多电平二级管钳位型逆变器电容电压平衡SVM算法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大功率电力电子装置的研究和应用领域,多电平变换器因其比两电平变换器具有更好的输出电压波形和可获取更高的电压等级等突出优点而广受关注,已成为一种代表性的解决方案。然而目前并没有一种完美的多电平变换器拓扑,现有的拓扑在实际应用中均存在一定的局限性。二极管钳位型逆变器既不需要多个独立的直流电源,也不需要笨重的电容及其预充电系统,同时还具有开关控制易于实现、保护电路简单等优点。对这一拓扑的应用造成阻碍的是其直流侧分压电容在逆变器运行时会发生电压偏移,使得逆变器性能下降甚至不能正常工作。本文的工作就致力于从调制方案这一硬件结构最简单同时也最节省系统成本的途径来研究解决多电平二极管钳位逆变器的直流电容电压偏移问题。
     论文分析了传统SVM算法在多电平二极管钳位逆变器中实现的原理和步骤,指出了传统SVM算法需要进行大量三角函数运算或查表操作、因而运算效率低的不足。通过引入基于Kohonen竞争性神经网络的分类算法,提出了一种改进的多电平二极管钳位逆变器SVM算法。改进的算法并不需要对神经网络进行训练,在整个实现过程中不再需要任何三角函数计算或查表操作,而只需要进行简单的四则运算,所节省的运算时间可用于完成其他耗时的工作如实现电容电压均压等。对三电平和五电平的二极管钳位逆变器进行时域仿真,结果验证了文中数学分析的正确性和所提算法的可行性,同时表明改进的算法是一种对多电平二极管钳位逆变器通用的算法,将它应用于不同电平数的逆变器时不需要进行任何修改。
     为了能够利用调制算法消除多电平二极管钳位逆变器直流电容电压的偏移,论文从理论上对这一现象产生的原因进行了深入的分析。首先研究了三电平二极管钳位逆变器的调制矢量的特点,通过具体的图例分析了四类调制矢量对中点电位的影响,明确了三电平二极管钳位逆变器能够利用小矢量调节电容的电压。其次以五电平二极管钳位逆变器为例分析了电平数超过3时的多电平逆变器的电容电压偏移问题,分析表明这类拓扑无法在全调制比范围内利用小矢量控制电容电压。由于逆变器直流侧电容电流平均值为零时,直流电容电压才能保持平衡,因此推导出在SPWM调制算法下五电平二极管钳位逆变器直流侧电容电流平均值与调制比和交流侧功率因数之间的函数关系。分析结果说明在不采用辅助电路的情况下,传统的SPWM技术不能维持直流电容电压平衡;但SVM方法却有可能利用冗余开关状态、在不设置辅助硬件的前提下实现直流侧电容均压。在分析电容电压偏移的本质原因的基础上,说明了无论采用哪种PWM算法来维持多电平二极管钳位逆变器的电容电压,都存在一个由调制比和交流侧功率因数所限定的稳定运行范围,因而电容电压平衡SVM算法主要适合应用于二极管钳位逆变器进行无功功率交换的场合。
     根据多电平二极管钳位逆变器的最小能量特性建立了五电平逆变器的能量函数,研究了通过能量函数来选择恰当的冗余开关状态从而实现电容均压的方法。为了计算在不同开关状态下的能量函数值,推导了逆变器中间支路电流平均值与各个扇区开关状态之间的关系,得到了五电平二极管钳位逆变器的综合电流数学模型。在此基础上建立了多电平二极管钳位逆变器的通用电流模型,从而得到了对任意电平通用的电容电压平衡SVM算法。仿真研究表明基于能量函数的电容电压平衡算法能够在对称负载、不对称负载和畸变负载等稳态条件下使得偏离的电容电压回归到标准值。
     基于能量函数的平衡算法计算量非常大,且未考虑对开关频率的优化,因而不可避免地造成逆变器运行时开关频率较大。针对该算法的不足,本文提出了种新的基于有功电流的SVM算法。新算法利用有功电流来判断二极管钳位逆变器交流侧的能量传输方向,通过分析能量传输方向与不同的开关序列对电容电压的影响,从一组预定义的开关序列中选取使得偏离标准值最多的电容电压尽可能回归标准值的开关序列。新算法使逆变器在运行中摆脱了大量的乘法运算,只需几次比较运算就能得出调制结果,大大降低了运算量、提高了调制速度;同时算法对开关器件工作频率进行了优化,使得在一个开关周期内的器件开关次数最少,能有效降低开关频率从而降低开关损耗。大量不同工况下的仿真研究证明了基于有功电流算法的有效性以及它的性能优势。
     为了进一步考察电容电压平衡算法的应用效果,本文研究了一个基于五电平二极管钳位逆变器的STATCOM系统。该STATCOM的直流侧电容没有辅助平衡电路,它是完全依赖空间矢量调制算法来控制电容电压的。建立了STATCOM的数学模型,在此模型的基础上分别设计STATCOM交流侧电流控制器、直流端电压控制器和公共连接点电压控制器,再将控制器与电容电压平衡算法相结合,构成了完整的STATCOM控制系统。对STATCOM系统的性能进行了仿真研究,结果表明STATCOM的控制器能有效的控制STATCOM输出的无功功率、直流端电压和公共连接点电压。对基于能量函数和基于有功电流的电容电流平衡算法的性能进行了仿真对比,结果证明两种算法都能有效的在稳态和动态条件下将五电平二极管钳位逆变器的直流电容电压维持在标准值,但本文提出的基于有功电流的算法具有更好的动态性能。
In the field of high power electronics research and application, multilevel converters have drawn wide attention and become a representative solution for their outstanding advantages of better output voltage waveforms and higher voltage rates. However, there is no perfect multilevel converter topology without any practical limitation. The diode-clamped inverter (DCI) possesses some of the desirable features like the easiest switching control and the least complex protection circuit among the multilevel inverters while it doesn't need isolated DC sources and bulk capacitors and their precharge circuits. What hinders DCI's development is the divergence of DC capacitor voltages resulting in poor performance or even collapse of the inverter. This paper is dedicated to solving the capacitor voltage divergence problem of DCI in the most cost efficient way of modulation scheme.
