镁基储氢材料的制备及对二硫化碳、噻吩的加氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦炉煤气合成甲醇的关键在于其深度脱硫,有机硫的加氢脱硫程度是影响甲烷转化催化剂和甲醇合成催化剂寿命的重要因素。将镁基储氢材料用于焦炉煤气中含硫化合物的加氢脱硫是解决此问题的一项应用基础研究。
     本文以氢气反应球磨法制备了镁基储氢材料,对影响镁基储氢材料制备的关键参数——碳原料种类、Mg/C配比、金属催化剂、球磨时间等进行了研究;以焦炉煤气中二硫化碳和噻吩为镁基储氢材料加氢反应的对象,对镁基储氢材料放出的氢与二硫化碳和噻吩之间的加氢反应进行了对比,并对含硫化合物加氢反应的影响因素进行了研究,探讨了镁基储氢材料供氢与含硫化合物加氢的反应机理。
     碳原料是制备镁基储氢材料优良的分散剂、助磨剂和改性剂。无烟煤经脱灰、碳化可脱除煤中碳骨架上氢原子和氧原子,制得具有类石墨晶体结构的微晶碳。添加微晶碳40 wt.%制得的镁基储氢材料60Mg40C颗粒大小均匀,粒度为30~50nm,且微晶碳在储氢材料中的分布较均匀,没有团聚现象。微晶碳含量为30 wt.%和40 wt.%时,材料的储氢密度较大,分别为4.93wt.%和4.78 wt.%。微晶碳含量过少或过多都会使材料的储氢密度降低。针状焦比微晶碳对镁粉具有更加优异的分散性能,添加10 wt.%即可使粉体避免冷焊和粘附。针状焦在球磨过程中易发生非晶化。针状焦添加量对储氢材料储氢密度的影响显著,添加量为5 wt.%时材料的储氢密度可达4.35 wt.%,但添加量超过10 wt.%时,材料的储氢密度变得很低。活性炭对镁粉也具有良好的分散作用,添加20 wt.%可使粉体不发生冷焊和粘附。在保证镁碳粉体分散性的同时,活性炭的添加量越高,材料的储氢密度越低。XRD显示,添加以上碳原料制备的镁基储氢材料中,Mg为主要的储氢体。此外,添加微晶碳、针状焦、活性炭可降低镁基储氢材料的放氢温度。
     金属催化剂Al、Co、Fe、Mo的添加能降低储氢材料的放氢温度,改善材料的放氢性能。其中添加Co的储氢材料50Mg40C10Co的初始放氢温度最低,为210.7℃。金属催化剂的含量以4 wt.%-7 wt.%为宜,所制储氢材料具有较明显的放氢吸热峰和较低的放氢温度。
     球磨时间能明显影响储氢材料的储氢性能,适宜的球磨时间为4 h。储氢材料的循环吸放氢对材料的储氢性能并没有明显改善,随着循环次数的增多,储氢密度会衰减。Co、Mo、Ni三种金属的协同作用可有效降低材料的放氢温度。储氢材料的成型性能与储氢材料中的金属含量有关,不同硬度的金属相互嵌合,可使材料的成型性能提高。
     储氢材料60Mg35C5Mo对二硫化碳进行加氢反应时,产物中有Mg和H2S生成,反应温度在350℃时,储氢材料中氢转入H2S的比例最高,为20.55%;对噻吩进行加氢反应时,产物中有MgS和H2S生成,反应温度在300℃时,储氧材料中氢转入H2S的比例最高。温度过低或过高都不利于含硫化合物利用储氢材料放出的氢进行加氢反应,只有在特定温度区间内才能促进储氢材料放氢与含硫化合物加氢,生成更多的H2S。
     反应温度对加氢反应具有重要的影响,影响着储氢材料的放氢与供氢,还影响着储氢材料对含硫化合物加氢反应的程度。二硫化碳和噻吩与储氢材料进行加氢反应的活性不同,二硫化碳的C-S键键能较低,比较容易断裂,而噻吩由于具有硫杂环的芳香性,较难发生加氢反应。
     二硫化碳加氢反应采用连续操作的管式反应器,载气连续流动,含硫化合物与储氢材料的接触时间短,反应管内载气温度受流速影响,进入反应区后载气温度经加热才能达到反应温度。噻吩加氢反应的高压反应釜装置虽然可以延长噻吩与储氢材料的接触时间,但整个反应过程密闭,随着反应的进行,反应物浓度降低,对反应产生不利影响。
     碳原料中以添加微晶碳制备的镁基储氢材料对含硫化合物的加氢反应性能改善效果最好,金属催化剂以Mo对加氢反应的催化作用最好。镁基储氢材料供氢与含硫化合物进行加氢反应,微晶碳对镁基储氢材料的供氢提供了扩散通道,金属催化剂对镁基储氢材料的供氢起到催化作用。
The key step for synthesis of methanol from coke oven gas lies in the deep purification of the gas, especially hydrogenation of organic sulfur. This has remarkable influence on long-term and stable operation of the catalysts for steam mathane reforming and methanol synthesis. It is a basic research to solve the problem that Mg-based hydrogen storage materials were used in hydrodesulfurization to the sulfocompounds in coke oven gas.
