细胞网络和组织传感器及其在嗅觉时空信号分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物神经网络是一个由大量神经元高度组织、相互作用的庞大而复杂的系统,其神经元电活动具有明显的时空特性。从细胞网络或组织的层面分析多个神经元的电生理特征,对神经元网络的信息处理、传导等研究具有重要的意义。随着微电子微机械加工技术的发展,用于多通道同步测量的微电极阵列(microelectrode array, MEA)和场效应晶体管(field effect transistor, FET)阵列得到快速发展,在神经元网络的研究中具有明显优势。其中,利用MEA与多种细胞或组织结合构建的细胞网络或组织传感器得到了广泛的应用,已成为神经元网络时空信号分析的重要手段。
     在嗅觉的研究中,膜片钳记录技术和光学成像技术是目前主要的电生理检测手段。膜片钳技术不能实现多点同步测量,不利于神经元网络的时空特征分析。而光学成像技术对细胞具有毒性作用,不适合长时间的监测。因此,利用具有长时程、无损、多点同步采集特点的MEA芯片构建嗅觉细胞网络和组织传感器,对于嗅觉时空信息的获取与分析将具有重要的作用。本研究以离体的嗅觉细胞和组织为敏感元,通过MEA芯片构建细胞网络和组织传感器用于时空信号的分析,着重研究了嗅球切片各层的信号特征及功能。
     本论文的主要内容和贡献如下:
     1.深入研究了嗅觉细胞网络传感器,包括嗅上皮细胞网络传感器和嗅球细胞网络传感器。分析了乙酸、丁二酮和高K+作用下电生理响应的空间模式和时间特性,考察了嗅上皮细胞网络传感器的检测能力。结果表明,该细胞网络传感器能够有效区别不同条件下的刺激响应;嗅觉受体神经元对气味的响应具有一定的选择性。此研究为仿生电子鼻的开发和气味识别机制的探讨奠定了实验基础。利用嗅球神经元网络传感器对不同浓度谷氨酸(glumatic acid, Glu)作用下的电信号的特征进行了分析,发现Glu能够使嗅觉信号产生振荡和放大,这是气味识别、信息处理及时空编码的重要特征。
     2.利用心肌细胞自主节律性搏动特点,设计了基于离体心肌组织及其切片的传感器,实验发现延迟时间是心肌传导分析的重要指标。利用MEA多点同步采集的特点,考察了心血管药物(盐酸肾上腺素和氯化乙酰胆碱)在不同位置的作用效果,对临床靶向给药的组织传感器研究具有重要的意义。该研究为嗅球组织切片传感器的设计奠定了基础并提供了有效的方法。
     3.首次提出了基于嗅球组织切片的传感器的设计思想,分析了嗅球切片各层振荡信号特征和信息传导。根据嗅球形态和信号的空间分布特点,发现嗅觉信息在嗅球内由嗅神经层和突触小球层接收,经外丛层传递,由僧帽细胞层和颗粒细胞层输出。利用相关分析对Glu作用前后的响应进行时间和空间的特征分析,发现嗅球内各层之间存在一定的生物联系,存在Glu受体介导的突触连接。此外,分析结果还表明嗅球各层的信号具有不同的振荡频率。
Biological neural network is a huge and complicated system, which comprises abundant highly organized and interactional neurons. The neuronal electrical activities in the neural network take on distinctive spatio-temporal characteristics. Investigating the electrophysiological properties of multi-neurons in cell-networks or tissues is sig-nificant for the study of information processing and conduction in neural networks. With the development of micro-electro-mechanical systems (MEMS) technology, mi-croelectrode array (MEA) and field effect transistor (FET) array have developed rap-idly for their synchronously multi-channel measurement, presenting obvious advan-tages in the study of neural networks. Thereinto, the cell network- and tissue-based biosensors by combining multi-cells or tissues with MEA have gained extensive ap-plication, and become the important technique for spatio-temporal analysis of neuronal signals.
     In usual olfaction study, patch clamp recoding technique and optic imaging tech-nique are the primary electrophysiological measurement methods. Patch clamp tech-nique is not convenient for spatio-temporal analysis of neural network for it can not realize synchronous multi-site measurement. While, optic imaging technique has tox-icity on cells, so it is not fit for long-term measurement. With the characteristics of long-term, scatheless and synchronous multi-site measurement, MEA is used to build up the olfactory cell network- or tissue-based biosensors, which are of great impor-tance for acquiring and analyzing the olfactory spatio-temporal information. In the present study, using in vitro olfactory neurons and tissues as the sensing elements, we developed the cell network-based and tissue-based biosensors with MEA to investigate the spatio-temperal characteristics of cell networks and tissues, principally analyze the signals detected from each layer of the olfactory bulb.
     The major contents and contributions of this thesis are as follows:
     1. We profoundly studied the olfactory epithelium cell network-based and olfac- tory bulb cell network-based biosensor. With the spatio-temporal characteristics of electrophysiological under acetic acid, butanedione and high K+ stimulation analyzed, the detecting capability of the olfactory epithelium cell network-based biosensor was investigated. Results indicate that this cell network-based biosensor can distinguish the responses under different conditions and olfactory receptor neurons selectively re-sponse to odors. This research provides the experimental basis for designing the elec-tronic nose and exploring the odor discrimination mechanism. Using the OB neu-ron-based biosensor, we investigated the neural signal characteristics in the presence of different dosages of glutamic acid (Glu). Results showed that Glu can make the olfac-tory signals oscillate and amplify, which are the important characteristics of odor dis-crimination and signal processing.
     2. Due to self-beating of cardiomyocytes, we designed in vitro cardiac tis-sue-based biosensor. It was found that delay time is the important parameter of cardiac propagation analysis. Because MEA can realize multi-site synchronous measurement, we reviewed the action of cardiovascular drugs at different positions. This research is very significant to study novel tissue-based biosensor for target-administrating in clinic. This research provided the basis and effective method for designing the OB slice-based biosensor. In addition, the difference and characteristics of the cardiac tissue-based biosensor and the OB slice-based biosensors were also presented in the present thesis.
