餐厨垃圾分散式现场处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展和人们生活水平的提高,餐厨垃圾在城市生活垃圾中的比例越来越大。餐厨垃圾中有机物和水分含量高,若不经过合理处置会给周围的环境卫生和人身健康造成严重危害。目前,国内外实际应用的餐厨垃圾集中处理技术主要包括填埋、焚烧、堆肥、粉碎、饲料化和厌氧消化技术,与其它技术相比,厌氧消化处理技术具有减少处理量、回收清洁能源和残余物制备有机复混肥等优点,它符合节能减排、清洁生产和循环经济等和谐处理技术的要求,能实现真正意义上的垃圾无害化、减量化、资源化。但由于餐厨垃圾原料的特殊性,研究其厌氧发酵关键参数对于餐厨垃圾厌氧消化系统的正常启动和稳定运行十分重要。
     本文在借鉴前人研究的基础之上对餐厨垃圾厌氧发酵关键技术问题进行试验研究,为实现分散餐厨垃圾的厌氧消化处理提供基础技术支撑。论文试验主要分为接种物驯化、新鲜餐厨垃圾厌氧发酵和风干餐厨垃圾厌氧发酵三部分,在接种物的驯化试验中,研究了不同来源、不同驯化方式对接种物的影响;在新鲜餐厨垃圾厌氧发酵试验中,通过正交试验研究了接种率、含水率、温度、搅拌因素对厌氧发酵过程的影响,对参数进行了试验研究与优化;在风干餐厨垃圾厌氧发酵试验中,研究了接种率、含水率对厌氧发酵过程的影响。论文的主要研究内容与结论有:
     (1)通过收集、阅读大量的国内外文献的相关资料,对目前餐厨垃圾在全球范围的产生量、处理状况、处理技术现状做了比较全面的概述和总结,针对厌氧发酵技术的机理和影响因素也做了详细的总结。
     (2)通过对厌氧发酵接种物的驯化研究发现,不同来源、不同驯化方式对接种物最终效果有很大的影响。试验结果表明:经驯化后的污泥菌群呈分散分布,且形状单一;以每天添加餐厨垃圾20 g,连续投加20 d的驯化方式最好,且以厌氧发酵池内的污泥最为明显,产甲烷活性达到0.406 LCH_4/(gVSS·d),活性等级为优。
     (3)在厌氧发酵过程中,与新鲜餐厨垃圾相比,风干餐厨垃圾更具有优势,能有效地缓解酸化初期的酸中毒现象。全部厌氧发酵试验前后TN明显提高,COD去除率最高可达91.8%,系统碱度提高25%以上,使得系统有较高的缓冲能力。
     (4)适宜的接种率和搅拌频率有利于细菌和微生物的生长,若过多不仅增加成本、降低处理效率,而且还可能影响厌氧发酵的进行。接种率为55%时,只有在含水率为92%、温度为55℃条件下才能实现厌氧发酵顺利进行,其余条件均无法实现。低固体含量较易实现厌氧发酵,无论是新鲜餐厨垃圾还是风干餐厨垃圾,固体含量为16%时,只有在接种率为75%条件下才能顺利实现厌氧发酵。
     (5)通过正交试验,得出对于新鲜餐厨垃圾的厌氧发酵系统而言,接种率为75%、含水率为92%、搅拌为2次/d、温度为55℃是最优试验组合。
     (6)在整个试验过程中发现,pH值是厌氧消化过程中一个重要的控制参数,它的大小及其稳定性对产气效果有很大影响,因此对厌氧消化过程中的最佳pH值进行预测并进行有效控制至关重要。
With the development of society and improvement of people's living standards, the proportion of food waste in municipal solid waste increases fast. The food waste, without appropriate treatment to the relative high organic substance and moisture content, will make serious threat to both environment and human health. Nowadays, there are many technologies applied to treat the food waste at home and abroad, including landfill, incineration, compost, comminution, feed and anaerobic digestion. However, compared with other technologies, the technology of anaerobic digestion, which accords with the demand of harmonious treatment technology in circular economy, including energy saving, emission reduction, and cleaner production, and will realize harmless, reduction, recycling to the waste, have many advantages, such as reducing treatment capacity, recycling clean energy, making organic compound fertilizer, etc. Moreover, due to the special components of food waste, it is very important to study the key parameter of anaerobic digestion for the normal start-up and stable operation in food waste anaerobic digestion system.
