基于喹吖啶酮衍生物的功能分子凝胶
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中,我们设计、合成了三个系列九种π共轭喹吖啶酮衍生物,研究了它们在溶液状态的超声诱导凝胶性质,溶剂种类和温度等外界因素对微纳材料组装性质影响,酸碱、压力和温度响应荧光开关的刺激响应行为,探讨了发光有机材料的分子设计、分子间弱相互作用、超分子组装和光物理性质的关系。
     1、良好光电性能的π共轭喹吖啶酮基团和组装性质突出的胆甾基团,构成了DCCn这系列具有独特凝胶性质的发光有机分子:溶液经过超声波刺激后,DCC4形成大量沉淀,DCC6和DCC8形成稳定的分子凝胶。凝胶因子通过发色团的典型J-聚集方式排列和手性胆甾基团堆积进行一维有序生长,胶体状态的光物理性质与单分子状态完全不同,实现聚集态发光性质调控。以DCC6为例,其形成的干凝胶可以作为荧光开关,能够在压力和加热环境下实现橙色和黄绿色荧光的可逆转变。
     2、以MCCn化合物为构筑基元研究凝胶因子的多刺激响应性质。MCC6可以形成传统的热致凝胶和超声诱导胶体,剧烈机械搅拌也能够诱导胶体形成,研究表明分子间π…π和范德华弱相互作用是凝胶因子有序堆积的主要驱动力。甲酸和苯胺能够导致胶体状态破坏,伴随体系发光红移,实现化合物MCC6的多刺激响应光物理性质调控。
     3、以DUCn作为凝胶因子,深入研究超声诱导快速凝胶性质和凝胶因子的分子间弱相互作用。凝胶因子DUC6在氯仿中能够形成传统的热致凝胶,而在二甲基甲酰胺中形成超声快速响应凝胶。研究证明,在形成胶体的过程中脲基团的方向可控氢键和喹吖啶酮核的π…π堆积起到重要作用,凝胶因子通过这些作用力发生一维有序堆积,进而形成层状结构的纳米纤维网络状结构,同时微纳结构对分子的发光性质产生影响。
The research on novel functional materials has attracted increasing interest in recent years for its potential applications and effects in recording, solar cell, sensors, biological separation, and organic field effect transistor fields accompanied with the development of scientific technology. Organic molecular gel system is an important part of supramolecular assembled soft matter, which could be used in imaging, commodity, template, food and oil industry fields. Recently, design and synthesis of novel organic materials, preparation of functional molecular gel, and their applications into photoelectric devices and drug release have been intensively studied.
     Organic small molecules possess several notable advantages including easy design and synthesis, mechanical flexibility, and high performance. Intermolecular interactions such asл…л, hydrogen bonding, van der Wall and metal-metal interactions, owning outstanding multiple characteristics, direction, selectivity, cooperation and reversibility, are the headspring and power of molecular assembly. Thus, design of molecular materials with specific purpose, tuning molecular interactions, changing molecular configuration or packing model in aggregated states, and final fabrication of molecular gel with particular morphology and functionality are the main points of obtaining functional materials. Deep understanding the principle and essence of intermolecular interactions based on outstanding responsive behaviors of molecular gel plays an important role in research on gelation and design of functional materials. This thesis work concentrated on design and synthesis of quinacridone derivatives and studies on functional molecular gel.
     1. In chapter II, we have designed and synthesized mono-and di-cholesterol appended quinacridone derivetives MCCn (n= 4,6,8) and DCCn (n= 4,6,8,10) with different length of alkyl linker, and urea-functionalized quinacridone molecules DUCn (n= 6,8). The molecular structures have been confirmed by 1H NMR, mass spectra, and element analyses, and DCCn and DUCn are all centrosymmetric in solution. Simple synthesis approaches and high yields provide excellent conditions for investigation of their supramolecular assembly properties and production of micro materials in a large amount.
     2. In chapter III, we have investigated the ultrasound-induced gelation properties of di-cholesterol appended quinacridone derivatives DCCn (n= 4,6,8,10), fabricated different morphological nano/micro-materials, and observed mechanochromic fluorescence of the xerogel.
     Compounds DCCn showed different outstanding assembly properties that DCC4 formed some bulky precipitates, DCC10 kept the clear sol state, but DCC6 and DCC8 gave stable organogel immediately after sonication treatment. These two compounds have the lowest CGCs in ultrasound-responsive gelators, and can be defined as "supergelators". FESEM and TEM microscopes were used to study the morphologies of the xerogel from EtOAc: DCC4 precipitates were organized with uniform peony-like 3D microstructures, suggesting that the well-defined microstructures were constructed through the hierarchial association of slice minicrystals. In contrast, both of gelators DCC6 and DCC8 formed well-defined 1D nanofibers, and the most striking difference between the nanostructures of these two samples was that DCC8 formed left-handed chiral helical fibers while DCC8 did not form such helical patterns at all. The morphological properties indicated that slight change of molecular structure could lead to the obvious variation of molecular assembly characteristics. The ultrasound-induced organogel process was characterized by kinetic UV-vis and photoluminescence spectroscopic methods suggesting the formation ofл-лaggregates in the gel state. Experimental results demonstrated that the ultrasound could promote molecules to contact frequently in the solution and induce semistable initial aggregates, which propagate to form nano/micro superstructures. The aggregation model was optimized by semiempirical AM1 calculation suggesting the hierarchical self-assembly process. In addition, the formed xerogel film exhibited mechanochromic properties, and the phase transition process was accompanied by the fluorescence changes between yellowish green and orange. We could understand the mechanism of stimuli-responsive functional gelation based on molecular design, tunable configuration and packing, changing environments and preparation of gel, which will help design more excellent and outstanding responsive materials.