     Mg-based hydrogen storage materials were prepared by hydrogen reaction ball-milling and the key factors that affect the preparation were investigated including the kinds of carbon raw materials, the mass ratio of Mg/C, the variety of metal catalysts and the ball-milling time. Carbon disulfide and thiophene were taken as the model compounds for the hydrogenation by the hydrogen storage materials and the hydrogenation activities of the two compounds were compared. At last, the influence factors to the hydrogenation reaction of the sulfocompounds were studied and the reaction mechanisms between hydrogen donating of the Mg-based hydrogen storage materials and hydrogenation of sulfocompounds were discussed.
     Carbon materials were fine dispersants, grinding aids and modifiers in the preparation of Mg-based hydrogen storage materials. When the anthracite was treated by deashing and carbonizing, the hydrogen atoms and oxygen atoms were removed from the carbon skeleton and a kind of crystallitic carbon with graphite-like structure was made. When the additive content of crystallitic carbon was 40 wt.%, the material called 60Mg40C was well-distributed and its particle size was at a range of 30~50 nm. Moreover, the crystallitic carbon was also even-distributed in the hydrogen storage material without any agglomeration. When the crystallitic carbon content was 30 wt.% or 40 wt.%, the hydrogen storage materials showed a relatively higher hydrogen density of 4.93 wt.% and 4.78 wt.%, respectively. The hydrogen density of the materials would decline with too much or too little crystallitic carbon. Needle coke performed a superior dispersibility to crystallitic carbon and 10 wt.% of needle coke could prevent the powders from forming cold welding and adhering, but the needle coke was esay to occur amorphization. The influence of needle coke content on the hydrogen density was prominent. When the content of needle coke was 5 wt.%, the hydrogen density could reach to 4.35 wt.%, while the content was increased to 10 wt.%, the hydrogen density declined sharply. Active carbon was also a good dispersant, which could avoid cold welding and adhering when the additive content is only 20 wt.%. However, the hydrogen density was decreased with the active carbon content increasing under the premise of good dispersity. XRD analysis showed that Mg was the main hydrogen storage body in the prepared Mg-based hydrogen storage materials with the carbon raw materials mentioned above. In addition, whichever carbon raw material was added, the dehydrogenation temperature of the materials could be lowered.
     The addition of metal catalysts Al, Co, Fe, Mo could reduce the dehydrogenation temperature of hydrogen storage materials, and the dehydrogenation properties of the materials were improved. The initial dehydrogenation temperature of hydrogen storage material 50Mg40C10Co was 207.1℃, which was the lowest among the prepared materials with various metal catalysts. The content of metal catalyst within 4 wt.%-7 wt.% was thought to be appropriate, with which the hydrogen storage materials prepared had a clear dehydrogenation endothermic peak and a lower dehydrigenation temperature.
     Milling time significantly affected the properties of hydrogen storage materials, and the suitable milling time was 4 h. The hydrogen adsorption and desorption cycles of hydrogen storage materials didn't improve the hydrogen storage properties distinctly, and hydrogen density was falling with the increasing number of the cycles. The synergy of Co, Mo and Ni could effectively reduce the dehydrogenation temperature. The formability of hydrogen storage materials were related to the content of metals, and the inlay and joint of metals with different hardness could improve the formability to be molded.