     This thesis, at the basis of previous researches, mainly studied the key parameters of food waste anaerobic digestion, to provide the basic technical support to deal with the treatment of the decentralized food waste in anaerobic digestion. Three main tests were carried out in the study, including the test of domestication inoculum that studied the effect of different sources and domestication ways to the inoculum, the test of fresh food waste anaerobic digestion that studied the effect of inoculation rate, moisture content, temperature, stir factor on anaerobic digestion process by oethogonal and optimized the parameters, and the test of air-dried food waste anaerobic digestion, which investigated the effect of inoculation rate and moisture content on anaerobic digestion proces. The main content and conclusions includes:
     (1) Comprehensive overview and summary of production, treatment status and technology about global food waste, at the basis of collecting and reading literature at home and abroad, was stated in this thesis. The mechanism and influencing factors about technology of anaerobic digestion was also summarized in detail.
     (2) The result of domestication inoculum test showed that different sources and ways of domestication had a great effect on the final status of the inoculum. Moreover, the bacteria flora in domesticated sludge was distributed dispersedly with single shape, and the best way of domestication, which making the activity of methanogenic reached optimal level at 0.406LCH_4/(gVSS·d), was to continuously add food waste 20g per day for 20 days, taking sludge from anaerobic digestion tank as inoculum.
     (3) In the process of anaerobic digestion, the obvious advantage of air-dried food waste, compared with fresh food waste, was that it could effectively alleviate the acidosis at the initial acidification phase. It was found that TN had obviously increased, the highest rate of COD removal reached 91.8%, and the alkalinity had been improved to more than 25%, which made the system a higher buffer capacity.
     (4) It was found that suitable inoculation rate and stir frequency were favorable to the growth of mushroom, and the overabuandance might increase the cost, reduce the efficiency of treatment, and even effect the process of anaerobic digestion. If the inoculation rate was 55%, the process of anaerobic digestion, only with the moisture content at 92% and temperature at 55℃, could operate normally. In addition, no matter the food waste was fresh or air-dried, of which the low solid content could goes well while the high content were more inclined to get acidified. When the solid content was 16%, anaerobic digestion system with inoculation rate at 75% only could operate normally.
     (5) The orthogonal test showed that the optimal combination, in the fresh food waste anaerobic digestion system, was inoculation rate at 75%, moisture content at 92%, stir frequency at twice per day, temperature at 55℃.
     (6) During the study, it was found that pH, whose value and stabilization had a significant influence on the methane production, was an important parameter that needs to be predicted, controlled to get the optimal value in the process of anaerobic digestion.