     3. In chapter IV, we have investigated multi-stimuli-responsive behaviors of the mono-cholesterol substituted quinacridone derivatives MCCn (n= 4,6,8).
     MCC6 could form gels in a wide variety of organic solvents immediately after sonication. It could also form opaque gel by directly cooling the hot solution to room temperature at relative higher concentration. MCC8 formed a stable gel exclusively upon ultrasound irradiation, and the sol state can not convert into gel state without sonication. At room temperature compound MCC4 in cyclohexane or ethyl acetate (EtOAc) solution could form gel immediately after sonication. However, the stability of the formed gel was poor. It shrunk to release some solvent, and then precipitates appeared after left for over 1 hour. The MCC4 xerogel displayed a three-dimensional sponge-like nanostructure and the precipitates obtained form MCC4 gel showed a honeycomb-like structure. The xerogel of MCC6 and MCC8 gave a regular 3D fibrous network, consisting of entangled bundles of fibers. Dynamic spectroscopic data and theoretical calculation results provided explanations for the possible head to tail molecular aggregation mode, and intermolecularл…лinteractions were the main driving forces for the assembly process. Interestingly, the gel produced from MCC6 is sensitive to shear stress, thermo-, aniline, and formic acid stimulus, giving obviously different aggregation behaviors as well as emissions properties. For there are many effect factors in the actual environments, investigations on the multi-stimuli-responsive functional gel will form a steady foundation for the applications of smart materials.
     4. In chapter V, we have studied the properties of ultrasound accelerating gelation rates and intermolecular interactions between DUCn gelators.
     It is interesting to find that the gelators not only form the conventional thermoreversible gels, but also respond to ultrasound irradiation to form the sfimuli-responsive organogels. The environmental factors, such as uttrasound and temperature have great impacts on their aggregation properties. The morphology, DSC, IR and NMR studies suggest that the strong gelator-gelator interactions includingл…лinteractions of QA cores and H-bonding interactions of urea groups are responsible for the formation of gel. The ultrasound irradiation can quickly induce the semistable initial aggregates, which spontaneously propagate to form the well-ordered nanostructures. The UV-Vis, PL spectra and XRD studies support the proposed possible stacking structure with the face-to-face arrangement of chromophores and directional hydrogen-bonded chains. Compared with cholesterol-appended quinacridone derivatives, different molecular structures endow themselves specific packing model and affect photophysical properties.
     In summary, we have synthesized and characterized functional molecular gels system based on quinacridone derivatives. The mechanism of ultrasound-induced gelation and effects of ultrasound on the gelation were investigated. Novel nano/micro-materials with photoelectric groups were prepared using the xerogel. Molecular packing model was studied and confirmed that intermolecular interactions play important role in the assembly process. The environment factors could impact the photophysical properties. Thus, research on photoelectric molecules based functional molecular gels will achieve its potential applications.
引文
[1](a) Thomas, S. W.; Joly, G. D.; Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev.2007,107,1339. (b) Murphy, A. R.; Frechet, J. M. J. Organic semiconducting oligomers for use in thin film transistors. Chem. Rev. 2007,107,1066. (c) Xia, F.; Jiang, L. Bio-inspired, smart, multiscale interfacial materials. Adv. Mater.2008,20,2842.
    [2](a) Lo, S.-C; Burn, P. L. Development of dendrimers:macromolecules for use in organic light-emitting diodes and solar cells. Chem. Rev.2007,107,1097. (b) Qin, T.; Ding, J.; Wang, L.; Baumgarten, M.; Zhou, G.; Mullen, K. A divergent synthesis of very large polyphenylene dendrimers with Iridium(Ⅲ) cores:molecular size effect on the performance of phosphorescent organic light-emitting diodes. J. Am. Chem. Soc.2009,131, 14329. (c) Wang, L.; Jiang, Y.; Luo, J.; Zhou, Y.; Zhou, J.; Wang, J.; Pei, J.; Cao, Y. Highly efficient and color-stable deep-blue organic light-emitting diodes based on a solution-processible dendrimer. Adv. Mater.2009,21,4854.
    [3](a)黄春辉,李富友,黄岩谊,光电功能超薄膜,北京大学出版社,2001. (b) Zhang, X.; Xiao, Y; Qian, X. A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew. Chem. Int. Ed.2008,47,8025.
    [4](a)刘凯强,屈育龙,王明珍,胡道道,喻,房,王宁飞。火叉方药学,2003,26,23。(b)陈利琴,药物掺杂超分子复合凝胶的性质与生物分子响应下药物释放研究,复旦大学硕士学位论文,2009年。
    [5](a) Tong, X.; Zhao, Y; An, B.-K.; Park, S. Y. Fluorescent liquid-crystal gels with electrically switchable photoluminescence. Adv. Fund. Mater.2006,16,1799. (b) Lim, P.; Liu X.; Kang L.; Ho, P.; Chan, Y; Chan, S. Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol. International Journal of Pharmaceutics 2006,311, 157.
    [6]Lieberman, H. Liebigs Ann. Chem. Lett.1935,245.