     When the Mg-based hydrogen storage material 60Mg35C5Mo reacted with carbon disulfide, Mg and H2S were formed in the product. And when the reaction temperature was 350℃, the proportion of hydrogen transferred from the hydrogen storage material to H2S reached to the highest value of 20.55%. When the material reacted with thiophene, MgS and H2S were formed, and the proportion of hydrogen transferred from the hydrogen storage material to H2S got to the highest value at 300℃. Neither the higher temperature nor the lower temperature was good for the hydrogenation between the hydrogen supplied by hydrogen storage material and sulfocompound. Only the specified range of temperatures could the dehydrogenation of hydrogen storage material and hydrogenation of sulfocompound facilitate, and form more H2S.
     The reaction temperature had an important impact on the hydrogenation, influencing the dehydrogenation of hydrogen storage materials as well as the degree of the hydrogenation between hydrogen supplied by hydrogen storage materials and the sulfocompounds. The hydrogenation activity was different for the carbon disulfide and thiophene. The C-S bond energy in carbon disulfide is lower, and it is easy to break down, while hydrogenation to thiophene is difficult to happen due to aromaticity of sulfur heterocyclic.
     The hydrogenation to carbon disulfide was hanppened in consecutive tube reactor. The carrier gas flowed in continuum, which caused a short contact time of hydrogen storage materials and sulfocompounds. The temperature of the carrier gas in the reaction tube was influenced by the velocity of the carrier gas flow, the sulfocompounds in which could not rise to reaction temperature before heated. Although the high pressure reactor, used in the hydrogenation to thiophene, could extend the contact time of thiophene and hydrogen storage materials, the concentration of reactants reduced as the reaction went on as a result of the reaction process was airtight, which caused adverse impact on the reaction.
     The hydrogen storage materials with crystallitic carbon added had the best hydrogenation performance on sulfocompounds. The metal catalyst Mo had the best catalysis to the hydrogenation. The Mg-based hydrogen storage materials supplied the hydrogen to react with the sulfocompounds, and crystallitic carbon supplied the diffusion channels for the hydrogen in Mg-based hydrogen storage materials, and the metal catalysts catalyzed the hydrogen donating by Mg-based hydrogen storage materials.
引文
[1]于振东,蔡承佑.焦炉生产技术[M].沈阳:辽宁科学技术出版社,2003.
    [2]张学镭,王松岭,陈海平,等.焦炉煤气利用项目的经济性评价[J].现代化工,2006,26(1):47-50.
    [3]郑文华,张兴柱.焦炉煤气的使用现状与应用前景[J].燃料与化工,2004,35(4):1-3.
    [4]宋廷生.中国特色:焦炉煤气制甲醇[N].中国化工报,2005.6.30
    [5]王太炎.焦炉煤气开发利用的问题与途径[J].燃料与化工,2004,35(6):1-3.
    [6]丰恒夫,罗小林,熊伟,等.我国焦炉煤气综合利用技术的进展[J].武钢技术,2008,46(4):55-58.
    [7]张风尘.利用焦炉煤气实现热电联供[J].节能,2004,(7):34-36.
    [8]张永发,谢克昌,赵炜,等.富含甲烷气在高温炭体系中裂解重整制合成气的方法[P].中国,03152797.3,2004.
    [9]赵峰.论焦炉煤气生产代天然气的工艺方法[J].现代商贸工业,2009,14(23):289-290.
    [10]姚占强,任小坤,孙郁,等.焦炉煤气综合利用制取液化天然气[J].燃料与化工2009,40(4):44-46.
    [11]肖瑞华.炼焦化学产品生产技术问答[M].北京:冶金工业出版社,2007.
    [12]袁宏伟,赵苏杭,刘晶敏.焦炉煤气脱硫技术的发展现状[J].科技情报开发与经济,2008,18(22):106-108.
    [13]姜崴.焦炉煤气脱硫方法的比较[J].科技情报开发与经济,2007,17(15):278-279.
    [14]朱文利,刘运良.焦炉煤气脱硫方法评述[J].洁净煤技术,1997,3(3):34-37.
    [15]姜振峰,刘作玲.焦炉煤气“AS”循环脱硫工艺的消化与改进[J].冶金环境保护,2002,(4):56-58.
    [16]李中山.蒽醌法煤气脱硫工艺中的副反应及其控制[J].科技资讯,2006,(1):119.
    [17]蔡颖,赫文秀.焦炉煤气脱硫脱氰方法研究[J].内蒙古石油化工,2006,(10):1-2.
    [18]许世森,李春虎,郜时旺.煤气净化技术[M].北京:化学工业出版社,2006.
    [19]刘仁万.PDS法煤气脱硫装置的操作经验[J].燃料与化工,2003,34(1):46-48.