引文
[1]鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000
    [2]曹先艳,袁玉玉,赵由才,李明,牛东杰.添加剂对餐厨垃圾厌氧发酵产氢的影响.环境污染与防治,2007,29(6):426-429
    [3]陈坚.环境生物技术.北京:中国轻工业出版社,1999
    [4]陈建乐.一种餐厨有机垃圾生物处理方法.中国专利,CN1480267.2004-03-10
    [5]陈金钟,邬苏焕,宋兴福.泔脚与秸杆混合发酵法生产蛋白饲料的新工艺流程.上海环境科学,2003,22(12):998-1000
    [6]陈朱蕾,周传斌,刘婷,江娟,曹丽,吕志中,李希望,黎小保.厌氧一好氧生物反应器填埋工艺特性研究.环境科学,2007,28(4):891-896
    [7]丛者禹.厌氧微生物的营养元素.环境科学动态,2000,2:31
    [8]崔亚伟,陈金发.厨余垃圾的资源化现状及前景展望.中国资源综合利用,2006,24(10):31-32
    [9]郝冬青,郝勇,范群,王向健.利用餐饮废物生产蛋白饲料.环境保护科学,2003,29(117):31-32
    [10]何品晶,邵立明.固体废物管理.北京:高等教育出版社,2004
    [11]贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1998
    [12]胡贵平,杨万,张广裕.国内主要城市厨余垃圾处理进展.城市管理与科技,2006,8(6):267-272
    [13]胡纪萃.废水厌氧生物处理理论与技术.北京:中国建筑工业出版社,2003
    [14]霍维周,丁雪梅.蚯蚓处理垃圾及产业化问题的探讨.城市管理与科技,2002,4(1):16-18
    [15]蒋建国.固体废物处置与资源化.北京:化学工业出版社,2008
    [16]梁政,杨勇华,樊洪,杨秀勇,高文凯.厨余垃圾处理技术及综合利用研究.中国资源综合利用,2004,8:36-38
    [17]李凤娜,王继成.饲料工艺与饲料安全.饲料研究,2005,1:10-12
    [18]李国刚.固体废物试验与检测分析方法.北京:化学工业出版社,2003
    [19]吕凡,何品晶,邵立明,李国建.餐厨垃圾高温好氧生物消化工艺控制条件优化.同济大学学报,2003,31(2):233-238
    [20]刘存芳.城市有机垃圾厌氧消化pH控制动力学研究.[硕士学位论文].湖南:湖南大学,2006
    [21]李亚新.厌氧消化过程中甲烷菌的无机营养需要.中国给水排水,1995,11(4):23-25
    [22]李亚新,董春娟.激活甲烷菌的微量元素及其补充量的确定.环境污染与防治,2001,23(3):116-118
    [23]李志东,李娜,魏莉,张勇,张令戈,张洪林,酒井裕司.污泥投配率对污泥中温厌氧消化效果影响的试验研究.环境污染与防治,2007,29(7):530-532
    [24]马溪平.厌氧微生物学与污水处理.北京:化学工业出版社,2005
    [25]潘云霞,李文哲.接种物浓度对厌氧发酵产气特性影响的研究.农机化研究,2004,1:187-188
    [26]钱小青.泔脚废物厌氧两相发酵工艺及其矿化垃圾协同生物产气过程研究.[博士学位论文].上海:同济大学,2006
    [27]乔玮,曾光明,袁兴中,黄国和,李建兵.厌氧消化处理城市垃圾多因素研究.环境科学与技术,2004,27(2):3-4
    [28]R E斯皮思著.工业废水的厌氧生物技术(李亚新译).北京:中国建筑工业出版社,2001
    [29]任南琪,王爱杰等编.厌氧生物技术原理与应用.北京:化学工业出版社,2004
    [30]唐敏,熊强.重庆城市餐厨垃圾管理对策的初步研究.环境科学与管理,2007,32(2):11-17
    [31]谭万春,王云波.城市垃圾的综合处理与能源回收.长沙理工大学学报(社会科学版).2006,21(2):44-46
    [32]王华.二噁英零排放化-城市生活垃圾焚烧技术.北京:冶金工业出版社,2001
    [33]汪群慧,马鸿志,王旭明,汲永臻.厨余垃圾的资源化技术.现代化工,2004,24(7):56-59
    [34]王向会,李广魏,孟虹,马琳,赵国珏.国内外餐厨垃圾处理状况概述.环境卫生工程,2005,13(2):41-43
    [35]王星,王德汉,马磊.膨润土的添加用量对餐厨垃圾厌氧消化过程的影响.农业环境科学学报,2007,26(1):330-334
    [36]王旭明,汪群慧,马鸿志,孙丽欣,任南琪.用乳酸菌从有机废弃物生产乳酸.现代化工,2003,23(11):50-53
    [37]魏少琴,李功.银川市餐厨垃圾管理和处置的初步研究.宁夏工程技术,2004,3(3):282-284
    [38]吴克,涂卫峰,俞志敏,刘斌,金杰,蔡敬民.合肥市餐饮有机垃圾的资源和处理展望.再生资源研究,2006,4:31-33
    [39]吴满昌,孙可伟,李如燕.有机生活垃圾高温干式厌氧处理技术探讨.能源研究与信息,2005a,21(4):187-191
    [40]吴满昌,孙可伟,李如燕,孙艳,张海东.不同反应温度的城市生活垃圾厌氧发酵研究.化学与生物工程,2005b,9:50-52
    [41]肖旻昱.准好氧填埋现场试验与经济性研究.[硕士学位论文].成都:西南交通大学,2006
    [42]席北斗.有机固体废弃物管理与资源化技术.北京:国防工业出版社,2006
    [43]谢炜平,梁彦杰,何德文,邹原.餐厨垃圾资源化技术现状及研究进展.环境卫生工程,2008,16(2):43-45
    [44]薛东辉,厦门市厨余垃圾再生利用的实践.中国资源综合利用,2005,12:33-35
    [45]徐文龙,卢英方,RudolfWalder,徐海云.城市生活垃圾管理与处理技术.北京:中国建 筑工业出版社,2006
    [46]杨占春.餐厨垃圾生物法制高浓度氢气的研究.[硕士学位论文].南京:南京工业大学,2006
    [47]杨占春,陈晓晔,朱建良.利用餐厨垃圾循环半连续厌氧发酵产氢研究.生物加工过程,2005,3(4):62-65
    [48]叶诗瑛.城市有机垃圾厌氧消化工艺条什研究.[硕士学位论文].合肥:合肥工业大学,2007