    [7]Herbst, W.; Hunger, K. Industrial Organic Pigments 3rd, Wiley-VCH, Weinheim, 2004.
    [8]Reeve, T. B.; Botti, E. C. Du Pont Official Digest 1958,991.
    [9](a) Reidinger, A. D.; Struve, W. S. US Pat.2844484.1955. (b) Manger, C. W.; Struve, W. S. US Pat.2844581,1955. (c) Struve, W. S, US Pat.2844485,1955. (d) Jaffe, E. E. Eur. Pat.267877,1988.
    [10](a) Potts, G. D.; Jones, W.; Maginn, S. J. J. Chem. Soc. Chem. Commun.1994, 2565. (b) Paulus, E. F.; Leusen, F. J. J.; Schmidt, M. U. Crystal structures of quinacridones. CrystEngComm 2007,9,131.
    [11](a) Madec, L.; Muhr, H.; Plasari, E. Powder Technology 2002,128,236. (b) Haberkorn, H.; Franke, D.; Frechen, Th.; Goesele, W.; Rieger, J. J. Colloid Interface Sci. 2003,259,112.
    [12]McNeil, L. E.; French, R. H. Light scattering from red pigment particles:Multiple scattering in a strongly absorbing system. J. Appl. Phys.2001,89,283.
    [13](a) Broda, J. Structure of polypropylene fibres coloured with a mixture of pigments with different nucleating ability. Polymer 2003,44,6943. (b) Broda, J.; Wlochowicz, A. Influence of heat-stabilization on supermolecular structure of colored PP fibers. Euro. Pol. J.2000,36,1283. (c) Broda, J. J. App. Poly. Sci. Polymorphism in polypropylene fibers. 2003,89,3364.
    [14]Tomoda, M.; Kusabayashi, S.; Yokoyama, M. Organic solar cell fabrication using quinacridone pigments. Chem. Lett.1984,1305. (b) Manabe, K.; Kusabayashi, S.; Yokoyama, M. Long-life organic solar cell fabrication using quinacridone pigment. Chem. Lett.1987,609.
    [15]Shichiri, T.; Suezaki, M.; Inoue, T. Three-layer organic solar cell. Chem. Lett.1992, 1717.
    [16]Chen, J. J.-A.; Chen, T. L.; Kim, B.; Poulsen, D. A.; Mynar, J. L.; Frechet, J. M. J.; Ma, B. Quinacridone-based molecular donors for solution processed bulk-heterojunction organic solar cells. Applied Materials & Interfaces 2010,2,2679.
    [17]Zhou, T.; Jia, T.; Kang, B.; Li, F.; Fahlman, M.; Wang. Y. Nitrile-substituted QA derivatives:the new acceptor materials for solution-processable organic bulk hetero-junction solar cell. Adv. Energy Mater.2011, accepted.
    [18]Wakimoto, T.; Yonemoto, Y.; Funaki, J.; Tsuchida, M.; Murayama, R.; Nakada, H.; Matsumoto, H.; Yamamura, S. Luminescence properties of novel soluble quinacridones. Syn. Metals 1991,15.
    [19]Shi, J.; Tang, C. W. Doped organic electroluminescent devices with improved stability. Appl. Phys. Lett.1997,70,1665.
    [20]Mattoussi, H.; Murata, H.; Merritt, C. D.; Lizumi, Y; Kido, J.; Kafafi, Z. H. Photoluminescence quantum yield of pure and molecularly doped organic solid films. J. Appl. Phys.1999,86,2642. (b) Gross, E. M.; Anderson, J. D.; Slaterbeck, A. F.; Thayumanavan, S.; Barlow, S.; Zhang, Y.; Marder, S. R.; Hall, H. K.; Flore Nabor, M.; Wang, J. F.; Mash, E. A.; Armstrong, N. R.; Wightman, R. M. Electrogenerated chemiluminescence from derivatives of aluminum quinolate and quinacridones:cross reactions with triarylamines lead to singlet emission through triplet-triplet annihilation pathways. J. Am. Chem. Soc.2000,122,4972. (c) Murata, H.; Merritt, C. D.; Inada, H.; Shirota, Y.; Kafafi, Z. H. Molecular organic light-emitting diodes with temperature-independent quantum efficiency and improved thermal durability. Appl. Phys. Lett.1999,3252.
    [21]Liu, J.; Gao, B.; Cheng, Y.; Xie, Z.; Geng, Y.; Wang, L.; Jing, X.; Wang, F. Novel white electroluminescent single polymer derived from fluorene and quinacridone, Macromolecules 2008,41,1162.
    [22]Zaumseil, J.; Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev.2007,707,1296.
    [23]Yanagisawa, H.; Mizuguchi, J.; Aramaki, S.; Sakai, Y Organic field-effect transistor devices based on latent pigments of unsubstituted diketopyrrolopyrrole or quinacridone, J. J. App. Phy.2008,4728.
    [24]Klein, G.; Reymond, J.-L. An enzyme assay using pM. Angew. Chem. Int. Ed.2001, 40,1771
    [25]张慧东,张萍,孙迎辉,叶开其,张晶莹,王悦,喹吖啶酮衍生物/介孔分子筛MCM-41组装体的金属离子传感性能研究。高等学校化学学报2006,506.