    [20]李万众,王先平.PDS法煤气脱硫工艺的影响因素[J].燃料与化工,2004,35(3):45.
    [21]张兴柱.HPF湿式氧化法焦炉煤气脱硫脱氰技术[J].燃料与化工,2003,34(4): 205-206.
    [22]曲雁秋,曹建元.OPT法脱硫脱氰生产洁净煤气[J].冶金能源,2000,19(4):22-24.
    [23]苏东亮,李池.VASC—SCL工艺在焦炉煤气脱硫中的应用[J].工业安全与环保,2005,31(5):47-48.
    [24]佟世华.储氢材料在催化加氢脱氢反应中应用的研究概况[J].材料导报,1994,8(5):20-24.
    [25]卢世刚,杨汉西,杨聪智.贮氢合金用作有机加氢反应新型催化剂研究进展[J].化学通报,1998,49(12):1-4.
    [26]Takeshita T, Wallace W E, Craig R S. Rare earth intermetallics as synthetic ammonia catalysts [J]. Catalysis,1976,44(2):236-243.
    [27]阎杰,汪根时,朱怀勇,等.LaNi5、LaNi4M(M=Mn、Fe、Co、Cu)贮氢金属间化合物在合成氨反应中催化性能研究[J].稀土.1988,15(3):6-8.
    [28]Coon V T, Takeshita T, Wallace W E, et al. Rare earth intermetallics as catalysts for the production of hydrocarbons from carbon monoxide and hydrogen[J]. Journal of Physical Chemistry,1976,80(17):1878-1879.
    [29]Reilly J J, Wiswall R H. The Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4 [J]. European Journal of Inorganic Chemistry,1968,7: 2254-2256.
    [30]陈豫,周建略,陈树滋,等.稀土金属间化合物的催化性能—Co及不饱和气相烃在LaNi5上的加氢[J].高等学校化学学报,1982,3(3):403-408.
    [31]Atkinson G B, Nicks L J. Mischmetal-nickel alloys as methanation catalysts[J]. Journal of Catalysis,1977,46(3):417-419.
    [32]Barrault J, Duprez D, Guilleminot A, et al. Intermetallic compounds as heterogeneous catalysts[J]. Applied Catalysis,1983,5(1):99-107.
    [33]Parmaliana A, Crisafulli C, Maggiore R. Catalytic activity of honeycomb catalysts, I The benzene-cyclohexane (de)hydrogenation reaction[J]. Reaction Kinetics & Catalysis Letters,1981,18(3):295-299.
    [34]陈进富,陆绍信,赵永丰,等.有机液体氢化物贮氢新技术研究Ⅰ. Ni/Al2O3催化剂甲苯气相加氢反应及其动力学[J].太阳能学报,1997,18(4):409-414.
    [35]陈进富,俞英,蔡卫权.Li2O对Pt-Sn/γ-Al2O3催化剂表面酸性与MCH脱氢性能的 影响[J].太阳能学报,2002,23(6):782-785.
    [36]李荣生,甄开吉,王国甲.催化作用基础[M].北京:科学出版社,1990.
    [37]陈克正,张志琨,崔作林.储氢蛋壳式纳米金属镍粒子催化剂在苯加氢反应中的应用[J].青岛化工学院学报,1995,16(1):95-96.
    [38]袁华军,安越,徐国华,等.富镧稀土镍储氢合金催化甲苯液相加氢反应的动力学研究[J].中国稀土学报,2004,22(3),340.
    [39]曾和我雄,等.日本化学会志.1975,923.
    [40]汪景春,蔡水玉,远松月,等.金属间化合物催化加氢性能的研究I. LaNi5在乙烯、丁二烯加氢反应中的催化活性[J].催化学报,1981,2(1),1-7.
    [41]汪景春,蔡水玉,远松月,等.金属间化合物催化加氢性能的研究Ⅱ.用还原法制备的LaNi5的催化性质[J].催化学报,1983,4(1),18-23.
    [42]Imamura H, Tanaka T, Sakata Y, et al. Transfer hydrogenation of olefin from alcohol using a hydrogen-absorbing alloy (CaNi5) catalyst[J]. Journal of Alloys and Compounds, 1999,293-295:919-922.
    [43]刘卅,贾德民.贮氢合金催化共轭二烯烃类聚合物双键加氢的研究[J].弹性体,2004,14(5):47-50.