     3. An OB slice-based biosensor was developed for the first time, which is used to analyze the oscillation signals and information conduction in the each layer of the OB slice. According to mordality of OB and spacial distribution of signals, we found that the olfactory information was received in olfactory nerve layer (ONL) and glomerulus layer (GL), and transferred to mitral cell layer (MCL) and granule cell layer (GCL) through external plexiform layer (EPL), and then output from MCL and GCL. With cross-correlation analysis, we investigated the spatio-temporal characteristics of the responses before and after using Glu, and found that some biological contacts and synapses mediated by Glu receptor maybe exist between layers of OB slice. Moreover, results showed that different frequency oscillation appeared in the different layers of OB slice, which contains signal temporal property.
引文
Ache B W, Young J M. Olfaction:Diverse species, conserved principles. Neuron,2005, 48(3):417-430.
    Aroniadou-Anderjaska V, Ennis M, Shipley M T. Glomerular synaptic responses to olfactory nerve input in rat olfactory bulb slices. Neuroscience,1997,79(2):425-434.
    Barry P H. The relative contributions of cAMP and InsP3 pathways to olfactory responses in verte-brate olfactory receptor neurons and specificity of odorants for both pathways. The Journal of General Physiology,2003,122(3):247-250.
    Beshel J, Kopell N, Kay L M. Olfactory bulb gamma oscillations are enhanced with task demands. The Journal of Neuroscience,2007,27(31):8358-8365.
    Bonifazi P, Ruaro M E, Torre V. Statistical properties of information processing in neuronal net-works. Eur J Neurosci,2005,22:2953-2964.
    Bressler S L. Spatial organization of eegs from olfactory bulb and cortex. Electroencephalography and clinical Neurophysiology,1984,57(3):270-276.
    Buck L, Axel R. A novel multigene family may encode odorant receptors:A molecular basis for odor recognition. Cell,1991,65(1):175-187.
    Eeckman F H, Freeman W J. Correlations between unit firing and EEG in the rat olfactory system. Brain Res.,1990,528:238-244.
    Figueroa X A, Cooksey G A, Votaw S V, Horowitz L F, Folch A. Large-scale investigation of the olfactory receptor space using a microfluidic microwell array. Lab on a Chip,2010, 10:1120-1127.
    Fromherz P, Offenhausser A, Vetter T, Weis J. A neuron-silicon junction:A Retzius cell of the leech on an insulated-gate field effect transistor. Science,1991,252(5010):1290-1293.
    Gross G W, Rhoades B K, Azzazy H M E, Wu M-C. The use of neuronal networks on multielec-trode arrays as biosensors. Biosensors and Bioelectronics,1995,10:553-567.
    Gross G W, Williams A N, Lucas J H. Recording of spontaneous activity with photoetched micro-electrode surfaces from mouse spinal neurons in culture. J. Neurosci. Meth.,1982,5:13-22.
    Hafeman D G, Parce J W, McConnell H W. Light addressable potentiometric sensor for bio-chemical system. Science,1988,240:1182-1185.
    Heuschkel M O, Fejtl M, Raggenbass M, Bertrand D, Renaud P. A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J Neurosci Methods,2002,114(2):135-148.
    Hofmann F, Bading H. Long term recordings with microelectrode arrays:Studies of transcrip-tion-dependent neuronal plasticity and axonal regeneration. J Physiol Paris,2006, 99(2-3):125-132.
    Horton P M, Bonny L, Nicol A U, Kendrick K M, Feng J F. Applications of multi-variate analysis of variance (MANOVA) to multi-electrode array electrophysiology data. Journal of Neurosci-ence Methods,2005,146:22-41.
    Hutzler M, Fromherz P. Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus. Eur J Neurosci,2004,19:2231-2238.
    Jacobi S, Moses E. Variability and corresponding amplitudevelocity relation of activity propagating in one-dimensional neural cultures. J Neurophysiol,2007,97:3597-3606.
    Jimbo Y, Tateno T, Robinson H P C. Simultaneous induction of pathway-specific potentiation and depression in networs of cortical neurons. Biophsical Journal,1999,76:670-678.
    Karnup S V, Hayar A, Shipley M T, Kurnikova M G. Spontaneous field potentials in the glomeruli of the olfactory bulb:the leading role of juxtaglomerular cells. Neuroscience,2006,142(1): 203-221.
    Keller A, Yagodin S, Aroniadou-Anderjaska V, Zimmer L A, Ennis M, Sheppard N F, Shipley M T. Functional organization of rat olfactory bulb glomeruli revealed by optical imaging. The Journal of Neuroscience,1998,18(7):1602-2612.
    Kurahashi T, Shibuya T. Ca2+-dependent adaptive properties in the solitary olfactory receptor cell of the newt. Brain Res.,1990,515:261-268.
    Lagier S, Carleton A, Lledo P M. Interplay between local GABAergic interneurons and relay neu-rons generates gamma oscillations in the rat olfactory bulb. The Journal of Neuroscience,2004, 24(18):4382-4392.
    Liu Q, Ye W, Xiao L, Du L, Hu N, Wang P. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens Bioelectron,2010, 25:2212-2217.
    Marom S, Shahaf G. Development, learning and memory in large random networks of cortical neurons:lessons beyond anatomy. Quarterly Reviews of Biophysics,2002,35:63-87.
    Meister M, Pine J, Baylor D A. Multi-neuronal signals from the retina:acquisition and analysis. J Neurosci Methods,1994,51(1):95-106.
    Muramoto K, Kato M, Matsuoka M, Kuroda Y, Ichikawa M. A primary culture system of rat olfac-tory bulb forming many synapses similar to intact ones and spontaneously generating syn- chronous intracellular calcium oscillation. Anat Embryol,2001,203:9-21.
    Oka H, Shimono K, Ogawa R, Sugihara H, Taketani M. A new planar multielectrode array for ex-tracellular recording:application to hippocampal acute slice. J Neurosci Methods,1999, 93(1):61-67.
    Pasquale V, Massobrio P, Bologna L L, Chiappalone M, Martinoia S. Self-organization and neu-ronal avalanches in networks of dissociated cortical neurons. Neuroscience,2008, 153:1354-1369.