    [26]Dean, Kathryn E. S.; Klein, G; Renaudet, O.; Reymond, J.-L. A green fluorescent chemosensor for amino acids provides a versatile high-throughput screening (HTS) assay for proteases. Bioorganic & Medicinal Chemistry Letters 2003,13,1653. (b) Smith, J. A.; West, R. M.; Allen, M. Acridones and quinacridones:Novel fluorophores for fluorescence lifetime studies. J. Fluorescence 2004,151.
    [27]Ye, K.; Wang, J.; Sun, H.; Liu, Y.; Mu, Z. C; Li, F; Jiang, S. M.; Zhang, J. Y.; Zhang, H. X.; Wang, Y.; Che, C. M. Supramolecular structures and assembly and luminescent properties of quinacridone derivatives. J. Phys. Chem. B 2005,111,8008.
    [28]Fan, Y.; Zhao,Y.; Ye, L.; Li, B.; Yang, G.; Wang Y Polymorphs and pseudopolymorphs of N,N-di(n-butyl)quinacridone:Structures and solid-state luminescence properties. Crystal Growth & Design 2009,9,1421. (b) Fan, Y.; Song, W.; Yu, D.; Ye, K.; Zhang, J.; Liu, Y; Wang, Y. Polymorphs and luminescent properties of a cetyl substituted quinacridone Derivative. CryEngComn.2009,11,1716.
    [29]Nakahara, H.; Kitahara, K.; Nishi, H.; Fukuda, K. Orientation control of quinacridone derivatives with long alkyl chains in Langmuir-Blodgett films. Chem. Lett. 1992,711.
    [30]Keller, U.; Mullen, K.; De Feyter, S.; De Schryver Frans C. Hydrogen-bonding and phase-forming behavior of a soluble quinacridone. Adv. Mater.1996,8,490
    [31]Qiu, D.; Ye, K.; Wang, Y; Zou, B.; Zhang, X. In situ scanning tunneling microscopic investigation of the two-dimensional ordering of different alkyl chain-substituted quinacridone derivatives at highly oriented pyrolytic graphite/solution interface. Langmuir 2003,19,678. (b) Yang, X.; Mu, Z.; Wang, Z.; Zhang, X.; Wang, J.; Wang, Y STM study on quinacridone derivative assemblies:modulation of the two-dimensional structure by coadsorption with dicarboxylic acids. Langmuir 2005,21, 7225.
    [32]Yang, X.; Wang, J.; Zhang, X.; Wang, Z.; Wang, Y. STM study on 2D molecular assemblies of luminescent quinacridone derivatives:structure fine-tuned by introducing bulky substitutes and co-adsorption with monofunctional/bifunctional acid. Langmuir 2007, 23,1287.
    [33]Lin, F.; Zhong, D. Y; Chi, L. F.; Ye, K.; Wang, Y; Fuchs, H. Temperature-tuned organic monolayer growth:N,N-di(n-butyl)quinacridone on Ag(110). Phys. Rev. B 2006, 73,235420.
    [34](a) Wang, J.; Zhao, Y; Zhang, J.; Zhang, J.; Yang, B.; Wang, Y.; Zhang, D.; You, H.; Ma, D. Assembly of one-dimensional organic luminescent nanowires based on quinacridone derivatives. J. Phys. Chem. C 2007,111,9177. (b) Zhao, Y.; Mu, X.; Bao, C.; Fan, Y.; Zhang, J.; Wang Y. Alkyl chain length dependent morphology and emission properties of the organic micromaterials based on fluorinated quinacridone derivatives. Langmuir 2009,25,3264. (c) Zhao, Y.; Fan, Y.; Mu, X.; Gao, H.; Wang, J.; Zhang, J.; Yang, W.; Chi, L.; Wang, Y Self-assembly of luminescent twisted fibers based on achiral quinacridone derivatives. Nano Res.2009,2,493.(d)王嘉,烷基、树枝状取代喹吖啶酮化合物的合成、光谱性质及低维组装特性的研究,吉林大学博士学位论文,2006年。(e)赵云峰,喹吖啶酮及芳香胺化合物:自组装、发光及堆积结构的研究,吉林大学博士学位论文,2009年。
    [35](a) Terech, P.; Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev.1997,97,3133. (b) Weiss, R. G.; Terech, P. Molecular gels materials with self-assembled fibrillar networks, Dordrecht:springer,2006.
    [36]Rigby, M.; Smith, E.; Wakeham. W. A.; Maitland, G. C. The forces between molecules. Clarendon. Pxford,1986.
    [37]Sangeetha, N. M.; Maitra, U. Supramolecular gels:Functions and uses. Chem. Soc. Rev.2005,34,821.
    [38](a) Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem. Int. Ed.2003,42, 1210. (b) Chung, J. W.; Yang, H.; Singh, B.; Moon, H.; An, B.-k.; Leed S. Y.; Park, S. Y. Single-crystalline organic nanowires with large mobility and strong fluorescence emission: a conductive-AFM and space-charge-limited-current study. J. Mater. Chem.2009,19,5920. (c) Oudjaniyobi Simalou,基于三苯基苯的小分子有机凝胶剂的自组装与光物理性质研究,吉林大学博士学位论文,2010年。
    [39](a) Wu, J. S.; Fechtenkotter, A.; Gauss, J.; Watson, M. D.; Kastler, M.; Fechtenkotter, C.; Wagner, M.; Mullen, K. J. Am. Chem. Soc.2004,126,11311. (b) Kaiser, T. E.; Wang, H.; Stepanenko, V.; Wiirthner, F. Supramolecular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes. Angew. Chem. Int. Ed.2007,46, 5541. (c) Kobayashi, T. J-Aggregates, World Scientific Publishing (Singapore),1996,98.
