义敦岛弧西侧金沙江中段韧性剪切带变形与变质作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金沙江韧性剪切带为一条宽60-80km的大型平移剪切带,在金沙江向两侧,变形强度逐渐变弱,金沙江北起玉树、经江达、巴塘、德钦后折入青藏高原,构造位置处于义敦岛弧带与羌塘地块之间。由于其独特的构造位置,金沙江地区变形和变质较复杂。通过野外和室内的研究得出以下结论:
     (1)金沙江韧性剪切带经历了三期主要变形和变质期次,D1期变形以透入性劈理的发育为特征,M1期变质形成十字石-蓝晶石带、铁铝榴石带,指示了华力西期金沙江俯冲碰撞地壳增厚的过程;D2期变形为褶劈理和鞘褶皱,M2期变质形成矽线石带,指示了印支期地壳增厚的快速减薄的过程;D3期变形为脆性断层,对应的M3期变质为区域性退变质,指示了喜马拉雅期印度板块与欧亚板块碰撞形成的。
     (2)P-T图显示十字石蓝晶石带到夕线石带呈降温降压的趋势,为顺时针的P-T轨迹。代表俯冲碰撞地壳增厚产生的中温高压变质作用和碰撞后地壳迅速减薄产生的中温低压变质作用的过程,中温低压变质事件叠加在早期的高压变质作用之上,这被看成是造山带增厚的伸展垮塌的结果。
     (3)运动学涡度为0.78-0.97,指示金沙江韧性剪切带的剪切类型为一般剪切,以简单剪切为主。
     (4)石英的运动学涡度指示本区岩石经历了从中温-中低温-低温的一系列韧性变形过程。所有样品均经历低温变形,与显微镜下矿物的普遍退变质一致。石英C轴结晶优选以中温和中低温最为明显。后期的低温变质变形叠加在早期的中温韧性变形之上。
The Jinshajiang ductile shear zone with width of60-80km has the component ofstrike-slip, located between the Yidun Arc and Qiangtang Block, at the northwestern Yunnanand western Sichuan provinces, SW China. This ductile shear zone along the SN-strikingJingshajiang Suture was produced by the closing of the Paleotethys Ocean in Late Permianto Triassic. Based on field investigation and indoor analysis, the conclusions are as follows:
     (1) The Jinshajiang ductile shear zone experienced3major deformational andmetamorphic events: D1and M1are penetrative foliation and bearing of staurolite-kyanite-almandine, which indicate the crustal thickening of subduction and collision duringthe Variscan; D2are crenulation cleavage and sheath fold, M2are sillimanite, whichindicates the crustal thinning during the Indosinian; D3and M3are brittle fault and regionalretrograde metamorphism, which were produced by the collision of the Indian and Tibetplateau.
     (2) P-T clockwise path show trend of cooling from staurolite and kyanite to almandine.The path represent process of the medium temperature and high pressure metamorphismproduced by the crustal thickening to the medium temperature and low pressuremetamorphism due to the crustal thinning, which is attributed to the collapse of the orogen.
     (3) The kinematics vorticity (Wk) is0.78to0.97, which shows Jinshajiang ductileshear zone are general shear with major component of simple shear.
     (4) The kinematics vorticity (Wk) based on the EBSD of quartz indicates theJinshajiang ductile shear experienced the shearing process of median to low temperature. Allsamples experiende the low temperature process is consistent with the retrogrademetamorphism observed in the microscope. The preferred orientation of the quartz C-axisare have the characteristics of median temperature obviously, which was overprinted by thelow temperature metamorphism.
引文
Blundy J. D.&Holland T. J. B. Calcic amphibole equilibria and a new amphibole-plagioclasegeothermometer. Contributions to Mineralogy and Petrology,1990,104:208-24.
    Bhadra S. and Bhattacharya A. The barometer tremolite+tschermakite+2albite=2pargasite+8quartz: constraints from experimental data at unit silica activity, with application to garnet-free naturalassemblages. American Mineralogist,2007,92:491–502
    Chang C. Geology and Tectonics of Qinghai–Xizang Plateau. Beijing: Science Press,1997.
    CalassouS. E′tude tectonique d’une chaine de de′collement-tectonique Triasique et Tertiaire de lachaine de Songpan Garze (Est Tibet):[Diplome de Doctorate], Montpellier: Universite′de Montpellier II,1994.
    Fry N. Random point distribution and strain measurements inrocks[J]. Tectonophysics,1979,60:89-105.
    Holdaway M. J. Application of new experimental and garnet Margules data to the garnet–biotitegeothermometer. American Mineralogist,2000,85,881–892.
    Holdaway,M.J.Recalibration of the GASP geobarometer in light of recent garnet and plagioclaseactivity models and versions of the garnet-biotite geothermometer,AMERICAN MINERALOGIST,2001,86,1117-1129.
    Holland T. J. B. and Blundy J. D. Non-ideal interactions in calcic-amphiboles and their bearing onamphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology,1994,116:433-447.
    Jessup M J, Law R D, Frassi C. T he Rigid Net (RGN): an alternative method for estimating meankinematic vorticity number(Wm)[J].Jour Struct Geol,2007,29:411-421.