    Rennaker R L, Chen C-F F, Ruyle A M, Sloan A M, Wilson D A. Spatial and Temporal Distribution of Odorant-Evoked Activity in the Piriform Cortex. The Journal of Neuroscience,2007, 27(7):1534-1542.
    Schild D, Restrepo D. Transduction mechanisms in vertebrate olfactory receptor cells. Physiologi-cal Reviews,1998,78(2):429-466.
    Senseman D M. High-speed optical imaging of afferent flow through rat olfactory bulb slices: voltage-sensitive dye signals reveal periglomerular cell activity. The Journal of Neuroscience, 1996,16(1):313-324.
    Shahaf G, Marom S. Learning in networks of cortical neurons. The Journal of Neuroscience,2001, 21(22):8782-8788.
    Stett A, Mai A and Herrmann T. Retinal charge sensitivity and spatial discrimination obtainable by subretinal implants:key lessons learned from isolated chicken retina. Journal of Neural Engi-neering,2007,4:s7-s 16.
    Uve L, Strowbridge B W, De Curtis M. Olfactory bulb networks revealed by lateral olfactory tract stimulation in the in vitro isolation guinea-pig brain. Neuroscience,2006,142:567-577.
    Wang P, Xu G, Qin L, Xu Y, Li Y, Li R. Cell-based biosensors and its application in biomedicine. Sensors and Actuators B,2005,108:576-584.
    Xiao L, Hu Z, Zhang W, Wu C, Wang P. Evaluation of doxorubicin toxicity on cardiomyocytes us-ing a dual functional extracellular biochip. Biosensors and Bioelectronics,2010, 26(4):1493-1499.
    Xu G, Ye X, Qin L, Xu Y, Li Y, Li R, Wang P. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosensors and Bioelectronics,2005, 20:1757-1763.
    Ache B W, Young J M. Olfaction:Diverse species, conserved principles. Neuron,2005, 48(3):417-430.
    Arevian A C, Kapoor V, Urban N N. Activity-dependent gating of lateral inhibition in the mouse olfactory bulb. Nature Neuroscience,2008 11:80-87.
    Aroniadou-Anderjaska V, Ennis M, Shipley M T. Glomerular synaptic responses to olfactory nerve input in rat olfactory bulb slices. Neuroscience,1997,79(2):425-434.
    Aungst J L, Heyward P M, Puche A C, Karnup S V, Hayar A, Szabo G, Shipley M T. Cen-tre-surround inhibition among olfactory bulb glomeruli. Nature,2003,426:623-629.
    Bailey M S, Puche A C, ShipleyM T. Development of the olfactory bulb:evidence for glia-neuron interactions in glomerular formation. The Journal of Comparative Neurology,1999, 415:423-448.
    Bayer S A.3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp. Brain Res.,1983,50:329-340.
    Beierlein M, Gibson J R, Connors B W. A network of electrically coupled interneurons drives syn-chronized inhibition in neocortex. Nature Neuroscience,2000,3:904-910.
    Beshel J, Kopell N, Kay L M. Olfactory bulb gamma oscillations are enhanced with task demands. The Journal of Neuroscience,2007,27(31):8358-8365.
    Boccaccio A, Menini A. Temporal development of cyclic nucleotide-gated and Ca2+ activated Cl-currents in isolated mouse olfactory sensory neurons. Journal of Neurophysiology,2007,98(1): 153-160.
    Bressler S L. Spatial organization of eegs from olfactory bulb and cortex. Electroencephalography and clinical Neurophysiology,1984,57(3):270-276.
    Bruch R C. Phosphoinositide second messengers in olfaction. Comparative Biochemparative and Physiology Part B:Biochenmistry and Molecular Biology,1996,113(3):451-459.
    Chaigneau E, Tiret P, Lecoq J, Ducros M, Knopfel T, Charpak S. The relationship between blood flow and neuronal activity in the rodent olfactory bulb. The Journal of Neuroscience,2007, 27(24):6452-6460.
    Condorelli D F, Parenti R, Spinella F, Salinaro A T, Belluardo N, Cardile V, Cicirata F. Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. European Jour-nal of Neuroscience,1998,10(3):1202-1208.
    De Saint Jan D, Hirnet D, Westbrook G L, Charpak S. External tufted cells drive the output of ol-factory bulb glomeruli. J Neurosci.,2009,29(7):2043-2052.
    Dryer L, Berghard A. Odorant receptors:A plethora of G-proteincoupled receptors. Trends Phar-macol Sci,1999,20(10):413-417.
    Eeckman F H, Freeman W J. Correlations between unit firing and EEG in the rat olfactory system. Brain Res.,1990,528:238-244.
    Ennis M, Zhu M, Heinbockel T, Hayar A. Olfactory nerve-evoked, metabotropic glutamate recep-tor-mediated synaptic responses in rat olfactory bulb mitral cells. J Neurophysiol,2006,95: 2233-2241.
    Ennis M, Zimmer L A, Shipley M T. Olfactory nerve stimulation activates rat mitral cells via NMDA and non-NMDA receptors in vitro. NeuroReport.1996,7(5):989-992.
    Fell J, Klaver P, Lehnertz K, Grunwald T, Schaller C, Elger C E, Fernandez G. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nature Neurosci-ence,2001,4:1259-1264.
    Friedman D, Strowbridge B W. Both Electrical and Chemical Synapses Mediate Fast Network Os-cillations in the Olfactory Bulb. Journal of Neurophysiology,2003,89:2601-2610.
    Gall C, Sumikawa K, Lynch G. Regional dustribution of mRNA for a putative kainate receptor in rat brain. European Journal of Pharmacology:Molecular Pharmacology,1990, 189(2-3):217-221.
    Gire D H, Schoppa N E. Control of on/off glomerular signaling by a local GABAergic microcircuit in the olfactory bulb. The Journal of Neuroscience,2009,29(43):13454-13464.
    Gire D H, Schoppa N E. Long-term enhancement of synchronized oscillations by adrenergic re-ceptor activation in the olfactory bulb. Journal of Neurophysiology,2008,99:2021-2025.
    Gong Q, Shipley M T. Evidence that pioneer olfactory axons regulate telencephalon cell cycle ki-netics to induce the formation of the olfactory bulb. Neuron,1995,14:91-101.