     Space vector modulation stands out in the application of multilevel converters because it offers significant flexibility to optimize switching waveforms and it is well suited for implementation on a digital computer. The topology features and function principles of multilevel DCIs are elaborated and the theory and steps of the conventional SVM is analyzed, and then the shortcomings of the conventional SVM are pointed out. To improve the conventional SVM, a classification algorithm based on Kohonen's competitive NN is applied. Although the algorithm is an NN-based one, it does not need a training stage. The proposed SVM switching strategy only needs to carry out simple mathematical operations instead of the time consuming trigonometric functions that are required for the implementation of conventional SVM strategies. Thus, adequate time is saved for other tasks, e.g. achieving DC capacitor voltage balancing. The validity of mathematical analysis and the feasibility of the proposed algorithm are verified by time-domain simulation studies in the MATLAB/SIMULATION environment for both a three-level DCI and a five-level DCI. The simulation studies also verify that the proposed algorithm is a generalized one for an n-level DCI and does not need any modification as the number of levels increases.
     To eliminate the capacitor voltage drift of multilevel DCIs via modulation, the cause for the phenomenon is studied in depth. The switching vectors of a three-level DCI are analyzed and classified into four groups, that is, zero vector, small vector, medium vector and large vector. Graphic illustrations demonstrate that the small vectors are able to control the capacitor voltages for a three-level DCI. Behaviors of DC capacitor voltages of an n-level (n>3) DCI is analyzed through an example of a five-level DCI, and a conclusion is drawn that for such a topology, it is impossible to obtain balanced capacitor voltages for the full modulation index region only by use of small vectors. Derivational studies show that average values of capacitor currents are functions of the modulation index and the AC-side power factor when the inverter is modulated by a SPWM strategy. Consequently, traditional SPWM technology is unable to maintain the capacitor voltages without the help of additional balance circuits, while a SVM scheme can possibly achieve the goal by delicately select redundant switching states. Analysis also shows that no PWM strategy can guarantee voltage balance of capacitors of a passive-front-end DCI with more than three levels, under all possible operating conditions. The limit of the operational region which guarantees balanced capacitor voltages is reached primarily due to a large modulation index and/or a high AC-side power factor. Therefore a DCI is more suitable for reactive power compensation.
     Based on the forementioned SVM algorithm proposed in the paper, a mathematical basis for the balancing strategy is developed for a five-level DCI. A quadratic cost function, that is associated with the voltage deviations of the DC capacitors, is used to select the best adjacent switching states over each sampling period. To calculate the cost function, relations between the averaged values of the DC-side intermediate branch currents and AC currents for different switching states in six sectors respectively are studied and a comprehensive current model for the five-level DCI is built. A generalized current model for an n-level DCI is then achieved and a voltage balancing SVM scheme based on the cost function is established. Effectiveness of the strategy under balanced, unbalanced and distorted operating conditions of a five-level DCC, based on time-domain simulation studies in the MATLAB/SIMULINK environment, is evaluated.
     The quadratic function based SVM scheme has to carry out enormous calculations and it pays little attention to the reduction of switching frequency. To overcome these shortcomings, a new SVM strategies based on active current is proposed in this paper. The new strategy judges the direction of the AC-side active power flow by means of active current, and based on the impact analysis of the active power flow and different switching sequences on the capacitor voltages, selects the best sequence to draw the most diverted capacitor voltage to its normal value. During this process, only comparison operations are needed, so the on-line modulation process is greatly relieved from a heavy calculation burden as no multiplication operations are involved. In addition to the voltage balancing ability, the proposed strategy implements switching frequency optimization via switching sequence arrangement so as to ensure the minimum number of switching transitions. The effectiveness and advantages of the proposed active current based SVM strategy are verified by means of comparison with the cost function based scheme within the stability boundaries. Simulation studies also demonstrate that the proposed strategy is capable of voltage balance under unbalanced or distorted load conditions or other conditions related to the parameters of actual capacitors.
