疗初发2型糖尿病50例疗效观察.当代医学.2007,122:14-16.
    [38]Richard D.Carrl,Christian L.Brandl,et al.NN414,a SUR1/Kir6.2-selective potassium channel opener,reduces blood glucose and improves glucose tolerance in theVDF Zucker Rat.Diabetes 2003,52:2513-2518.
    [39]Richard David Carr.保护2型糖尿病B细胞的药物研究进展。国外医学内分泌分册,2005,25:184-185.
    [40]Alemzadeh R,Fledelius C,Bodvarsdottir T,et al.Attenuation of hyperinsulinemia by NN414,a SUR1/Kir6.2 selective K-adenosine triphosphate channel opener,improves glucose tolerance and lipid profile in obese Zucker rats.Metabolism,2004,53(4):441-447.