    [40](a) Wurthner, F.; Bauer, C.; Stepanenko, V.; Yagai, S. A black perylene bisimide super gelator with an unexpected J-type absorption band. Adv. Mater.2008,20,1695. (b) Seibt, P.; Volker Engel, M.; Chen, Z.; Dehm, V.; Wurthner, F. Chem. Phys.2006,328,354. (c) Wurthner, F. Chem. Commun.2004,1567. (d) Yagai, S.; Seki, T.; Karatsu, T.; Kitamura, A.; Wurthner, F. Angew. Chem. Int. Ed.2008,47,3367.
    [41](a) Sugiyasu, K.; Fujita, N.; Shinkai, S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives. Angew. Chem. Int. Ed.2004,43,1229. (b) Shirakawa, M.; Fujita, N.; Shinkai S. [60]Fullerene-motivated organogel formation in a porphyrin derivative bearing programmed hydrogen-bonding sites J. Am. Chem. Soc.2003, 125,9902.
    [42](a) Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C. Organogels as scaffolds for excitation energy transfer and light harvesting. Chem. Soc. Rev.2008,37,109. (b) Ajayaghosh, A.; Praveen, V. K.; Srinivasan, S.; Varghese, R. Quadrupolar p-gels:sol-gel tunable red-green-blue emission in donor-acceptor-type oligo(p-phenylenevinylene)s. Adv. Mater.2007,19,411. (c) Praveen, V. K.; George, S. J.; Varghese, R.; Vijayakumar, C.; Ajayaghosh, A. Self-assembled л-nanotapes as donor scaffolds for selective and thermally gated fluorescence resonance energy transfer (FRET). J. Am. Chem. Soc.2006,128,7542.
    [43](a) Yang, X.; Lu, R.; Xu, T.; Xue, P.; Liu, X.; Zhao, Y. Novel carbazole-based organogels modulated by tert-butyl moieties. Chem. Commun.2008,453. (b) Su, L.; Bao, C.; Lu, R.; Chen, Y.; Xu, T.; Song, D.; Tan, C.; Shi, T.; Zhao, Y. Synthesis and self-assembly of dichalcone substituted carbazole-based low-molecular mass organogel. Org. Biomol. Chem.2006,4,2591.
    [44](a) Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, Wiley, Chichester,2000. (b) Dou, X.; Pisula, W.; Wu, J. S.; Bodwell, G. J.; Mullen, K. Chem. Eur. J.2008,14,240.
    [45](a) Zhao, Fan; Ma, M. L.; Xu, B. Molecular hydrogels of therapeutic agents. Chem. Soc. Rev.2009,38,883. (b) Xing, B. G.; Yu, C. W.; Chow, K. H.; Ho, P. L.; Fu, D. G.; Xu, B. J. Am. Chem. Soc.2002,124,14846. (c) Wang, Q. G.; Yang, Z. M.; Zhang, X. Q.; Xiao, X. D.; Chang, C. K.; Xu, B. Angew. Chem., Int. Ed.2007,46,4285.
    [46](a) John, G.; Shankar, B. V.; Jadhav, S. R.; Vemula, P. K. Biorefinery:a design tool for molecular gelators. Langmuir 2010,26,17843. (b) Vemula, P. K.; Li, J.; John G. Enzyme catalysis:tool to make and break amygdalin hydrogelators from tenewable resources:a delivery model for hydrophobic drugs. J. Am. Chem. Soc.2006,128,8932.
    [47](a) Kiyonaka, S.; Sugiyasu, K.; Shinkai, S.; Hamachi, I. First thermally responsive supramolecular polymer based on glycosylated amino acid. J. Am. Chem. Soc.2002,124, 10954. (b) Sakurai, K.; Jeong, Y.; Koumoto, K.; Friggeri, A.; Gronwald, O.; Sakurai, S.; Okamoto, S.; Inoue, K.; Shinkai, S. Supramolecular structure of a sugar-appended organogelator explored with synchrotron X-ray small-angle scattering. Langmuir 2003,19, 8211.
    [48](a) Schneider, J. P.; Pochan, D. J.; Ozbas, B.; Rajagopal, K.; Pakstis, L.; Kretsinger, J. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc.2002,124,15030. (b) Bhuniya, S.; Kim, B. H. An insulin-sensing sugar-based fluorescent hydrogel. Chem. Commun.2006,1842.
    [49]Smith, D. K. Dendritic gels:many arms make light work. Adv. Mater.2006,18, 2773.
    [50]Davis, R.; Berger, R.; Zentel, R. Two-dimensional aggregation of organogelators induced by biaxial hydrogen-bonding gives supramolecular nanosheets. Adv. Mater.2007, 19,3878.
    [51]Osada, Y.; Kajiwara, K.; Fushimi, T.; Hirasa, O.; Hirokawa, Y.; Matsunaga, T.; Shimomura, T.; Wang, L.; Ishida, H. Gels hand book.1-3, Academic Press, San Diego. 2001.
    [52](a) Toyne, K. J. Critical reports on applied chemistry; Gray, G. W., Ed.; Wiley: Chichester.1987,22,28. (b) Takahashi, A.; Ajay Malliab, V.; Tamaoki, N. Novel supramolecular hydrogen-bonded cholesteric mesogens:liquid crystalline, thermoptical and glass-forming properties. J. Mater. Chem.2003,13,1582.