     This paper investigates the feasibility of the DC-capacitor voltage balancing strategy for application of a five-level DCI as a STATCOM unit. In comparison with the existing five-level DCI based STATCOM systems, the salient feature of the proposed STATCOM is that the capacitor voltage balancing task is achieved with no requirements for additional power circuitry. A mathematical model of the STATCOM unit is developed. Then, based on the developed model and the SVM balancing strategy, the AC-side current controllers, the DC-bus voltage controller, and the load voltage controller are designed to control reactive power flow, DC-bus voltage and load voltage of the STATCOM respectively. Performance of the designed controllers is verified based on time-domain simulation studies. Effectiveness of the two capacitor voltage balancing strategies based on cost function and active current respectively under both steady-state and transient conditions are investigated and compared. Simulation results show that both balancing strategies effectively maintain the capacitor voltages at the normal value, but the active current based one has better dynamic performance than the other.
引文
[1]B. Wu, High-Power Converters and AC Drives. New York:Wiley-IEEE Press, 2006,119,143
    [2]陈坚.电力电子学:电力电子变换和控制技术.北京:高等教育出版社,2002,1-3
    [3]P. M. Bhagwat, V. R. Stefanovic. A Versatile Commutation Circuit for PWM Inverters. IEEE Transactions on Industry Applications,1982,18(2):127-137
    [4]林渭勋.电力电子技术基础.北京:机械工业出版社,1990,9-11
    [5]李宏.浅谈面向21世纪的电力电子技术.电力电子技术,2001,35(4):57-60
    [6]王兆安,杨军,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,2002,5-6
    [7]何湘宁,陈阿莲.多电平变换器的理论和应用技术.北京:机械工业出版社,2006.
    [8]J. Lai, F. Peng. Multilevel converters-a new breed of power converters. IEEE Transactions on Industry Applications,1996,32(3):509-517
    [9]J. Rodriguez, S. Bernet, B. Wu, et al. Multilevel voltage-source-converter topologies for industrial medium-voltage drives. IEEE Transactions on Industrial Electronics,2007,54(6):2930-2945
    [10]H. Abu-Rub, J. Holtz, J. Rodriguez, et al. Medium voltage multilevel converters-State of the art, challenges and requirements in industrial applications. IEEE Transactions on Industrial Electronics,2010,57(8): 2581-2596
    [11]刘凤君.多电平逆变技术及其应.北京:机械工业出版社,2007
    [12]S. Rohner, S. Bernet, M. Hiller, et al. Modulation, losses, and semiconductor requirements of modular multilevel converters. IEEE Transactions on Industrial Electronics,2010,57(8):2633-2642
    [13]A. Nabae, I.Takahashi, H.Akagi. A New Neutral-Point-Clamped PWM Inverter. IEEE Proc. of IAS'80,1980,2:761-766
    [14]J. Rodriguez, L. G. Franquelo, S. Kouro, et al. Multilevel converters:An enabling technology for high-power applications. Proc. IEEE,2009,97(11): 1786-1817
    [15]L. G. Franquelo, J. Rodriguez, J. I. Leon, et al. The Age of Multilevel Converters Arrives. IEEE Industrial Electronic Magazine,2008,2(2):28-39
    [16]S. S. Fazel, S. Bernet, D. Krug, et al. Design and comparison of 4-kV neutral-point-clamped, flying-capacitor, and series-connected H-bridge multilevel converters. IEEE Transactions on Industry Applications,2007,43(4): 1032-1040
    [17]M. Pradeep, Bhagwat. Generalized Structure of a Multilevel PWM Inverter. IEEE Transactions on Industry Applications,1983,19(6):1057-1069
    [18]M. Manjrekar, T. A. Lipo. A hybrid multilevel inverter topology for drive Application, Proc. Appl. Power Electron. Conf. Expo.,1998,523-529.