    Greer C A. Structural organization of the olfactory system. In:Smell and Taste in Health and Dis-ease. (eds:Getchell T V, Doty R L, Bartoshuk L M and Snow Jr J B). New York:Raven, 1991:65-81.
    Heinbockel T, Laaris N, Ennis M. Metabotropic glutamate receptors in the main olfactory bulb drive granule cell-mediated inhibition. Journal of Neurophysiology,2007,97:858-870.
    Hengl T, Kaneko H, Dauner K, Vocke K, Frings S, Mohrlen F. Molecular components of signal amplification in olfactory sensory cilia. PNAS,2010,107(13):6052-6057.
    Hormuzdi S G, Pais I, LeBeau F E, Towers S K, Rozov A, Buhl E H, Whittington M A, Monyer H. Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron,2001,31:487-495.
    Jimenez D, Garcia C, de Castro F, Chedotal A, Sotelo C, De Carlos J A, Valverde F, Lo-pez-Mascaraque L. Evidence for intrinsic development of olfactory structures in Pax-6 mutant mice. The Journal of Comparative Neurology,2000,428:511-526.
    Johson B A, Leon M. Chemotopic odorant coding in a mammalian olfactory system. The Journal of Comparative Neurology,2007,503:1-34.
    Kanaki K, Kawashima S, Kashiwayanagi M, Kurihara K. Carnosine-induced inward currents in rat olfactory bulb neurons in cultures slices. Neuronscience Letters,1997,231(3):167-170.
    Kay L M. Theta oscillations and sensorimotor performance. PNAS,2005,102(10):3863-3868.
    Kevin R N, Haberly L B. Beta and gamma oscillations in the olfactory system of the ure-thane-anesthetized rat. J Neurophysiol,2003,90:3921-3930.
    Kosaka K, Kosaka T. Organization of the main olfactory bulbs mammals:musk shrews, moles, hedgehogs, tree shrews, bats, mice, and rats. The Journal of Comparative Neurology,2004, 472(1):1-12.
    Lagier S, Carleton A, Lledo P M. Interplay between local GABAergic interneurons and relay neu- rons generates gamma oscillations in the rat olfactory bulb. The Journal of Neuroscience,2004, 24(18):4382-4392.
    Laurent G, Stopfer M, Friedrich R W, Rabinovich M I, Volkovskii A, Abarbanel H D I. Odor en-coding as an active, dynamical process:experiments, computation, and theory. Annu. Rev. Neurosci.,2001,24(l):263-297.
    Laurent G. Olfactory network dynamics and the coding of multidimensional signals. Nature,2002, 3:884-895.
    Liu Q, Ye W, Xiao L, Du L, Hu N, Wang P. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosensors and Bioelectronics, 2010,25:2212-2217.
    Lledo P-M, Gheusi G, Vincent J D. Information processing in the mammalian olfactory system. Physiology Review,2005,85(1):281-317.
    Lopez-Mascaraque L, De Carlos J A, Valverde F. Early onset of the rat olfactory bulb projections. Neuroscience,1996,70(1):255-266.
    Lopez-Mascaraque L, De Castro F. The olfactory bulb as an independent developmental domain. Cell Death and Differentiation,2002,9(12):1279-1286.
    Lowe G, Gold G H. Nonlinear amplification by calciumdependent chloride channels in olfactory receptor cells. Nature,1993,366:283-286.
    Lowe G. Electrical signaling in the olfactory bulb. Current Opinion in Neurobiology,2003, 13(4):476-481.
    Lucero M T, Horrigan F T, Gilly W M F. Electrical responses to chemical stimulation of squid ol-factory receptor cells. Journal of Experimental Biology,1992,162:231-249.
    Luskin M B, Price J L. The distribution of axon collaterals from the olfactory bulb and the nucleus of the horizontal limb of the diagonal band to the olfactory cortex demonstrated by double retrograde labeling techniques. The Journal of Comparative Neurology,1982,209(3):249-263.
    Macrides F, Chorover S L. Olfactory bulb units:activity correlated with inhalation cycles and odors quality. Science,1972,175:84-87.
    Margrie T W, Schaefer A T. Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. J. Physiol.,2003,546(2):363-374.
    Michel W C, McClintock T S, Ache B W. Inhibition of lobster olfactory receptor cells by an odor-activated potassium conductance. Journal of Neurophysiology,1991,65(3):446-453.
    Miragall F, Simburger E, Dermietzel R. Mitral and tufted cells of the mouse olfactory bulb possess gap junctions and express connexin43 mRNA. Neuroscience Letters,1996,216(3):199-202.
    Montague A A, Greer C A. Differential localization of ionotropic glutamate receptor subunits in the developing rat olfactory bulb. The Journal of Comparative Neurology,1999,405(2):233-246.
    Morales B, Labarca P, Bacigalupo J. A ciliary K+ conductance sensitive to charybdotoxin underlies inhibitory responses in toad olfactory receptor neurons. FEBS Lett.,1995,359(1):41-44.
    Morales B, Ugarte G, Labarca P, and Bacigalupo J. Inhibitory K+ current activated by odorants in toad olfactory neurons. Proceedings:Biological Sciences,1994,257(1350):235-242.
    Mori K, Nagao H, Yoshihara Y. The olfactory bulb:coding and processing of odor molecule infor-mation. Science,1999,286(5440):711-715.
    Nakamura T. Cellular and molecular constituents of olfactory sensation in vertebrates. Comparative Biochemistry Physiology A:Molecular & Integrative Physiology,2000,126(1):17-32.
    Nickell W T, Shipley M T. Neurophysilogy of the olfactory bulb. In Science of Olfaction (eds: Serby M J and Chobor K L), New York:Springer-Verlag,1992,172-212.
    Nusser Z, Kay L M, Laurent G, Homanics GE, Mody I. Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. J. Neurophysiol.,2001,86:2823-2833.
    Paternostro M A, Reyher C K, Brunjes P C. Intracellular injections of lucifer_yellow_into lightly fixed mitral cells reveal neuronal dye-coupling in the developing rat olfactory bulb. Develop-mental Brain Research,1995,84(1):1-10.