    [53]George, M.; Weiss, R. G. Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc. Chem. Res.2006,39 489.
    [54]Jung, J. H.; Nakashima, K.; Shinkai, S. Preparation of ultrastable mesoporous silica using a phenanthroline-appended cholesterol organogelator as a template. Nano Lett.2001, 1,145.
    [55]Lin, Y.-C.; Weiss, R. G. A novel gelator of organic liquids and the properties of its gels. Macromolecules 1987,20,414.
    [56]Lin, Y.-C.; Kachar, B.; Weiss, R. G. Novel family of gelators of organic fluids and the structure of their gels. J. Am. Chem. Soc.1989,111,5542.
    [57](a) Wang, R.; Geiger, C.; Chen, L.; Swanson, B.; Whitten, D. G; Direct observation of sol-gel conversion:the role of the solvent in organogel formation. J. Am. Chem. Soc. 2000,122,2399. (b) Wang, G.; Lin, J.; Jiang, X.; Li Z. Cholesterol-appended aromatic imine organogelators:s case study of gelation-driven component selection. Langmuir 2009, 25,8414. (c) Terech, P. Structural study of cholesteryl anthraquinone-2-carboxylate (CAQ) physical organogels by Neutron and X-ray small angle scattering. J. Phys. Chem.1996, 100,3759. (d) Sakurai, K.; Ono, Y.; Jung, J. H.; Okamoto, S.; Sakurai, S.; Shinkai, S. Synchrotron small angle X-ray scattering from organogels. Part 1. Changes in molecular assemblies of cholesterol gelators during gel-sol transition. J. Chem. Soc, Per kin Trans.2 2001,108.
    [58]van Nostrum, C. F.; Picken, S.; Schouten, A.-J.; J. Nolte, R. J. M. Synthesis and supramolecular chemistry of novel liquid crystalline crown ether-substituted phthalocyanines:toward molecular wires and molecular ionoelectronics. J. Am. Chem. Soc. 1995,117,9957.
    [59](a) Chen, T.; Pan, G.-B.; Wettach, H.; Fritzsche, M.; Hoger, S.; Wan, L.-J.; Yang, H.; Northrop, B.; Stang, P.2D Assembly of metallacycles on HOPG by shape-persistent macrocycle templates. J. Am. Chem. Soc.2010,132,1328. (b) Brocker, E.; Anderson, S.; Northrop, B.; Stang, P.; Bowers, M. Structures of metallosupramolecular coordination assemblies can be obtained by ion mobility spectrometry-mass spectrometry. J. Am. Chem. Soc.2010,132,13486. (c) Zhang, Y.; Zhang, Z.; Zhao, Y.; Fan, Y.; Tong, T.; Zhang, H.; Wang Y Solution-processed microwires of phthalocyanine copper(Ⅱ) derivative with excellent conductivity. Langmuir 2009,25,6045.
    [60](a) Paulusse, Jos M. J.; Sijbesma, R. Reversible mechanochemistry of a Pdll coordination polymer. Angew. Chem. Int. Ed.2004,43,4460. (b) Kim, H.-J.; Lee, J.-H.; Lee M. Stimuli-responsive gels from reversible coordination polymers. Angew. Chem. Int. Ed.2005,44,5810.
    [61]Hui, J. K.-H.; Yu, Z.; MacLachlan, M. J. Supramolecular assembly of zinc salphen complexes:access to metal-containing gels and nanofibers. Angew. Chem. Int. Ed.2007, 46,7980.
    [62]Shirakawa, M.; Fujita, N.; Tani, T.; Kaneko, K.; Ojima, M.; Fujii, A.; Ozaki, M.; Shinkai, S. Organogels of 8-quinolinol/metal(Ⅱ)-chelate derivatives that show electron-and light-emitting properties. Chem. Eur. J.2007,13,4155.
    [63]Lu, W.; Chen, Y.; Roy, V. A. L.; Chui, S. S.-Y.; Che, C.-M. Supramolecular polymers and chromonic mesophases self-organized from phosphorescent cationic organoplatinum(Ⅱ) complexes in water. Angew. Chem. Int. Ed.2009,48,7621. (b) Tam, A. Y.-Y.; Wong, K. M.-C; Yam, V. W.-W. Influence of counteranion on the chiral supramolecular assembly of alkynylplatinum(II) terpyridyl metallogels that are stabilized by Pt-Pt and л-л interactions. Chem. Eur. J.2009,15,4775.
    [64](a) Isozaki, K.; Takaya, H.; Naota, T. Ultrasound-induced gelation of organic fluids with metalated peptides. Angew. Chem. Int. Ed,2007,46,2855. (b) Moon, K. S.; Kim, H. J.; Lee, E.; Lee, M. Self-assembly of T-shaped aromatic amphiphiles into stimulus-responsive nanofibers. Angew. Chem. Int. Ed.2007,46,6807. (c) Tsuchiya, K.; Orihara, Y.; Kondo, Y.; Yoshino, N.; Ohkubo, T.; Sakai, K.; Abe, M. Control of viscoelasticity using redox reaction. J. Am. Chem. Soc.2004,126,12282. (d) Ulijn, R. V. Enzyme-responsive materials:a new class of smart biomaterials. J. Mater. Chem.2006,16,2217.(e)周义锋,基于偶氮苯基团的光致变色凝胶及其自组装性质研究,复旦大学博士学位论文,2007年。
    [65]Naota, T.; Koori, H.; Molecules that assemble by sound:an application to the instant gelation of stable organic fluids. J. Am. Chem. Soc.2005,127,9324.