    [19]Z. Du, L. M. Tolbert, J. N. Chiasson. Active harmonic elimination for multilevel converters. IEEE Transactions on Power Electronics,2006,21(2): 459-469
    [20]W. Fei, X. Ruan, B. Wu. A generalized formulation of quarter-wave symmetry SHEPWM problems for multilevel inverters. IEEE Transactions on Power Electronics,2009,24(7):1758-1766
    [21]S. Rizzo, N. Zargari. Medium voltage drives:What does the future hold?. Proc. 4th IPEMC Conf.,2004,1:82-89
    [22]R. D. Klug, N. Klaassen. High power medium voltage drives-Innovations, portfolio, trends. Proc. Eur. Conf. Power Electron. Appl.,2005,1-10
    [23]P. Steimer. High power electronics, trends of technology and applications. Proc. PCIM,2007
    [24]J. Rodriguez, B. Wu, S. Bernet,et al. Design and evaluation criteria for high power drives. Conf. Rec. IEEE IAS Annu. Meeting,2008,1-9
    [25]B. K. Bose. Power electronics and motor drives recent progress and perspective. IEEE Transactions on Industrial Electronics,2009,56(2):581-588
    [26]B. Gemmell, J. Dorn, D. Retzmann, et al. Prospects of multilevel VSC technologies for power transmission. Proc. IEEE T&D Conf. Expo.,2008,1-16
    [27]F. Z. Peng. A generalized multilevel inverter topology with self voltage balancing. IEEE Transactions on Industry Applications.2001,37 (2):611-618
    [28]G. Su, Multilevel dc-link inverter. IEEE Transactions on Industry Applications, 2005,41(3):848-854
    [29]T. A. Meynard, H. Foch, Multi-level choppers for high voltage applications. Proc. Eur. Conf. Power Electron. Appl.,1992,2:45-50.
    [30]K. A. Corzine, M. W. Wielebski, F. Z. Peng, et al. Control of cascaded multilevel inverters. IEEE Transactions on Power Electronics,2004,19(3):732 -738
    [31]S. Bernet. Recent developments of high power converters for industry and traction applications. IEEE Transactions on Power Electronics,2000,15 (6): 1102-1117
    [32]林磊,邹云屏,钟和清等.二极管箝位型三电平逆变器控制系统研究.中国电机工程学报,2005,25(15):33-39
    [33]单庆晓,李永东,潘孟春.级联型逆变器的新进展.电工技术学报,2004,19(2):1-9
    [34]Xiaoming Yuan, Barbi, I. Fundamentals of a new diode clamping multilevel inverter. IEEE Transactions on Power Electronics,2000,15 (4):711-718
    [35]陈阿莲,邓焰,何湘宁.一种具有冗余功能的多电平变换器拓扑.中国电机工程学报,2003,23(9):34-39
    [36]D. Krug, S. Bernet, S. Dieckerhoff. Comparison of state-of-the-art voltage source converter topologies for medium voltage applications. Conf. Rec. IEEE IAS Annu. Meeting,2003,1:168-175
    [37]T. A. Meynard, H. Foch. Multilevel conversion:High voltage choppers and voltage-source inverters. Proc. IEEE Power Electronics Specialist Conf.,1992, 397-403
    [38]T. Meynard, M. Fadel, N. Aouda. Modeling of multilevel converters. IEEE Transactions on Industrial Electronics,1997,44(3):356-364
    [39]F.Tourkhani. A Simulation-Optimization System for the Optimal Design of a Multilevel Inverter. IEEE Transactions on Power Electronics,1999,14(6): 1037-1045
    [40]X. Kou, K. A. Corzine, Y. L. Familiant. A Unique Fault-Tolerant Design for Flying Capacitor Multilevel Inverter. IEEE Transactions on Power Electronics, 2004,19(4):979-987
    [41]I. Kim, E. Nho, H. Kim, et al. A Generalized Undeland Snubber for Flying Capacitor Multilevel Inverter and Converter. IEEE Transactions on Industrial Electronics,2004,51(6):1290-1296
    [42]L. Shi, B. P. Baddipadiga, M. Ferdowsi, et al. Improving the Dynamic Response of a Flying-Capacitor Three-Level Buck Converter. IEEE Transactions on Power Electronics,2013,28(5):2356-2365
    [43]B. P.McGrath, D. G. Holmes. Natural capacitor voltage balancing for a flying capacitor converter induction motor drive. IEEE Transactions on Power Electronics,2009,24(6):1554-1561
    [44]Liang Y, Nwankpa C.O. A power-line conditioner based on flying-capacitor multilevel voltage-source converter with phase-shift SPWM. IEEE Transactions on Industry Applications,2000,36(4):965-971
    [45]R. H. Baker, L. H. Bannister. Electric Power Converter. U.S. Patent,3867643. Feb.1975
    [46]P. W. Hammond. Medium Voltage PWM Drive and Method, U.S. Patent, 5625545. Apr.1997
    [47]F. Z. Peng, J. S. Lai. Multilevel Cascade Voltage Source Inverter with Separate DC Sources, U.S. Patent,5642275. Jun.1997
    [48]R. Osman. A medium-voltage drive utilizing series-cell multilevel topology for outstanding power quality. Conf. Rec. IAS Annu. Meeting,1999,2662-2669
    [49]K. Corzine, Y. Familiant. A new cascaded multilevel H-bridge drive. IEEE Transactions on Power Electronics,2002,17(1):125-131
    [50]F. Z. Peng. J. S. Lai. Dynamic performance and control of a Static Var Generator using cascade multilevel inverters. IEEE Transactions Industry Applications,1997,33(3):748-755