    [44]Ibrasheva R Kh, Solomina T A, Leonova G I, et al. Role of active surface in processes of hydrogen sorption-desorption by intermetallic compounds[J]. International Journal of Hydrogen Energy,1993,18(6):505-510.
    [45]卢世刚,杨汉西,王长发.贮氢合金用作硝基苯电解加氢的催化电极研究[J].电化学,1995,1(1):15-20.
    [46]沈宁福,吴智信,孔秀兰,等.非晶Ni-Zr合金的催化活性及表面研究[J].功能材料,1991,22(2):78-83.
    [47]Tagawa T, Chikamatsu N, Goto S, et al. Preparation of a catalyst for hydrogenolysis of methyl oleate using hydrogen storage alloy[J]. Applied Catalysis,1990,61(1):209-218.
    [48]Sohier M P, Wrobel G, Bonnelle J P, et al. Hydrogenation catalysts based on nickel and rare earths oxides:I. Relation between cations nature, preparation route, hydrogen content and catalytic activity[J]. Applied Catalysis A:General,1992,84(2):169-186.
    [49]刘卅,贾德民.贮氢合金催化NBR双键加氢活性及影响因素[J].华南理工大学学报(自然科学版),2005,33(3):13-18.
    [50]刘卅,贾德民.贮氢合金催化丁腈橡胶溶液加氢反应工艺条件的研究[J].弹性体,2006,16(2):19-23.
    [51]柳云骐,刘晨光,阙国和.二苯并噻吩在CoMoNx催化剂上的加氢脱硫[J].催化学报,2000,21(4):337-340.
    [52]Venezia A M, La Parola V, Deganello G, et al. Synergetic effect of gold in Au/Pd catalysts during hydrodesulfurization reactions of model compounds[J]. Journal of Catalysis,2003, 215(2):317-325.
    [53]Kilanowski D R, Gates B C. Kinetics of hydrodesulfurization of benzothiophene catalyzed by sulfided Co---Mo/Al2O3[J]. Journal of Catalysis,1980,62(1):70-78.
    [54]Geneste P, Amblard P, Bonnet M, et al. Hydrodesulfurization of oxidized sulfur compounds in benzothiophene, methylbenzothiophene, and dibenzothiophene series over CoO---MoO3---Al2O3 catalyst [J]. Journal of Catalysis,1980,61(1):115-127.
    [55]Nag N K, Sapre A V, Broderick D H, et al. Hydrodesulfurization of polycyclic aromatics catalyzed by sulfided CoO---MoO3/γ-Al2O3:The relative reactivities [J]. Journal of Catalysis,1979,57(3):509-512.
    [56]Lipsch J M J G, Schuit G C A. The CoO---MoO3---Al2O3 catalyst:Ⅲ. Catalytic properties [J]. Journal of Catalysis,1969,15(2):179-189.
    [57]Hensen E J M, Vissenberg M J, De Beer V H J, et al. Kinetics and Mechanism of Thiophene Hydrodesulfurization over Carbon-Supported Transition Metal Sulfides[J]. Journal of Catalysis,1996,163(2):429-435.
    [58]Zaera F, Kollin E B, Gland J L. Vibrational characterization of thiophene decomposition on the Mo(100) surface [J]. Surface Science,1987,184(1-2):75-89.
    [59]Markel E J, Schrader G L, Sauer N N, et al. Thiophene,2,3-and 2,5-dihydrothiophene, and tetrahydrothiophene hydrodesulfurization on Mo and Re/γ-Al2O3 catalysts[J]. Journal of Catalysis,1989,116(1):11-22.
    [60]Bartsch R, Tanielian C. Hydrodesulfurization:Ⅰ. Hydrogenolysis of benzothiophene and dibenzothiophene over CoO---MoO3---Al2O3 [J]. catalyst Journal of Catalysis,1974, 35(3):353-358.
    [61]Singhal G H, Espino R L, Sobel J E, et al. Hydrodesulfurization of sulfur heterocyclic compounds:Kinetics of dibenzothiophene[J].Journal of Catalysis,1981,67(2):457-468.
    [62]Houalla M, Broderick D H, Sapre A V, et al. Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfided Co---MO/γ-Al2O3 [J]. Journal of Catalysis, 1980,61(2):523-527.
    [63]张晓霞.常温精脱硫(氯)工艺在甲醇生产中的应用[J].石油和化工设备,2009,(1):17-19.