    Pifferi S, Dibattista M, Sagheddu C, Boccaccio A, Qteishat A A, Ghirardi F, Tirindelli R, Menini A. Calcium-activated chloride currents in olfactory sensory neurons from mice lacking bestro-phin-2. The Journal Physiology,2009,587(17):4265-4279.
    Reisert J, Bauer P J, Yau K-W, Frings S. The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J. Gen. Physiol.,2003,122(3):349-363.
    Ressler K, Sullivan S, Buck L. Information coding in the olfactory system:Evidence for a stereo-typed and highly organization epitope map in the olfactory bulbibid. Cell,1994, 79:1245-1255.
    Reuter D, Zierold K, Schroder W H, Frings S. A depolarizing chloride current contributes to chemoelectrical transduction in olfactory sensory neurons In Situ. The Journal of Neurosci-ence,1998,18(17):6623-6630.
    Reyher C K, Lubke J, Larsen W J, Hendrix G M, Shipley M T, Baumgarten HG. Olfactory bulb granule cell aggregates:morphological evidence for interperikaryal electrotonic coupling via gap junctions. Journal of Neuroscience,1991,11:1485-1495.
    Ribary U, loannides A A, Singh K D, Hasson R, Bolton J P, Lado F, Mogilner A, Llinas R. Mag-netic field tomography of coherent thalamocortical 40-Hz oscillations in humans. PNAS,1991, 88:11037-11041.
    Roskams A J, Cai X, Ronnett G V. Expression of neuron-specific beta-Ⅲ tubulin during olfactory neurogenesis in the embryonic and adult rat. Neuroscience,1998,83:191-200.
    Sanes J N, Donoghue J P. Oscillations in local field potentials of the primate motor cortex during voluntary movement. PNAS,1993,90:4470-4474.
    Sanhueza M, Schmachtenberg O, Bacigalupo J. Excitation, inhibition, and suppression by odors in isolated toad and rat olfactory receptor neurons. Am. J. Physiol. Cell Physiol.,2000, 279(1):C31-C39.
    Schild D, Restrepo D. Transduction mechanisms in vertebrate olfactory receptor cells. Physiologi-cal Reviews,1998,78(2):429-466.
    Schoppa N E. Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs. Neuron,2006,49(2):271-283.
    Schwob J E, Price J L. The development of axonal connections in the central olfactory system of rats. The Journal of Comparative Neurology,1984,223(2):177-202.
    Shepherd G M, Chen W R, Willhite D, Migliore M, Greer C A. The olfactory granule cell:from classical enigma to central role in olfactory processing. Brain Research Reviews,2007, 55(2):373-382.
    Soucy E R, Albeanu D F, Fantana A L, Murthy V N, Meister M. Precision and diversity in an odor map on the olfactory bulb. Nature Neuroscience,2009,12:210-220.
    Sullivan S L, Dryer L. Information processing in mammalian olfactory system. J. Neurobiol.,1996, 30(1):20-36.
    Sullivan S L, Ressler K, Buck L. Spatial patterning and inform action coding in the olfactory sys-tem. Curt Op Genet Devel,1995,5:516-523.
    Trombley P Q, Westbrook G L. Voltage-Gated Currents in Identified Rat Olfactory Receptor Neu-rons. The Journal of Neuroscience,1991, 11(2):435-444.
    Urban N N. Lateral inhibition in the olfactory bulb and in olfaction. Physiology and Behavior,2002, 77(4-5):607-612.
    Vogler C, Schild D. Inhibitory and excitatory responses of olfactory receptor neurons of Xenopus leavis t adpoles to stimulation with amino acids. J. Exp. Biol.,1999,202(8):997-1003.
    Yokoi M, Mori K, Nakanishi S. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. PNAS,1995,92(8):3371-3375.
    Zhang C and Restrepo D. Expression of connexin 45 in the olfactory system. Brain Research,2002, 929(1):37-47.
    李文琪,范少光.嗅觉研究进展.生理科学进展,2006,37(1):83-96.
    Borkholder D A. Cell based biosensors using microelectrodes [博士学位论文]. USA, Stanford University:1998:51-53.
    Buitenweg J R, Rutten W L C, Marani E. Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode. IEEE Trans. Biomed. Eng.,2005, 50:501-509.
    Chen P, Liu X, Wang B, Cheng G, Wang P. A biomimetic taste receptor cell-based biosensor for electrophysiology recording and acidic sensation. Sensors and Actuators B:chemical,2009, 139(2):576-583.
    Chu H-Y, Kuo T-Y, Chang B, Lu S-W, Chiao C-C, Fang W. Design and fabrication of novel three-dimensional multi-electrode array using SOI wafer. Sensors and Actuators A,2006, 130-131:254-261.
    Egert U, Heck D, Aertsen A. Two-dimensional monitoring of spiking networks in acute brain slices. Exp. Brain Res.,2002,142(2):268-274.
    Fromherz P, Stett A. Silicon-neuron junction:capacitive stimulation of an individual neuron on a silicon chip. Phy. Rev. Lett,1995,75(8):1670-1673.
    Fromherz P. Sheet conductor model of brain slices for stimulation and recording with planar elec-tronic contacts. EurB.phys. J.,2002,31:228-231.
    Heuschkel M O, Fejtl M, Raggenbass M, Bertrand D, Renaud P. A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J Neurosci Methods,2002,114(2):135-148.
    Hofmann F, Bading H. Long term recordings with microelectrode arrays:Studies of transcrip-tion-dependent neuronal plasticity and axonal regeneration. J Physiol Paris,2006, 99(2-3):125-132.
    Hutzler M, Fromherz P. Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus. Eur J Neurosci,2004,19:2231-2238.
    Isik S, Berdondini L, Oni J, Blochl A, Koudelka-Hep M, Schuhmann W. Cell-compatible array of three-dimensional tip electrodes for the detection of nitric oxide release. Biosensors and Bio-electronics,2005,20:1566-1572.
    Koo K, Chung H, Yu Y, Seo J, Park J, Lim J-M, Paik S-J, Park S, Choi H-M, Jeong M-J, Kim G S, Cho D-I D. Fabrication of pyramid shaped three-dimensional 8×8 electrodes for artificial retina. Sensors and Actuators A,2006,130-131:609-615.