    [51]M. Hagiwara, K. Nishimura, H. Akagi. A medium-voltage motor drive with a modular multilevel PWM inverter. IEEE Transactions on Power Electronics, 2010,25(7):1786-1799
    [52]R. Teodorescu, F. Blaabjerg, J. K. Pedersen, et al. Multilevel Inverter by cascading industrial VSI. IEEE Transactions on Industrial Electronics,2002,49 (4):832-838
    [53]F. Z. Peng, J. S. Lai, J. W. McKeever, et al. A multilevel voltage-source inverter with separate DC sources for Static Var Generation. IEEE Transactions on Industry Applications,1996,32(5):1130-1138
    [54]M. Malinowski, K. Gopakumar, J. Rodriguez, et al. A survey on cascaded multilevel inverters. IEEE Transactions on Industrial Electronics,2010,57(7): 2197-2206
    [55]Y. Liang, C. O. Nwankpa. A new type of STATCOM based on cascading voltage-source inverters with phase-shifted unipolar SPWM. IEEE Transactions on Industry Applications,1999,35(5):1118-1123
    [56]A. Nabae, I. Takahashi, H. Akagi. A neutral-point clamped PWM inverter. IEEE Transactions on Industry Applications,1981,17(5):518-523
    [57]A. I. Alolah, L. N. Hulley, W. Shepherd. A three-phase neutral point clamped inverter for motor control. IEEE Transactions on Power Electronics,1988,3(4): 399-405
    [58]J. Rodriguez, Lai Jih-Sheng, F. Z. Peng. Multilevel Inverters:a Survey of Topologies, Controls, and Applications. IEEE Transactions on Industrial Electronics,2002,49(4):724-736
    [59]Bum-Seok SUH, Gautam SINHA, Madhav D. MANJREKAR, et al. Multilevel Power Conversion-An Overview of Topologies and Modulation Strategies. Optimization of Electrical and Electronic Equipments-Brasov,1998,11-24
    [60]H.-P. Krug, T. Kume, M. Swamy. Neutral point three-level general purpose inverter-Features, benefits and applications. Proc. IEEE PESC,2004,323-328
    [61]M. Malinowski, S. Stynski, W. Kolomyjski, et al. Control of three-level PWM converter applied to variable-speed-type turbines. IEEE Transactions on Industrial Electronics,2009,56(1):69-77
    [62]N. Y. Dai, M. C. Wong, Y. D. Han. Application of a three-level NPC inverter as a three-phase four-wire power quality compensator by generalized 3DSVM. IEEE Transactions on Power Electronics,2006,21(2):440-449
    [63]L. M. Tolbert, F. Z. Peng. Multilevel converters as a utility interface for renewable energy systems. Proc. IEEE Power Eng. Soc. Summer Meeting,2000, 1271-1274
    [64]G. Sinha, T. A. Lipo. A four-level rectifier/inverter system for drive applications. IEEE Transactions on Industry Applications,1998,6(1):66-74
    [65]N. Celanovic, D. Boroyevic. A fast space vector modulation algorithm for multilevel three-phase converters. IEEE Transactions on Industry Applications, 2001,37(2):637-641
    [66]J. Rodriguez, P. Correa, L. Moran. A vector control technique for medium voltage multilevel inverters. IEEE Transactions on Industrial Electronics,2002, 49(4):882-888
    [67]L. Li, D. Czarkowski, Y. Liu, et al, Multilevel selective harmonic elimination PWM technique in series-connected voltage inverters. IEEE Transactions on Industry Applications,2000,36(1):160-170
    [68]S. Sirisukprasert, J. S. Lai, T. H. Liu. Optimum harmonic reduction with a wide range of modulation indexes for multilevel converters. IEEE Transactions on Industrial Electronics,2002,49(4):875-881
    [69]F. Z. Peng, J. W. Mckeever, D. J. Adams. A power line conditioner using cascade multilevel inverters for distribution systems. IEEE Transactions on Industry Applications,1998,34(6):1293-1298
    [70]G. Sinia, T. A. Lipo. A four level inverter based drive with a passive front end. IEEE Transactions on Power Electronics,2000,15(2):285-294
    [71]H. S. Patel, R. G. Hoft. Generalized techniques of harmonic elimination and voltage control in thyristor inverter:Part Ⅰ-Harmonic elimination. IEEE Transactions on Industry Applications,1973,9(3):310-317
    [72]R. W. Menzies, P. Steimer, J. K. Steinke. Five-Level GTO Inverters for Large Inductor Motor Drives. IEEE Transactions on Industry Applications,1994,30 (4):938-943
    [73]G. Carrara, S. Gardella, M. Marchesoni, et al. A New Multilevel Method:A Theoretical Analysis. IEEE Transactions on Power Electronics,1992,7(3): 497-505
    [74]J. K. Sternke. Switching Frequency Optimal PWM Control of a Three-Level Inverter. IEEE Transactions on Power Electronics,1996,7(3):487-496
    [75]Leon M.Tolbert, Thomas G.Habetler. Novel Multilevel Inverter Carrier-Based PWM Method. IEEE Transactions on Industry Applications,1999,35(5): 1098-1107
    [76]王鸿雁,张超,王小峰等.基于控制自由度组合的多电平PWM方法及其理论分析.中国电机工程学报,2006,26(6):42-48.