    [66]Bardelang, D.; Camerel, F.; Margeson, J. C.; Leek, D. M.; Schmutz, M.; Badruz Zaman, M.; Yu, K.; Soldatov, D. V.; Ziessel, R.; Ratcliffe, C.; Ripmeester, J. Unusual sculpting of dipeptide particles by ultrasound induces gelation. J. Am. Chem. Soc.2008, 130,3313.
    [67](a) Wu, J.; Yi, T.; Shu, T.; Yu, M.; Zhou, Z.; Xu, M.; Zhou, Y.; Zhang, H.; Han, J.; Li, F.; Huang, C. Ultrasound switch and thermal self-repair of morphology and surface wettability in a cholesterol-based self-assembly system. Angew. Chem. Int. Ed.2008,47, 1063. (b) Wu, J.; Yi, T.; Xia, Q.; Zou, Y.; Liu, F.; Dong, J.; Shu, T.; Li, F.; Huang, C. Tunable gel formation by both sonication and thermal processing in a cholesterol-based self-assembly system. Chem. Eur. J.2009,15,6234.
    [68]Zhang, S.; Yang, S.; Lan, J.; Tang, Y.; Xue, Y.; You, J. Ultrasound-induced switching of sheetlike coordination polymer microparticles to nanofibers capable of gelating solvents. J. Am. Chem. Soc.2009,131,1689.
    [69]Dautel, O. J.; Robitzer, M.; Lere-Porte, J.-R.; Serein-Spirau, F.; Moreau, J. J. E. Self-organized ureido substituted diacetylenic organogel. Photopolymerization of one-dimensional supramolecular assemblies to give conjugated nanofibers. J. Am. Chem. Soc.2006,128,16213.
    [70]Weng, W.; Benjamin Beck, J.; Jamieson, A. M.; Rowan, S. J. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. J. Am. Chem. Soc.2006,128,11663.
    [71]Yagai, S.; Nakajima, T.; Kishikawa, K.; Kohmoto, S.; Karatsu, T.; Kitamura, A. Hierarchical organization of photoresponsive hydrogen-bonded rosettes. J. Am. Chem. Soc. 2005,127,11134.
    [72]Wang, S.; Shen, W.; Feng Y.; Tian, H. A multiple switching bisthienylethene and its photochromic fluorescent organogelator. Chem. Commun.2006,1497.
    [73]Wang, C.; Zhang, D.; Zhu, D. A low-molecular-mass gelator with an electroactive tetrathiafulvalene group:tuning the gel formation by charge-transfer interaction and oxidation. J. Am. Chem. Soc.2005,127,16372.
    [74]Maeda, H.; Haketa, Y.; Nakanishi, T. Aryl-substituted C3-bridged oligopyrroles as anion receptors for formation of supramolecular organogels. J. Am. Chem. Soc.2007,129, 13661.
    [75]Zhao, X.; Li, Z. Hydrogen bonded aryl amide and hydrazide oligomers:a new generation of preorganized soft frameworks. Chem. Commun.2010,46,1601.
    [76]Kishimura, A.; Yamashita, T.; Aida, T.; Phosphorescent organogels via "metallophilic" interactions for reversible RGB-color switching. J. Am. Chem. Soc.2005, 127,179.
    [77]Liu, Q.; Wang, Y.; Li, W.; Wu L. Structural characterization and chemical response of a Ag-coordinated supramolecular gel. Langmuir 2007,23,8217.
    [78]Mukhopadhyay, P.; Iwashita, Y.; Shirakawa, M.; Kawano, S.; Fujita, N.; Shinkai S. Spontaneous colorimetric sensing of the positional isomers of dihydroxynaphthalene in a 1D organogel matrix. Angew. Chem. Int. Ed.2006,45,1592.
    [79]Kawano, S.; Fujita, N.; Shinkai, S. A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. J. Am. Chem. Soc.2004,126,8592.
    [80](a) Roy, G.; Miravet, J. F.; Escuder, B.; Sanchezb, C.; Llusar, M. Morphology templating of nanofibrous silica through pH-sensitive gels:"in situ" and "post-diffusion" strategies. J. Mater. Chem.2006,16,1817. (b) Llusar, Mario.; Sanchez, C. Inorganic and hybrid nanofibrous materials templated with organogelators. Chem. Mater.2008,20,782. (c) Yang, Y.; Suzuki, M.; Owa, S.; Shirai, H.; Hanabusa, K. Control of mesoporous silica nanostructures and pore-architectures using a thickener and a gelator. J. Am. Chem. Soc. 2007,129,581. (d) Ono, Y.; Nakashima, K.; Sano, M.; Hojob, J.; Shinkai, S. Organogels are useful as a template for the preparation of novel helical silica fibers. J. Mater. Chem. 2001,11,2412.