    Liu Q, Ye W, Xiao L, Du L, Hu N, Wang P. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens Bioelectron,2010, 25:2212-2217.
    Meister M, Pine J, Baylor D A. Multi-neuronal signals from the retina:acquisition and analysis. J Neurosci Methods,1994,51(1):95-106.
    Offenhausser A, Sprossler C, Matsuzawa M, Knoll W. Field-effect transistor array for monitoring electrical activity from mammalian neurons in culture. Biosensor and Bioelectronics,1997, 12(8):819-826.
    Oka H, Shimono K, Ogawa R, Sugihara H, Taketani M. A new planar multielectrode array for ex-tracellular recording:application to hippocampal acute slice. Journal of Neuroscience Meth-ods,1999,93:61-67.
    Sui W M, Cobbold R S C. Basic properties of the electrolyte-SiO2-Si system:physical and theo-retical aspects. IEEE Transactions on Electron Devices,1979, ED-26(11):1805-1815.
    Taketani M, Baudry M. Advances in Network Electrophysiology Using Multi-Electrode Arrays. Springer,2006.
    Thiebaud P, Beuret C, Koudelka-Hep M, Bove M, Martinoia S, Grattarola M, Jahnsen H, Rebaudo R, Balestrino M, Zimmer J, Dupont Y. An array of Pt-tip microelectrodes for extracellular monitoring of activity of brain slices. Biosensors & Bioelectronics,1999,14:61-65.
    Wu C, Chen P, Yu H, Liu Q, Zong X, Cai H, Wang P. A novel biomimetic olfactory-based biosensor for single olfactory sensory neuron monitoring. Biosensors and Bioelectronics,2009, 24(5):1498-1502. Selected Papers from the 10th World Congress on Biosensors Shangai, China, May 14-16,2008.
    Yeung C K, Ingebrandt S, Krause M, Offenhausser A, Knoll W. Validation of the use of field effect transistors for extracellular signal recording in pharmacological bioassays. Journal of Phar-macological and Toxicological Methods,2001,45:207-214.
    Barbara G S, Rybak C Z J, Gauthier M, Grunewald B. Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A,2005,191:823-836.
    Bressler S L. Spatial organization of eegs from olfactory bulb and cortex. Electroencephalography and clinical Neurophysiology,1984,57(3):270-276.
    Chen P, Liu X, Wang B, Cheng G, Wang P. A biomimetic taste receptor cell-based biosensor for electrophysiology recording and acidic sensation. Sensors and Actuators B:chemical,2009, 139(2):576-583.
    Ennis M, Zhu M, Heinbockel T, Hayar A. Olfactory nerve-evoked, metabotropic glutamate recep-tor-mediated synaptic responses in rat olfactory bulb mitral cells. J Neurophysiol,2006,95: 2233-2241.
    Fedirchuk B,Wenner P, Whelan P J, Ho S, Tabak J, O'Donovan M J. Spontaneous network activity transiently depresses synaptic transmission in the embryonic chick spinal cord. Journal of Neuroscience,1999,19(6):2102-2112.
    Friedman D, Strowbridge B W. Both Electrical and Chemical Synapses Mediate Fast Network Os-cillations in the Olfactory Bulb. Journal of Neurophysiology,2003,89:2601-2610.
    Gire D H and Schoppa N E. Long-Term Enhancement of Synchronized Oscillations by Adrenergic Receptor Activation in the Olfactory Bulb. J Neurophysiol.2008,99:2021-2025.
    Gross G W. Internal dynamics of randomized mammalian neuronal networks in culture. In:Ena-bling Technologies for Cultured Neural Networks.D.A. Stenger & T.M. McKenna (eds.). Aca-demic Press, NY,1994:277-317.
    Hardy A, Palouzier-Paulignan B, Duchamp A, Royet J-P, Duchamp-Viret P.5-Hydroxytryptamin action in the rat olfactory bulb:in vitro electrophysiological patch-clamp recordings of jux-taglomerular and mitral cells. Neuronscience,2005,131:717-731.
    Hegg C C, Lucero M T. Dopamine reduces odor- and elevated-K+- induced Calcium responses in mouse olfactory receptor neurons in Situ. J Neurophysiol,2004,91:1492-1499.
    Heinbockel T, Laaris N, Ennis M. Metabotropic glutamate receptors in the main olfactory bulb drive granule cell-mediated inhibition. Journal of Neurophysiology,2007,97:858-870.
    Ismail A B M, Yoshinobu T, Iwasaki H, Sugihara H, Yukimasa T, Hirata I, Iwata H. Investigation on light-addressable potentiometric sensor as a possible cell-semiconductor hybrid. Biosensors and Bioelectronics,2003,18:1509-1514.
    Lagier S, Carleton A, Lledo P M. Interplay between local GABAergic interneurons and relay neu-rons generates gamma oscillations in the rat olfactory bulb. The Journal of Neuroscience,2004, 24(18):4382-4392.
    Latham P E, Richmond B J, Nirenberg S, Nelson P G. Intrinsic dynamics in neuronal networks Ⅱ. Experiment. Journal of Neurophysiology,2000,83:828-835.
    Liu Q, Ye W, Xiao L, Du L, Hu N, Wang P. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens Bioelectron,2010, 25:2212-2217.
    Lledo P-M, Gheusi G, Vincent J D. Information processing in the mammalian olfactory system. Physiology Review,2005,85(1):281-317.
    Lowe G. Electrical signaling in the olfactory bulb. Current Opinion in Neurobiology,2003, 13(4):476-481.
    Maher M P, McKinney S. Careful control of osmolarity and pH enhances survival in hippocampal cultures. Soc Neurosci Abstr,1995,21:229.13.
    Meister M, Wong R O L, Baylor D A, Shatz C J. Synchronous bursts of action potentials in gan-glion cells of the developing mammalian retina. Science,1991,252(5008):939-943
    Pasquale V, Massobrio P, Bologna L L, Chiappalone M, Martinoia S. Self-organization and neu-ronal avalanches in networks of dissociated cortical neurons. Neuroscience,2008, 153:1354-1369.