    J.G Ramsay, M.I Huber,The Techniques of Modern Structural Geology, Volume1: Strain AnalysisAcademic Press, London (1983)
    Metcalfe I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys, in: Li, Z.X.,Metcalfe, I. and Powell, C.M.(Eds.), Breakup of Rodinia and Gondwanaland and Assembly of AsiaAustralian Journal of Earth Sciences,43(6). Blackwell, Melbourne, Victoria, Australia,1996,pp.605–623.
    Mo X. Deng J. and Lu F.1994. Volcanism and the evolution of Tethys in Sanjiang area, southwest earnChina, in: Metcalfe, I.(Ed.), Gondwana Dispersion and Asian Accretion; Proceedings of the First nationalSymposium, IGCP Project321Journal of Southeast Asian Earth Sciences,9(4). Pergamon, Oxford, UK,pp.325–333.
    Passchier C W. Analysis of deformation paths in shear zones[J]. Geologisch e Run dschau,1988,77:305-318
    Roger F, Arnaud N, Gilder S, et al. Geochronological and geochemical constraints on Mesozoicsuturing in East Central Tibet. Tectonics,2003,22:1037–1057
    Reid A. Fowler A. P. Phillips D. et al. Thermo chronology of the Yidun Arc, central eastern TibetanPlateau: constraints from40Ar/39Ar K-feldspar and apatite fission track data. Journal of Asian EarthSciences,2005,25:915-935.
    Truesdell C. The Kiematics of Vorticity. Bloomington. Indiana U niversity Press,1954
    Tikoff B, Fossen H. The limitations of three-dimensional kinematic vorticity analysis [J]. Jour StructGeol,1995,17:1771-1784
    Wu C. M. and Cheng B. H. Valid garnet-biotite (GB) geothermometry and garnet-aluminum silicate-
    plagioclase-quartz (GASP) geobarometry in metameplitic rocks. Lithos,2006,89:1-23.
    Wu C.M., Zhang J. and Ren L.D. Empirical Garnet-Biotite-Plagioclase-Quartz (GBPQ) geobarometryin medium-to high-grade metapelites. Journal of Petrology,2004,45:1904-1921.
    Wu C.M. and Zhao G.C.(2006) Recalibration of the garnet–muscovite (GM) geothermometer and thegarnet–muscovite–plagioclase–quartz (GMPQ) geobarometer for metapelitic assemblages. Journal ofPetrology,47(12):2357–2368
    Zhang J J, Zheng Y D. Polar Mohr constructions for strain analysis in general shear zones [J]. JourStruct Geol,1997,19:745-748.
    陈炳蔚,李永森,符振康,金沙江构造带及邻区的构造变形特征,1991,地1集,青藏高原地质文集.
    陈炳蔚,李永森,曲景川,王凯元,艾长兴,朱志直著,三江地区主要大地构造问题及其与成矿的关系,地质出版社.
    陈明,罗建宁.晚三叠世早期义敦前陆盆地的沉积特征与形成演化模式.沉积与特提斯地质,1999,23:108-120.
    戴宗明,孙传敏,松潘-甘孜造山带西部碰撞结合地古生代裂解史初探,西川地质学报,2009,29:1-7.,
    何龙清,金沙江造山带的大地构造环境及演化模式,现代地质,1998,12(2):185-190
    嵇少丞,部分熔融的构造地质意义(1):变形机制转变的实验研究[J],地质科学,1988,4:347-356.
    简平,汪啸风,何龙清,等.金沙江蛇绿岩中斜长岩和斜长花岗岩的U-Pb年龄及地质意义.岩石学报,1999,15(4):590-593
    李永森,陈炳蔚,怒江、澜沧江、金沙江地区构造与成矿作用,矿床地质,1991,10(4):289-298
    李三忠译,Michael Brown,造山带P-T-t演化及区域变质作用的起因,世界地质,1994,13(4):19-29
    莫宣学,潘桂堂,从特提斯到青藏高原形成:构造-岩浆事件的约束,地学前缘,2006,13(6):43-52
    三江地区主要大地构造问题及其与成矿的关系,陈炳蔚,李永森,曲景川,王凯元,艾长兴,朱志直著,地质出版社
    姚冬生,1982,三江弧形构造的特征及演化历史,青藏高原地质文集(12)-"三江"构造地质
    魏春景,2011,变质作用P-T-t轨迹的研究方法与进展,地学前缘,18(2):1-16
    张之孟,川西南乡城一得荣地区的两种混杂岩及其构造意义,地质科学,1979,第三期:205-214
    钟宏,徐士进,王汝成,建立P-T-t轨迹的矿物学方法,国外前寒武纪地质,1993,4:15-23
    郑亚东,王涛,张进江,2008,运动学涡度的理论与实践,月地学前缘(中国地质大学(北京);北京大学),15(3):209-220
    张进江,郑亚东.运动学涡度和极摩尔圆的基本原理与应用[J].地质科技情报,1997,16(3):33-39.
    张桂林,梁金城,冯佐海,2002,一般剪切带中运动学涡度的确定和构造意义,桂林工学院学报,22(2):99-103
    钟宏,徐士进,王汝成,建立P-T-t轨迹的矿物学方法,国外前寒武纪地质,1993,4:15-23