    [49]袁玉玉,曹先艳,牛冬杰,赵由才.餐厨垃圾特性及处理技术.环境卫生工程,2006,14(6):46-49
    [50]张波,徐剑波,蔡伟民.有机废物厌氧消化过程中氨氮的抑制性影响.中国沼气,2003,21(3):26-28
    [51]张彦.蚓粪促进厌氧发酵效果的试验研究.[硕士学位论文].郑州:河南农业大学,2006
    [52]赵军,杨凯,李博.城市餐饮业泔脚垃圾市场化回收处置问题及对策分析.资源科学,2008,20(1):37-42
    [53]赵由才.生活垃圾资源化原理与技术.北京:化学工业出版社,2002a
    [54]赵由才.固体废物污染控制与资源化.北京:化学工业出版社,2002b
    [55]赵由才等编.可持续生活垃圾处理与处置.北京:化学工业出版社,2007
    [56]赵由才,牛冬杰,柴晓利等编.固体废物处理与资源化.北京:化学工业出版社,2006
    [57]张于峰,邓娜,李新禹,田琦,周国兵.城市生活垃圾的处理方法及效益评价.自然科学进展,2004,14(8):863-869
    [58]周富春.完全混合式有机固体废弃物厌氧消化过程研究.[博士学位论文].重庆:重庆大学,2006
    [59]周洪波,Cord-Ruwisch,陈坚,任洪强.产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响.中国沼气,2000,18(4):20-23
    [60]Adam D R,Hudgins M,Phillips P.Perpetual landfilling through aeration of the waste mass;lessons from test cells in Georgia(USA).Waste Managet.2001,21(7):617-629
    [61]Barber K.Anaerobic digestion of municipal solid waste:A modern waste disposal option on the verge of breakthrough.Biomass Bioenergy,1995,9(1-5):365-376
    [62]Benson C H,Barlaz M A,Lane D T,Rawe J M,Practice review of five bioreactor/recirculation landfills.Waste Manage,2007,27(1):13-29
    [63]Bouallagui H,Haouari O,Touhami Y,Cheikh R B,Marouani L,Hamdia M.Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste.Process Biochem,2004,39(12):2143-2148
    [64]Brummeler E T.Full scale experience with the BIOCELL process.Wat Sci Tech,2000,41(3):299-304
    [65] Callaghan F J, Wase D A J, Thayanithy K, Forster C F. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy, 2002, 22(1): 71-77
    [66] Cho J K, Park S C. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresour Technol, 1995, 52(3): 245-253
    [67] Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol, 1999, 28(3): 193-202
    [68] Converti A, Borghi A D, Zilli M, Arni S, Borghi M D. Anaerobic digestion of the vegetable fraction of municipal refuses: mesophilic versus thermophilic conditions. Bioprocess Biosyst Eng, 1999, 21(4): 371-376
    [69] Habiba L, Bouallagui H, Moktar H. Improvement of activated sludge stabilisation and filterability during anaerobic digestion by fruit and vegetable waste addition. Bioresour Technol, 2009,100(4): 1555-1560
    [70] Han S K, Shin H S. Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energy, 2004, 29(6): 569-577
    [71] Hazel B. G, Kazunori Takyu, Hideki Sakashita, Yoichi Nakano, Wataru Nishijima, Mitsumasa Okada. Biological solubilization and mineralization as novel approach for the pretreatment of food waste. Chemosphere, 2005,58(1): 57-63
    [72] Karen Birchard. Europe investigates hormone-contaminated waste in food chain. Lancet, 2002, 360(9328): 235
    [73] Karen R, Kristin M. Household behaviour and attitudes with respect to recycling food waste-experiences from focus groups. J Environ Manage, 2009(2): 760-771