    Potter and DeMarse. A new approach to neural cell culture for long-term studies. Journal of Neu-roscience Methods,2001,110:17-24.
    Ressler K, Sullivan S, Buck L. Information coding in the olfactory system:Evidence for a stereo-typed and highly organization epitope map in the olfactory bulbibid. Cell,1994, 79:1245-1255.
    Schoppa N E. Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs. Neuron,2006,49(2):271-283.
    Segev R, Benveniste M, Hulata E, Cohen N, Palevski A, Kapon E, Shapira Y, Jacob E B. Long term behavior of lithographically prepared in vitro neuronal networks. Phys. Rev. Lett.,2002, 88(11):118102-1-4.
    Selvakumaran J, Hughes M P, Keddie J L, Ewins D J. Assessing biocompatibility of materials for implantable microelectrodes using cytotoxicity and protein adsorption studies.2 & Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Bi- ology May 24,2002, Madison, Wisconsin USA
    Yokoi M, Mori K, Nakanishi S. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. PNAS,1995,92(8):3371-3375.
    Youngentob S L, Mozell M M, Sheehe P L, Hornung D E. A quantitative analysis of sniffing strate-gies in rats performing odor detection tasks. Physiology & Behaviour,1987,14(1):59-69.
    Aroniadou-Anderjaska V, Ennis M, Shipley M T. Glomerular synaptic responses to olfactory nerve input in rat olfactory bulb slices. Neuroscience,1997,79(2):425-434.
    Beshel J, Kopell N, Kay L M. Olfactory bulb gamma oscillations are enhanced with task demands. The Journal of Neuroscience,2007,27(31):8358-8365.
    Beuerman R W. Slow potentials of the turtle olfactory bulb in response to odor stimulation of the nose. Brain Research,1975,97(1):61-78.
    Bressler S L. Spatial organization of eegs from olfactory bulb and cortex. Electroencephalography and clinical Neurophysiology,1984,57(3):270-276.
    Cang J, Isaacson J S. In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. The Journal of Neuroscience,2003,23(10):4108-4116.
    Chen C, Chen L, Lin Y, Zeng S, Luo Q. The origin of spontaneous synchronized burst in cultured neuronal networks based on multi-electrode arrays. BioSystems,2006,85:137-143.
    Chiappalone, M., Bove, M., Vato, A., Tedesco, M., Martinoia, S. Dissociated cortical networks show spontaneously correlated activity parrerns during in vitro development. Brain Res.,2006, 1093(1):41-53.
    De Saint Jan D, Westbrook G.L. Detecting activity in olfactory bulb glomeruli with astrocyte re-cording. J Neurosci., 2005,25(11):2917-2924.
    Duchamp A. Electrophysiological responses of olfactory bulb neurons to odour stimuli in the frog. A comparison with receptor cells. Chemical Senses,1982,7(2):191-210.
    Eeckman F H, Freeman W J. Correlations between unit firing and EEG in the rat olfactory system. Brain Res.,1990,528:238-244.
    Ennis M, Zhu M, Heinbockel T, Hayar A. Olfactory nerve-evoked, metabotropic Glutamate Re-ceptor-mediated synaptic responses in rat olfactory bulb mitral cells. J Neurophysiol.,2006, 9(4):2233-2241.
    Eytan D, Minerbi A, Ziv N, Marom S. Dopamine-induced dispersion of correlations between action potentials in networks of cortical neurons. J. Neurophysiol.,2004,92(3):1817-1824.
    Fahrenbach J P, Ai X, Banach K. Decreased intercellular coupling improves the function of cardiac pacemakers derived from mouse embryonic stem cells. Journal of Molecular and Cellular Cardiology,2008,45:642-649.
    Fantana A L, Soucy E R, Meister M. Rat olfactory bulb mitral cells receive sparse glomerular in-puts. Neuron,2008,509:802-814.
    Fedirchuk B., Wenner P., Whelan P.J., Ho S., Tabak J., O'Donovan M.J. Spontaneous network activity transiently depresses synaptic transmission in the embryonic chick spinal cord. The Journal of Neuroscience,1999,19 (6):2102-2112.
    Friedman D, Strowbridge B W. Both Electrical and Chemical Synapses Mediate Fast Network Os-cillations in the Olfactory Bulb. Journal of Neurophysiology,2003,89:2601-2610.
    Galan, R.F., Fourcaud-Trocme, N., Ermentrout, G.B., Urban, N.N. Correlation-induced synchroni-zation of oscillations in olfactory bulb neurons. The Journal of Neuroscience,2006, 26(14):3646-3655.
    Gire D H, Schoppa N E. Long-term enhancement of synchronized oscillations by adrenergic re-ceptor activation in the olfactory bulb. Journal of Neurophysiology,2008,99:2021-2025.
    Hannes T, Halbach M, Nazzal R, Frenzel L, Saric T, Khalil M, Hescheler J, Brockmeier K, Pillekamp F. Biological pacemakers:characterization in an in vitro coculture model. Journal of Electrocardiology,2008,41:562-566.
    Harris K.D., Hirase H., Leinekugel X., Henze D.A., Buzsaki G. Temporal interaction between sin-gle spikes and complex spike bursts in hippocampal pyramidal cells. Neuron,2001, 32:141-149.
    Heinbockel, T., Laaris, N., Ennis, M. Metabotropic Glutamate Receptors in the main olfactory bulb drive granule cell-mediated inhibition. Journal of Neurophysiology,2007,97(1):858-870.
    Josephson E M, Yilma S, Vodyanoy V, Morrison E E. Structure and function of long-lived olfactory organotypic cultures from postnatal mice. Journal of Neuroscience Research,2004, 75(5):642-653.
    Kanaki K, Sato K, Kashiwayanagi M. Functional synapse formation between rat olfactory receptor neurons and olfactory bulb neurons in vitro. Neuruoscience Letters,2000,285(1):76-78.
    Karnup S V, Hayar A, Shipley M T, Kurnikova M G Spontaneous field potentials in the glomeruli of the olfactory bulb:the leading role of juxtaglomerular cells. Neuroscience,2006, 142(1):203-221.