    [64]周国明,艾红霞.常温精脱硫新工艺在合成氨联醇中的应用[J].化工设计通讯,2003,29(3):4-7.
    [65]Alibouri M, Ghoreishi S M, Aghabozorg H R. Hydrodesulfurization of dibenzothiophene using CoMo/Al-HMS nanocatalyst synthesized by supercritical deposition [J]. The Journal of Supercritical Fluids,2009,49:239-248.
    [66]Wang D H, Li W, Zhang M H, et al. Promoting effect of fluorine on titania-supported cobalt-molybdenum hydro-desulfurization catalysts [J]. Applied Catalysts A,2007,317: 105-112.
    [67]Rodriguez-Castellon E, Jimenez-Lopez A, Eliche-Quesada D. Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization [J]. Fuel, 2008,87:1195-1206.
    [68]贾丽丽,胡典明,孔渝华.脱除二硫化碳的研究进展[J].辽宁化工,2008,37(3):184-186.
    [69]Ordonez S, Paredes J R, Diez F V. Sulphur poisoning of transition metal oxides used as catalysts for methane combustion [J]. Applied Catalysis A,2008,341:174-180.
    [70]Ding L H, Zheng Y, Zhang Z S, et al. HDS, HDN, HDA, and hydrocracking of model compounds over Mo-Ni catalysts with various acidities [J]. Applied Catalysis A,2007, 319:25-37.
    [71]卢国俭,周仕学,马怀营,等.反应球磨法制备镁/碳纳米复合储氢材料[J].功能材料,2007,38(7):1128-1131.
    [72]Zhou S X, Yang M J, Tan Q, et al. Mechanically milled magnesium and carbon powders for hydrogen storage [J]. Journal of Scientific Conference Proceedings,2009,1(2/3): 181-185.
    [73]王曾辉,高晋生.碳素材料[M].上海:华东化工学院出版社,1991,6-53.
    [74]Arvind K S, Singh A K, Srivastava O N. On the synthesis of the Mg2Ni alloy by mechanical alloying[J]. Journal of Alloys and Compounds,1995,227(1):63-68.
    [75]Zaluski L, Zaluska A, Tessier P, et al. Hydrogen Absorption in Nanocrystalline Mg2Ni Formed by Mechanical Alloying[J]. Journal of Alloys and Compounds,1995,217(2): 245-249.
    [76]Ming A, Pourarian F, Sankar S G, et al. TiMn2-based alloys as high hydrogen storage materials[J]. Journal of Alloys and Compounds,1995,223(2-3):53-57.
    [77]Bouaricha S, Dodelet J-P, Guay D, et al. Activation characteristics of graphite modified hydrogen absorbing materials[J]. Journal of Alloys and Compounds,2001,325:245-251.
    [78]Bobet J L, Grigorova E, Khrussanova M, et al. Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling [J]. Journal of Alloys and Compounds,2004,366(1-2):298-302.
    [79]Rud A D, Lakhnik A M, Ivanchenko V G, et al. Hydrogen storage of Mg-C composites [J]. Hydrogen Energy,2008,33:1310-1316.
    [80]Chen D, Chen L, Liu S, et al. Microstructure and hydrogen storage property of Mg/MWNTs composites[J]. Journal of Alloys and Compounds,2004,372(1-2):231-237.
    [81]Wu C Z, Wang P, Yao X, et al. Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling[J]. Journal of Alloys and Compounds,2006,420:278-282.
    [82]卢国俭.镁碳复合纳米材料制备及其储氢性能的研究[D].青岛:山东科技大学,2007.
    [83]虞继舜.煤化学[M].北京:冶金工业出版社,2003.
    [84]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002,103-215.
    [85]杨敏建.储氢材料中金属作用机理的研究[D].青岛:山东科技大学,2007.
    [86]胡秀颖.碳在镁基储氢材料中作用的研究[D].青岛:山东科技大学,2008.
    [87]吴峻青.纳米碳复合储氢材料制备及储氢机理的研究[D].青岛:山东科技大学,2008.
    [88]林乐腾.镁/碳纳米复合储氢材料的研究[D].青岛:山东科技大学,2005.
    [89]卢国俭,周仕学,马怀营,等.反应球磨法制备镁/碳纳米复合储氢材料[J].功能材料,2007,38(7):1128-1130.
    [90]陈小华,彭景翠,张振华,等.球磨石墨制备纳米结构[J].功能材料,2001,31(10):1599-1600
    [91]张超,顾安忠.碳质吸附剂吸附储氢的研究现状[J].太阳能学报,2003,24(1):121-128.