    [74] Kayhanian M, Rich D. Pilot-scale high solids thermophilic anaerobic digestion of municipal solid waste with an emphasis on nutrient requirements. Biomass Bioenergy, 1995, 8(6): 433-444
    [75] Keiko Shirai, Isabel Guerrero, Sergio Huerta, Gerardo Saucedo, Alberto Castillo, R. Obdulia Gonzalez, George M. Hall. Effect of initial glucose concentration and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enzyme Microb Technol, 2001, 28(4-5): 446-452
    [76] Kim J K, Han G H, Baek Rock Oh, Chun Y N, Eom C Y, Kim S K. Volumetric scale-up of a three stage fermentation system for food waste treatment. Bioresour Technol, 2008, 99(10): 4394-4399
    [77] Kim S H, Han S K, Shin H S. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrogen Energy, 2004, 29(15): 1607-1616
    [78] Koster I W, Lettinga G. Anaerobic digestion at extreme ammonia concentrations. Biological Wastes, 1988, 25(1): 51-59
    [79] Kwon S H, Lee D H. Evaluation of Korean food waste composting with fed-batch operations I: using water extractable total organic carbon contents (TOCw). Process Biochem, 2004, 39(10): 1183-1194
    [80] Lay J J, Li Y Y, Noike T, Endo J, Ishimoto S. Analysis of environmental factors affecting methane production from high-solids organic waste. Wat Sci Tech, 1997, 36(6-7): 493-500
    [81] Lee D H, Shishir Kumar Behera, Kim J W, Park H S. Methane production potential of leachate generated from Korean food waste recycling facilities: A lab-scale study. Waste Manage, 2009, 29(2): 876-882
    [82] Lee M, Taira Hidaka, Hiroshi Tsuno. Effect of temperature on performance and microbial diversity in hyperthermophilic digester system fed with kitchen garbage. Bioresour Technol, 2008, 99(15): 6852-6860
    [83] Mason I G, Oberender A, Brooking A K. Source separation and potential re-use of resource residuals at a university campus. Resour Conserv Recycl, 2004, 40(2): 155-172
    [84] Mostafa W. Bioreactor landfills: experimental and field results. Waste Manage, 2002, 22(1): 7-17
    [85] Murto M, Bjornsson L, Mattiasson B. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J Environ Manage, 2004,70(2): 101-107
    [86] Neves L, Oliveira R, Alves M M. Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Process Biochem, 2004,39(12): 2019-2024
    [87] Nijmeh M N, Ragab A S, Emeish M S, Jubran B A. Design and testing of solar dryers for processing food wastes. Appl Therm Eng, 1998, 18(12): 1337-1346
    [88] Park J I, Yun Y S, Park J M. Oxygen-limited decomposition of food waste in a slurry bioreactor. J Ind Microbiol Biotechnol, 2001, 27(2): 67-71
    [89] Payal Garg. Asha Gupta. Santosh Satya. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresour Technol, 2006, 97(3): 391-395
