基于LCA的低碳建筑评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化、城市化进程的加快,在经济全球化和环境恶化全球化的双重背景下,能源技术向低碳、无碳化方向发展的趋势势必日益增强。建筑领域产生的CO_2在全社会CO_2排放总量中所占的比例达30%以上,“低碳建筑”等新兴名词随着低碳经济的兴起,逐步从概念层面深入到具体实践。据国家发展与改革委员会能源研究所研究,目前工业部门是对节能减排贡献最大的领域,但2020年以后,随着人们生活水平的提高以及消费结构的变化,建筑与交通领域贡献度开始加强,到2050年,建筑节能贡献率将超过工业和交通领域,位居首位,减排贡献率居第三位。此外,相比工业产品达到10%至20%的减碳效果的大挑战、高投入,建筑通过加强围护结构设计的合理性,结合建筑节能与循环减排技术,减碳更容易实现且效果十分显著,可轻松实现50%至60%的减碳效果。
     所谓基于LCA(Life Cycle Assessment)的低碳建筑,是指从建筑项目的设计、建材生产与施工、使用直至拆除等过程中,也即在其整个生命周期内,以向生物圈排放最少的CO_2为重要评价准则的建筑。结合无锡市低碳城市调研之建筑领域的相关数据,本文基于生命周期评价理论与技术框架,以办公建筑为例,对建筑各个阶段的能耗特点进行系统的定量分析与评价,考虑我国建筑LCA的基础数据现状及特殊性,建立了建筑全生命周期碳排放计算方法,部分建立了建筑阶段性每计量单位的环境影响清单数据库,为建筑全生命周期碳排放评价提供数据支持;构建单体建筑全生命周期碳排放数学模型及运营使用阶段能耗的人工神经网络计算机模型,将日照时长及气温等气候环境因素,室温、照度、风速等室内环境因素与建筑能耗建立关联,为建筑全生命周期低碳前预测评价奠定量化计算和模型构建的基础;运用层次分析法构建建筑全生命周期低碳评价体系,提出包含前预测评价与后统计评价两个层面的建筑低碳“双LCA”评价模型,在科学量化低碳指标的基础上,结合三类社会属性的评价指标,保证了评价体系的完整性和结果的合理性。最后本文确定建筑全生命周期每个阶段的低碳角色责任,从而识别低碳建筑发展中面临的困难与挑战,提出了低碳建筑市场发展的激励政策,为其发展路径的选择及政策的科学决策提供理论依据。
As the acceleration of industrialization and urbanization, low-carbon energy technologies and carbon-free trend are bound to increase in the dual context of economic globalization and environmental degradation. The proportion of CO_2 generated by the construction sector in the whole society is more than 30%,"low-carbon buildings"are in-depth step by step from concept to concrete practice with the rise of low-carbon economy. According to the study by National Development and Reform Commission, the industrial sector is currently the greatest contribution to the field of energy saving. But after 2020, with the improvement of living standards and changes in consumption structure, the contribution of architecture and transport sector begins to strengthen.By 2050, the energy saving contribution rate of architecture will exceed transportation and industries, ranking the first, the third highest contribution rate in emissions reduction. In addition, compared to challenge and high investment to reduce the carbon by 10% to 20% from industrial products, from buildings it can be easily achieve 50% to 60% by strengthening the rationality of the envelope design, energy conservation and recycling and emission reduction technologies.
     The so-called low-carbon buildings based on LCA (Life Cycle Assessment), is the building taking the lowest CO_2 emissions throughout their life cycle including design, materials production, construction, operation until the removal process as an important evaluation criterion. Combined with the construction sector-related research data of a low-carbon city of Wuxi, this paper takes office building for example and analyses and evaluates the energy consumption of buildings in various stages of the quantitative characteristics based on life cycle assessment theory and framework; Considering the status and specificity of basis of LCA data in architecture, establishes the building life cycle carbon emissions calculation method for carbon emissions data support; Builds single building life cycle emissions model and energy consumption of artificial neural network computer model in use phase, creatively associating the sunshine duration, temperature and other climatic and environmental factors, temperature, illumination, wind speed and other indoor environmental factors and building energy consumption, and lays the basis for the quantify of predicted assessment method; Builds a low-carbon building life cycle assessment model by AHP, creatively proposes evaluation including before-prediction and after-statistics evaluation of low-carbon building"double LCA"evaluation model, scientific quantizes low-carbon indexes, combined with the three types of social property indicators, to ensure the integrity of the evaluation system and reasonability of results. Finally, it determines buildings low-carbon life-cycle roles and responsibilities at each stage to identify the development facing difficulties and challenges, proposed the market incentives for development of low-carbon building which provide a theoretical basis for choice of development path and scientific decision-making of policies.