    [77]B. P. McGrath, D. G. Holmes. An analytical technique for the determination of spectral components of multilevel carrier-based PWM methods. IEEE Transactions on Industrial Electronics,2002,49(4):847-857
    [78]B. P. McGrath, D. G. Holmes. Multicarrier PWM strategies for multilevel inverters. IEEE Transactions on Industrial Electronics,2002,49(4):858-867
    [79]李建林,林平,王长永.基于载波相移SPWM技术的电流型有源电力滤波器的研究.中国电机工程学报,2003,23(10):99-103
    [80]王立乔,齐飞.级联型多电平变流器新型载波相移SPWM研究.中国电机工程学报,2010,30(3):28-34
    [81]B. P. McGrath, D. G. Holmes, T. A. Lipo. Optimized space vector switching sequences for multilevel inverters. IEEE Proc. of APEC'01,2001,1123-1129
    [82]M. Manjrekar, G. Venkataramanan. Advanced topologies and modulation strategies for multilevel inverters. IEEE Proc. of PESC'96,1996,1013-1018
    [83]卢其威,王聪.五电平逆变器空间矢量欠调制模式的研究.电工技术学报,2005,20(4):83-88
    [84]L. G. Franquelo, M. A. M. Prats, R. C. Portillo, et al. Three dimensional space-vector modulation algorithm for four-leg multilevel converters using ABC coordinates. IEEE Transactions on Industrial Electronics,2006,53(2): 458-466
    [85]A. K. Gupta, A. M. Khambadkone. A general space vector PWM algorithm for multilevel inverters, including operation in overmodulation range. IEEE Transactions on Power Electronics,2007,22(2):517-526
    [86]A. Cataliotti, F. Genduso, A. Raciti, et al. Generalized PWM-VSI control algorithm based on a universal duty-cycle expression:Theoretical analysis, simulation results, and experimental validations. IEEE Transactions on Industrial Electronics,2007,54(3):1569-1580
    [87]M. A. S. Aneesh, A. Gopinath, M. R. Baiju. A simple space vector PWM generation scheme for any general n-level inverter. IEEE Transactions on Industrial Electronics,2009,56(5):1649-1656
    [88]J. I. Leon, S. Vazquez, R. Portillo, et al. Three-dimensional feedforward space vector modulation applied to multilevel diode-clamped converters. IEEE Transactions on Industrial Electronics,2009,56(1):101-109
    [89]A. Gopinath, A. S. A. Mohamed, M. R. Baiju. Fractal based space vector PWM for multilevel inverters-A novel approach. IEEE Transactions on Industrial Electronics,2009,56(4):1230-1237
    [90]O. Lopez, J. Alvarez, J. Doval-Gandoy, et al. Comparison of the FPGA implementation of two multilevel space vector PWM algorithms. IEEE Transactions on Industrial Electronics,2008,55(4):1537-1547
    [91]A. K. Gupta, A. M. Khambadkone. A space vector PWM scheme for multilevel inverters based on two-level space vector PWM. IEEE Transactions on Industrial Electronics,2006,53(5):1631-1639
    [92]J. Holtz. Pulsewidth modulation-A survey. IEEE Transactions on Industrial Electronics,1992,39(5):410-420
    [93]A. Yazdani, R. Iravani. An accurate model for the DC-side voltage control of the neutral point diode clamped converter. IEEE Transactions on Power Delivery,2006,21(1):185-193
    [94]M. Saeedifard, H. Nikkhajoei, R. Iravani. A Space Vector Modulated STATCOM Based on a Three-Level Neutral Point Clamped Converter. IEEE Transactions on Power Delivery,2007,22(2):1029-1039
    [95]张志,谢运祥,乐江源等.二极管钳位型单相三电平逆变器空间矢量脉宽调制方法.中国电机工程学报,2010,30(27):62-68
    [96]宋文祥.一种具有中点电位平衡功能的三电平空间矢量调制方法及其实现. 中国电机工程学报,2006,26(12):95-100
    [97]张晔,汤钰鹏,王文军.三电平逆变器空间矢量调制及中点电位平衡研究.电气传动.2010,40(2):33-36
    [98]王新宇,何英杰,刘进军.注入零序分量SPWM调制三电平逆变器直流侧中点电压平衡控制机理.电工技术学报.2011,26(5):70-77
    [99]赵辉,李瑞,王红君等.60。坐标系下三电平逆变器SVPWM方法的研究.中国电机工程学报,2008,28(24):39-45
    [100]O. Alonso, L. Marroyo, P. Sanchis, et.al. Analysis of neutral-point voltage balancing problem in three-level neutral-point-clamped inverters with SVPWM modulation. Industrial electronics society, IEEE 2002 28th annual conference 2002,2:920-925
    [101]N. Celanovic, D. Boroyevich. A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters. IEEE Transactions on Power Electronics,2000,15(2):242-249