    [90] Raffaello Cossu, Roberto Ragaa, Davide Rossetti. The PAF model: an integrated approach for landfill sustainability. Waste Manage, 2003, 23(1): 37-44
    [91] Saito M, Amagai K, Ogiwara G, Arai M. Combustion characteristics of waste material containing high moisture. Fuel, 2001, 80(9): 1201-1209
    [92] Seo J Y, Heo J S, Kim T H, Joo W H, Crohn DM. Effect of vermiculite addition on compost produced from Korean food wastes. Waste Manage, 2004, 24(10): 981-987
    [93] Shin H S, Han S K, Song Y C, Lee C Y. Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste. Water Res, 2001, 35(14): 3441-3447
    [94] Shin H S, Youn J H, Kim S H. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energy, 2004, 29(13): 1355-1363
    [95] Song Y C, Kwon S J, Woo J H. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic and thermophilic digestion of sewage sludge. Water Res, 2004, 38(7): 1653-1662
    [96] Stoev G, Michailova A. Quantitative determination of sulfonamide residues in foods of animal origin by high-performance liquid chromatography with fluorescence detection. J Chromatogr A, 2000, 871: 37-42
    [97] Szanto G L, Hamelers H V M, Rulkens W H, Veeken A H M. NH_3, N_2O and CH_4 emissions during passively aerated composting of straw-rich pig manure. Bioresour Technol, 2007, 98(14): 2659-2670
    [98] Timothy R K, Paul M W. Bacterial concentration reduction of food waste amended animal feed using a single-screw dry-extrusion process. Bioresour Technol, 1999, 67(3): 247-253
    [99] Tomoyuki K. The use of food waste as protein source for animal feed current status and technological development in Japan. FAO Expert Consultation and Workshop on Protein Sources for the Animal Feed Industry, 2002, Siam City Hotel, Bangkok, Thailand
    [100] U.S. EPA. Municipal Solid Waste in The United States: 2001 Facts and Figures, Office of Solid Waste and Emergency Response, 2003
    [101] Wang Q, Yamabe K, Narita J, Morishita M, Ohsumi Y, Kusano K, Shirai Y, Ogawa H I. Suppression of growth of putrefactive and food poisoning bacteria by lactic acid fermentation of kitchen waste. Process Biochem, 2001, 37(4): 351-357
    [102] Wilton Silva Lopes, Valderi Duarte Leite, Shiva Prasad. Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste. Bioresour Technol, 2004, 94(3): 261-266
    [103] Wong J W C, Ma K K, Fang K M, Cheung C. Utilization of a manure compost for organic farming in Hong Kong. Bioresour Technol, 1999, 67(1): 43-46
    [104] Yun Y S, Park J I, Suh M S, Park J M. Treatment of food wastes using slurry-phase decomposition. Bioresour Technol, 2000, 73(1): 21-27
    [105] Zhang R H, Hamed El-Mashad M, Karl H, Wang F Y, Liu G Q, Chris C, Gamble P. Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol, 2007, 98(4): 929-935