引文
[1]国家发展和改革委员会能源研究所.中国2050年低碳发展之路[M].北京:科学出版社,2009. 60-65,96-119
    [2]Ove Arup Partnership. Building Design for Energy Economy[M].London:TheConstruction Press,1980.26-41
    [3]Dennis R,Landsverg,Ronald Steward.Improving Energy Efficiency in Buildings[M].Albany:State University of New York Press,1980.42-50
    [4]PWOcallaghan.Building for Energy Conservation[M].Florida:Pergamon Press,1978.31-39
    [5]涂逢祥.建筑节能经济技术政策研究[M].北京:中国建筑工业出版社,1991.39-56
    [6]赵婧.大型公共建筑节能诊断与评价技术体系研究[D]:[博士学位论文].天津:天津大学,2009
    [7]龙惟定,潘毅群,范存养.上海公共建筑能耗现状及节能潜力分析[J].暖通空调,1998,28(6):9-16
    [8]武海斌.北京市城市居民家用空调器耗电量的调查研究[J].暖通空调新技术,2000(2):50-59
    [9]张蓓红,陆善后,倪德良.建筑能耗统计模式与方法研究[J].建筑科学,2008,24(8):17-28
    [10]Irene Martini,Carlos Discoli,Elias Rosenfeld.Methodology developed for the energy-productive diagnosis and evaluation in health buildings[J].Energy and Buildings,2007,39(6):719-734
    [11]Philip CHYu,WKChow.A discussion on potentials of saving energy use for commercial buildngs in Hong Kong[J].Energy,2007,32(2):80-98
    [12]RZmeureanu,CPeragine.Evaluation of interactions between lighting and HVAC systems in a large commercial building[J].Energy Conversion and Management,1999,40(11):1221-1239
    [13]李路明.国外绿色建筑评价体系略览[J].世界建筑,2002(5):69-74
    [14]刘君怡.夏热冬冷地区低碳住宅技术策略CO_2减排效用研究[D]:[博士学位论文].武汉:华中科技大学,2010
    [15]顾道金.建筑环境负荷的生命周期评价[D]:[博士学位论文].北京:清华大学,2005
    [16]黄志甲.建筑物能量系统生命周期评价模型与案例研究[D]:[博士学位论文].上海:同济大学,2003
    [17]张又升.建筑物生命周期二氧化碳减量评估[D]:[博士学位论文].台湾:台湾成功大学,2003
    [18]董长虹.Matlab神经网络与应用[M].北京:国防工业出版社,2005.79-103
    [19]日本建筑学会.建筑环境管理[M].北京:中国电力出版社,2009.77-93
    [20]潘世伟.上海资源环境发展报告2010低碳城市[M].北京:社会科学文献出版社,2010.195-231
    [21]清家刚,秋元孝之.可持续性住宅建设[M].北京:机械工业出版社,2008.48-56,89-133,192-201
    [22]黄献明.绿色建筑的生态经济优化问题研究[D]:[博士学位论文].北京:清华大学,2006
    [23]魏小清.基于生命周期理论的大型公共建筑能耗分析与评价[D]:[硕士学位论文].长沙:湖南大学,2010
    [24]陈伟坷,罗方.基于全生命周期理论的建筑能耗问题研究[J].建筑科学,2008,24(10):23-27
    [25]杨倩苗.建筑产品的全生命周期环境影响定量评价[D]:[博士学位论文].天津:天津大学,2009
    [26]董娴,王起伟.建筑围护结构节能分析[J].制冷与空调,2010,24(5):94-96
    [27]孙小燕.谈建筑设计中的采光和日照及通风问题[J].山西建筑,2010,36(12):27-29
    [28]谷立静.基于生命周期评价的中国建筑行业环境影响研究[D]:[博士学位论文].北京:清华大学,2009
    [29]Lawrence Berkeley National Laboratory,university of Illinois,university of California.EnergyPlus1.1.0 Manual[M].California:LBNL in Berkeley,2003.102-136
    [30]Vishwanath PR Gresham’s law[J].Current Science,2000,79(4):397-399
    [31]Betul Bektas Ekici,U Teoman Aksoy.Prediction of building energy consumption by using artificial neural networks[J].Advances in Engineering Software, 2009,40(5):356-362
    [32]孔祥娟.绿色建筑和低能耗建筑设计实例精选[M].北京:中国建筑工业出版社,2008.113-137
    [33]施骞.工程项目可持续建设与管理[M].上海:同济大学出版社,2007.49-56,66-73,105-120
    [34]张志强,曲建升等.温室气体排放科学评价与减排政策[M].科学出版社,2009.41-50
    [35]曹瑞钰.环境经济学与循环经济[M].化学工业出版社,2006.56-63
    [36]Woolley,T, Kimmis,S.绿色建筑手册2[M].北京:机械工业出版社,2005.17-29,49-56
    [37]郑照宁.用鱼骨图与层次分析法结合进行企业诊断[J].中国软科学,2001(1):118-120
    [38]陈文宇,刘井波,孙世新.层次分析的神经网络集成方法[J].电子科技大学学报,2008,37(3):432-435
    [39]黄贤金.区域循环经济发展评价[M].北京:社会科学文献出版社,2006.38-62
    [40]李国勇.智能预测控制及其Matlab实现[M].北京:电子工业出版社,2010.60-65,75-104
    [41]朱明明.基于模糊层次分析法的工程项目风险评估[J].科技管理研究,2010(20):214-217
    [42]武田艳,何芳.可持续性住宅全生命周期的节能研究[J].工业建筑,2008,38(3):39-41
    [43]龙惟定.建筑能耗比例与建筑节能目标[J].中国能源,2005,27(10):23-27
    [44]崔江涛.我国建筑节能政策绩效评价研究[D]:[硕士学位论文].南京:南京航空航天大学,2008
    [45]中国城市科学研究会.中国低碳生态城市发展战略[M].北京:中国城市出版社,2009.528-571
    [46]Melek Yalcintas.Energy-saving predictions for building-equipment retrofits[J]. Energy and Buildings,2008,40(12):71-82
    [47]杨茜,章易.我国发展绿色建筑任重道远[J].中国住宅设施,2006(2):27-29
    [48]罗璋.公共建筑能源管理系统模型探讨[D]:[硕士学位论文].天津:天津大学,2006
    [49]孙世朋,赵德生.建筑业可持续发展的思考[J].经济研究导刊,2008(S):228-229
    [50]杨芳.建筑业可持续发展评价方法研究[D]:[硕士学位论文].大连:大连理工大学,2009