    [102]A. K. Gupta, A. M. Khambadkone. A simple space vector PWM scheme to operate a three-level NPC inverter at high modulation index including overmodulation region with neutral point balancing. IEEE Transactions on Industry Applications,2007,43(3):751-760
    [103]O. Bouhali, B. Francois, E. M. Berkouk,et al. DC link capacitor voltage balancing in a three-phase diode clamped inverter controlled by a direct space vector of line-to-line voltages. IEEE Transactions on Power Electronics,2007, 22(5):1636-1648
    [104]金舜,钟彦儒,明正峰等.一种控制中点电位并消除窄脉冲的三电平PWM方法.中国电机工程学报,2003,23(10):114-118
    [105]J. Pou, J. Zaragoza, P. Rodriguez, et al. Fast-processing modulation strategy for the neutral-point-clamped converter with total elimination of low-frequency voltage oscillations in the neutral point. IEEE Transactions on Industrial Electronics,2007,54(4):2288-2294
    [106]S. Kouro, M. Malinowski, K. Gopakumar, et al. Recent advances and industrial applications of multilevel converters. IEEE Transactions on Industrial Electronics,2010,57(8):2553-2580
    [107]王广柱.二极管箝位式多电平逆变器直流侧电容电压不平衡机理的研究.中国电机工程学报,2002,22(12):111-117
    [108]C. Newton, M. Sumner. Novel technique for maintaining balanced internal DC link voltages in diode clamped five-level inverters. IEE Proc.-Electric Power Appl.,1999,146(3):341-349
    [109]H. Akagi, H. Fujita, S. Yonetani, et al. A 6.6-kV transformerless STATCOM based on a five-level diode-clamped PWM converter:system design and experimentation of a 200-V,10-kVA laboratory model. IEEE Transactions on Industry Applications,2008,44(2):672-680
    [110]A. Shukla, A. Ghosh, A. Joshi. Flying-Capacitor-Based Chopper Circuit for DC Capacitor Voltage Balancing in Diode-Clamped Multilevel Inverter. IEEE Transactions on Industrial Electronics,2010,57(7):2249-2261
    [111]A. Shukla, A. Ghosh, and A. Joshi. Control schemes for DC capacitor voltages equalization in diode-clamped multilevel inverter-based DSTATCOM. IEEE Transactions on Power Delivery,2008,23(2):1139-1149
    [112]Y. Chen, B. Mwinyiwiwa, Z. Wolanski, et al. Unified power flow controller (UPFC) based on chopper stabilized diode-clamped multilevel inverter. IEEE Transactions on Power Electronics,2000,15(2):258-267
    [113]K. Hasegawa, H. Akagi. A New DC-Voltage-Balancing Circuit Including a Single Coupled Inductor for a Five-Level Diode-Clamped PWM Inverter. IEEE Transactions on Industry Applications,2011,47 (2):841-852
    [114]K. Hasegawa, H. Akagi. Low-Modulation-Index Operation of a Five-Level Diode-Clamped PWM Inverter With a DC-Voltage-Balancing Circuit for a Motor Drive. IEEE Transactions on Power Electronics,2012,27(8):3495-3504
    [115]F. Z. Peng, J.-S. Lai, J. McKeever, et al. A multilevel voltage-source converter system with balanced DC voltages. Proc.26th Annu. IEEE Power Electron. Specialists Conf. (PESC),1995,2:1144-1150
    [116]Z. Pan, F. Z. Peng, K. A. Corzine, et al. Voltage balancing control of diode-clamped multilevel rectifier/inverter systems. IEEE Transactions on Industry Applications,2005,41(6):1698-1706
    [117]M. Marchesoni, P. Tenca. Diode-clamped multilevel converters:A practicable way to balance DC-link voltages. IEEE Transactions on Industrial Electronics, 2002,49(4):752-765
    [118]P. Tekwani, R. Kanchan, K. Gopakumar. Five-level inverter scheme for an induction motor drive with simultaneous elimination of common-mode voltage and DC-link capacitor voltage imbalance. IEE Proceedings Electric Power Applications,2005,152(6):1539-1555
    [119]H. Natchpong, Y. Kondo, H. Akagi, Five-level diode-clamped PWM converters connected back-to-back for motor drives. IEEE Transactions on Industry Applications,2008,44 (4):1268-1276
    [120]Z. Pan, F. Z. Peng. Harmonics optimization of the voltage balancing control for multilevel converter/inverter systems. IEEE Transactions on Power Electronics, 2006,21(1):211-218