    [92]Huang Z G, Guo Z P, Calka A, et al. Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium [J]. Journal of Alloys and Compounds,2007,427:94-100.
    [93]于振兴,孙宏飞,王尔德,等.添加碳纳米管镁基材料的储氢性能[J].中国有色金属学报,2005,15(6):876-880.
    [94]周仕学,张鸣林.粉体工程导论[M].北京:科学出版社,2010,80-102.
    [95]周琦,刘建军,臧树俊,等.高能球磨过程中Mg2Si的形成及其影响因素的研究[J].兰州理工大学学报,2006,32(5):24-26.
    [96]刘正.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [97]Tessier P, Akiba E. Catalysed reactive milling[J]. Journal of Alloys and Compounds,1999, 293-295:400-402.
    [98]徐光亮,刘文斌,肖定全.氢化燃烧合成Mg2NiH4及氢化物放氢温度的研究[J].功能材料,2006,36(2):259-261.
    [99]袁子洲,王冰霞,梁卫东,等.高能球磨制备非晶粉末的形成机理及形成能力的研究综述[J].粉末冶金工业,2006,13(1):30-34.
    [100]Gomez-Yanez C, Benitez C, Balmori-Ramirez H. Mechanical activation of the synthesis reaction of BaTiO3 from a mixture of BaCO3 and TiO2 powders[J]. Ceramics International,2000,26(3):271-277.
    [101]Wang Y, Song R, Li Y S, et al. Understanding tapping-mode atomic force microscopy data on the surface of soft block copolymers[J]. Surface Science,2003,530:136-148.
    [102]马春旭,王俊文,张林香,等.焦化粗苯加氢精制工艺及催化剂研究进展[J].应用化工,2008,37(11):1368-1371.
    [103]刘大鹏,李永丹.抗硫性芳烃加氢催化剂研究进展[J].化学进展,2004,16(6):891-899.
    [104]McCarty J, Wise H. Thermodynamics of sulfur chemisorption on metals:V. Alumina-supported iridium[J]. Journal of Catalysis,1985,94(2):543-546.
    [105]Rhodes C, Riddel S A, West J, et al. The low temperature hydrolysis of carbonyl sulfide and carbon disulfide:a review[J]. Catalysis Today,2000,59(3-4):443-464.
    [106]Zhou S X, Yang M J, Tan Q, et al. Mechanically milled magnesium and carbon powders for hydrogen storage [J]. Journal of Scientific Conference Proceedings,2009,1(2/3): 181-185.
    [107]Carter T J, Cornish L A. Hydrogen in metals[J]. Engineering Failure Analysis,2001, 8(2):113-121.
    [108]朱银华,周亚新,杨祝红,等.新型Mo/TiO2的噻吩加氢脱硫性能[J].石油学报,2007,23(4):76-81.
    [109]Stampfer J F, Holley C E. Locating the St. Louis urban plume at 80 and 120 km and some of its characteristics [J]. Journal of American Chemical Society,1960,82:3504.
    [110]Song M Y, Manaud J P, Darriet B. Dehydriding kinetics of a mechanically alloyed mixture Mg-10wt%Ni [J]. Journal of Alloys and Compounds,1999,282(1-2):243-247.
    [111]Krasko G L. Structural properties of BCC and FCC iron:LMTO-ASA-Stoner calculations [J]. Solid State Communications,1989,70(12):1099-1103.
    [112]Luz Z, Genossar J, Rudman P S. Identification of the diffusing atom in MgH2 [J]. Journal of the Less Common Metals,1980,73(1):113-118.
    [113]Krozer A, Kasemo B. Hydrogen Uptake by Pd-coated Mg:Absorption-Decomposition Isotherms and Uptake Kinetics [J]. Journal of the Less Common Metals,1990,160(2): 323-342.
    [114]Eley D D, et al. Advances in catalysis[M]. Volume 42, New York:Academic Press, 1998.
    [115]Ertl G, et al. Handbook of Heterogeneous catalysis[M]. Volume 4, Germany:VCH Verlagsgesellschaft mbH. Weinheim,1997.
    [116]李大东.加氢处理工艺与工程[M].北京:中国石化出版社,2004.
    [117]赵元力,李良超.耦合反应的热力学现象及其应用[J].荆州师范学院学报(自然科学版),2002,25(2):74-76.