    Kay L M. Theta oscillations and sensorimotor performance. Proc. Natl. Acad. Sci. USA.2005, 102:3863-3868
    Keller A, Yagodin S, Aroniadou-Anderjaska V, Zimmer L A, Ennis M, Sheppard N F Jr, Shipley M T. Functional organization of rat olfactory bulb glomeruli revealed by optical imaging. The Journal of Neuroscience,18(7):2602-2612.
    Krahe R., Gabbiani F. Burst firing in sensory systems. Nat. Rev. Neuronsci.,2004,5:1-11.
    Lagier S, Carleton A, Lledo P M. Interplay between local GABAergic interneurons and relay neu-rons generates gamma oscillations in the rat olfactory bulb. The Journal of Neuroscience,2004, 24(18):4382-4392.
    Lam Y W, Cohen L B, Wachowiak M, Zochowski M R. Odors elicit three different oscillations in the turtle olfactory bulb. The Journal of Neuroscience,2000,20(2):749-762.
    Latham P E, Richmond B J, Nelson P G, Nirenberg S. Intrinsic dynamics in neuronal networks Ⅱ. Theory J. Neurophysiol.,2000b,83:808-827.
    Latham P E, Richmond B J, Nirenberg S, Nelson P G. Intrinsic dynamics in neuronal networks II. Exp. J. Neurophysiol.,2000a,83:828-835.
    Liu Q, Ye W, Xiao L, Du L, Hu N, Wang P. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens. Bioelectron.,2010, 25(10):2212-2217.
    Macrides F, Chorover S L. Olfactory bulb units:activity correlated with inhalation cycles and odors quality. Science,1972,175:84-87.
    Margrie T W, Schaefer A T. Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. J. Physiol.,2003,546(2):363-374.
    O'Donovan M. J. The origin of spontaneous activity in developing networks of the vertebrate nerv-ous system. Curr. Opin. Neurobiol.,1999,9:94-104.
    Pijnappels D A, Schalij M J, Ramkisoensing A A, van Tuyn J, de Vries A A F, van der Laarse A, Ypey D L, Atsma D E. Forced Alignment of Mesenchymal Stem Cells Undergoing Cardio-myogenic Differentiation Affects Functional Integration With Cardiomyocyte Cultures. Circu-lation Research,2008,103(2):167-176.
    Pijnappels D A, Schalij M J, van Tuyn J, Ypey D L, de Vries A A F, van der Wall E E, van der Laarse A, Atsma D E. Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling. Cardiovascular Research,2006,72: 282-291.
    Pijnappels D A, van Tuyn J, de Vries A A F, Grauss R W, van der Laarse A, Ypey D L, Atsma D E, Schalij M J. Resynchronization of separated rat cardiomyocyte fields with genetically modi-fied human ventricular scar fibroblasts. Circulation,2007,116:2018-2028.
    Pillekamp F, Reppel M, Brockmeier K, Hescheler J. Impulse propagation in late-stage embryonic and neonatal murine ventricular slice. Journal of Electrocadiology,2006,39(425):el-e4.
    Pillekamp F, Reppel M, Dinkelacker V, Duan Y, Jazmati N, Bloch W, Brockmeier K, Hescheler J, Fleischmann B K, Koehling R. Establishment and Characterization of a Mouse Embryonic Heart Slice Preparation. Cell Physiol Biochem,2005 15:1-6.
    Scheidweiler U, Nezlin L, Rabba J, Muller B, Schild D. Slice culture of the olfactory of Xenopus laevis tadpoles. Chememical Senses,2001,26(4):399-407.
    Segev R, Benveniste M, Hulata E, Cohen N, Palevski A. Long term behavior of lithographically prepared in vitro neuronal networks. Phys. Rev. Lett.,2002,88 (11):118102-1-4.
    Segev R, Goodhouse J, Puchalla J, Berry M J. Recording spikes from a large fraction of the gan-glion cells in a retinal patch. Nat. Neurosci.,2004,7(10):1155-1162.
    Takayama Y, Moriguchi H, Kotani K, Jimbo Y. Spontaneous calcium transients in cultured cortical networks during development. IEEE Transactions on Biomedical engineering,2009, 56(12):2949-2956.
    Yuan Q, Knopfel T. Olfactory nerve stimulation-evoked mGluRl slow potentials, oscillations, and calcium signaling in mouse olfactory bulb mitral cells. Journal of Neurophysiology,2006, 95(5):3097-3104.
    段亚琦,唐明,梁华敏,Hescheler J.微电极矩阵研究小鼠胚胎心脏电生理活动.生理学报,2006,58(1):65-70.
    刘清君,蔡华,徐莹,李燕,李蓉,王平.心肌搏动细胞传感器及其在药物分析中的应用.浙江大学学报:工学版,2007,41(5):742-745.
    热依兰·艾沙,侯月梅.微电极阵列技术在大鼠心脏组织电生理特性研究的应用.新疆医科大学学报,2007,30(11):1254-1257.
    Heuschkel M O, Fejtl M, Raggenbass M, Bertrand D, Renaud P. A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J Neurosci Methods,2002,114(2):135-148.
    Hofmann F, Bading H. Long term recordings with microelectrode arrays:Studies of transcrip-tion-dependent neuronal plasticity and axonal regeneration. J Physiol Paris,2006, 99(2-3):125-132
    Josephson E M, Yilma S, Vodyanoy V, Morrison E E. Structure and function of long-lived olfactory organotypic cultures from postnatal mice. Journal of Neuroscience Research,2004, 75(5):642-653.
    Liu Q, Ye W, Xiao L, Du L Hu N, Wang P. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosensors and Bioelectronics, 2010,25:2212-2217.
    Koo K, Chung H, Yu Y, Seo J, Park J, Lim J-M, Paik S-J, Park S, Choi H M, Jeong M-J, Kim G S, Chu D-I D. Fabrication of pyramid shaped three-dimensional 8×8 electrodes for artifical ret-ina. Sensors and Actuators A,2006,130-131:609-615.
    Youngentob S L, Mozell M M, Sheehe P L, Hornung D E. A quantitative analysis of sniffing strate-gies in rats performing odor detection tasks. Physiology & Behaviour,1987,14(1):59-69.