    [121]T. Ishida, K. Matsuse, K. Sasagawa. Fundamental characteristics of five-level double converters with adjustable dc voltages for induction motor drives. IEEE Transactions on Industrial Electronics,2002,49(4):775-782
    [122]A. Yazdani, R. Iravani. Dynamic model and control of the NPC based back-to-back HVDC system. IEEE Transactions on Power Delivery,2006,21 (1):414-424
    [123]M. Chaves, E. Margato, J. F. Silva, et al. Fast optimum-predictive control and capacitor voltage balancing strategy for bipolar back-to-back NPC converters in high-voltage direct current transmission systems. IET Generation Transmission and Distribution,2011,5 (3):368-375
    [124]O. Bouhali, E. M. Berkouk, B. Francois, et al. Direct generalized modulation of electrical conversions including self stabilization of the DC-link for a single phase multilevel inverter based AC grid interface. Proc. IEEE 35th Annu. Power Electron. Specialists Conf. (PESC),2004,2:1385-1391
    [125]M. Calais, V. G. Agelidis. Multilevel converters for single-phase grid connected photovoltaic systems-An overview. Proc. IEEE ISIE,1998,1: 224-229
    [126]S. J. Watkins, J. Corda, L. Zhang. Multilevel asymmetric power converters for switched reluctance machines. Proc. Int. Conf. Power Electron., Mach. Drives, 2002,195-200
    [127]M. Batao, L. Congwei, Z. Yang, et al. New SVPWM control scheme for three-phase diode clamping multilevel inverter with balanced DC voltages. IEEE Power Electronics Specialists Conference,2002,2:903-907
    [128]S. Busquets Monge, S. Alepuz, J. Rocabert, et al. Pulsewidth modulations for the comprehensive capacitor voltage balance of n-level three-leg diode-clamped converters. IEEE Transactions on Power Electronics,2009,24(5): 1364-1375
    [129]李国丽,史晓锋,姜卫东等.二极管钳位型多电平逆变器脉宽调制时电容电压均衡方法.电工技术学报,2009,24(7):110-119
    [130]姜卫东,王群京,陈权等.二极管箱位型多电平逆变器全范围电容电压平衡的PWM调制方法.中国电机工程学报,2009,29(15):28-35
    [131]M. Marchesoni, M. Mazzucchelli, F.V.P.Robinson, et al. A minimum-energy-based capacitor voltage balancing control strategy for MPC conversion systems. Proc. IEEE ISIE' 99,1999,1:20-25
    [132]G. Sinha, T. Lipo, A four-level inverter based drive with a passive front end. IEEE Transactions on Power Electronics,2000,15(2):285-294
    [133]J. Pou, R. Pindado, D. Boroyevich. Voltage-balance limits in four-level diode-clamped converters with passive front ends. IEEE Transactions on Industrial Electronics,2005,52(1):190-196
    [134]M. Saeedifard, R. Iravani, J. Pou. Analysis and control of DC-capacitor-voltage-drift phenomenon of a passive front-end five-level converter. IEEE Transactions on Industrial Electronics,2007,54(6):3255-3266
    [135]S. A. Khajehoddin, A. Bakhshai, P, K. Jain. A simple voltage balancing scheme for m-level diode-clamped multilevel converters based on a generalized current flow model. IEEE Transactions on Power Electronics,2008,23(5):2248-2259
    [136]张永昌,赵争鸣.基于快速空间矢量调制算法的多电平逆变器电容电压平衡问题研究.中国电机工程学报,2006,26(18):71-76
    [137]洪春梅,王广柱.五电平逆变器直流侧电容电压的平衡与控制.电机与控制学报,2003,7(3):202-206
    [138]P. C. Krause, O. Wasynczuk. Analysis of Electric Machinery and Drive Systems,2nd edition, New York:IEEE Press/Wiley-Interscience,2002
    [139]J. Freeman, D. Skapura. Neural Networks Algorithms, Applications, and Pro-gramming Techniques. New York:Adison-Wesley,1992
    [140]M. Marchesoni, P. Tenca. Theoretical and Practical Limits in Multilevel MPC Inverters with Passive Front Ends. Proc.9th European Conf. Power Electronics, 2001,1-12
    [141]高跃,李永东.二极管钳位型五电平逆变器电容电压平衡域研究.电工技术学报,2008,23(1):77-83
    [142]F. Z. Peng, J. Lai. Dynamic performance and control of a static VAr generator using cascade multilevel inverters. IEEE Transactions on Industry Applications, 1997,33(3):748-755