    [81](a) Matsumoto, S.; Yamaguchi, S.; Ueno, S.; Komatsu, H.; Ikeda, M.; Ishizuka, K.; Iko, Y.; Tabata, K. V.; Aoki, H.; Ito, S.; Noji, H.; Hamachi, I. Photo gel-sol/sol-gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive biomaterials. Chem. Eur. J.2008,14,3977. (b) Pastine, S. J.; Okawa, D.; Zettl, A.; Frechet, J. M. J. Chemicals on demand with phototriggerable microcapsules. J. Am. Chem. Soc. 2009,131,13586. (c) Gao, J.; Wang, H.; Wang, L.; Wang, J.; Kong, D.; Yang, Z. Enzyme promotes the hydrogelation from a hydrophobic small molecule. J. Am. Chem. Soc.2009, 131,11286.
    [82](a) Wicklein, A.; Ghosh, S.; Sommer, M.; Wiirthner, F.; Thelakkat, M. Self-assembly of semiconductor organogelator nanowires for photoinduced charge separation. ACS Nano 2009,3,1107. (b) Hirai, Y.; Monobe, H.; Mizoshita, N.; Moriyama, M.; Hanabusa, K.; Shimizu, Y.; Kato, T. Enhanced hole-transporting behavior of discotic liquid-crystalline physical gels. Adv. Funct. Mater.2008,18,1668. (c) Bhattacharya, S.; Samanta, S. K. Soft functional materials induced by fibrillar networks of small molecular photochromic gelators. Langmuir 2009,25,8378.
    [83](a) Vintiloiu, A.; Leroux, J.-C. Organogels and their use in drug delivery. Journal of Controlled Release 2008,125,179. (b) Tiller, J. C. Increasing the local concentration of drugs by hydrogel formation. Angew. Chem. Int. Ed.2003,42,3072. (c) Thornton, P. D.; Mart, R. J.; Webbb. S. J.; Ulijn, R. V. Enzyme-responsive hydrogel particles for the controlled release of proteins:designing peptide actuators to match payload. Soft Matter 2008,4,821. (d) Friggeri, A.; Feringa, B. L.; van Esch, J. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator. J. Control. Release 2004,97,241.
    [1]T. B. Reeve, E. C. Botti, Du Pont Official Digest 1958,991.
    [2](a) Ye, K.; Wang, J.; Sun, H.; Liu, Y.; Mu, Z. C.; Li, F.; Jiang, S. M.; Zhang, J. Y.; Zhang, H. X.; Y. Wang, Che, C. M. Supramolecular structures and assembly and luminescent properties of quinacridone derivatives. J. Phys. Chem.B 2005,109,8008. (b)王嘉,烷基、树枝状取代喹吖啶酮化合物的合成、光谱性质及低维组装特性的研究,吉林大学博士学位论文,2006年。(c)于丁一,系列环形喹吖啶酮衍生物的合成、结构及光谱性质研究,吉林大学博士学位论文,2007年。(e) Chen, J. J.-A.; Chen, T. L.; Kim, B.; Poulsen, D. A.; Mynar, J. L.; Frechet, J. M. J.; Ma, B. Quinacridone-based molecular donors for solution processed bulk-Heterojunction organic solar cells. Applied Materials & Interfaces 2010,2679.
    [3]Yang, X. Y; Mu, Z. C; Wang, Z. Q.; Zhang, X.; Wang, J.; Wang, Y. STM study on quinacridone derivative assemblies:modulation of the two-dimensional structure by coadsorption with dicarboxylic acids. Langmuir 2005,21,7225.
    [4](a) George, M.; Weiss, R. G. Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc. Chem. Res.2006,39,489. (b) Ajayaghosh, A.; Vijayakumar, C.; Varghese, R.; George, S. J. Cholesterol-aided supramolecular control over chromophore packing:twisted and coiled helices with distinct optical, chiroptical, and morphological features. Angew. Chem. Int. Ed.2006,45,456. (c) Wang, R.; Geiger, C.; Chen, L. H.; Swanson, B.; Whitten, D. G. Direct observation of sol-gel conversion:the role of the solvent in organogel formation. J. Am. Chem. Soc.2000, 122,2399. (d) Ajay Mallia, V.; Tamaoki, N. Design of chiral dimesogens containing cholesteryl groups:formation of new molecular organizations and their application to molecular photonics. Chem. Soc. Rev.2004,33,76.
    [5](a) Kishida, T.; Fujita, N.; Sada, K.; Shinkai, S. Porphyrin gels reinforced by sol-gel reaction via the organogel phase. Langmuir 2005,21,9432. (b) Yagai, S.; Kubota, S.; Iwashima, T.; Kishikawa, K.; Nakanishi, T.; Karatsu, T.; Kitamura, A. Supramolecular polymerization and polymorphs of oligo(p-phenylene vinylene)-functionalized bis-and monoureas. Chem. Eur. J.2008,14,5246.
    [1](a) Weiss, R. G.; Terech, P. E. Molecular gels. Materials with self-assembled fibrillar networks. Springer:Dordrecht, The Netherlands,2005. (b) Abdallah, D. J.; Weiss, R. G. Organogels and low molecular mass organic gelators. Adv. Mater.2000,12,1237.
    [2]Moon, K. S.; Kim, H. J.; Lee, E.; Lee, M. Self-assembly of T-shaped aromatic amphiphiles into stimulus-responsive nanofibers. Angew. Chem. Int. Ed.2007,46,6807.
    [3](a) Tsuchiya, K.; Orihara, Y.; Kondo, Y.; Yoshino, N.; Ohkubo, T.; Sakai, H.; Abe, M. Control of viscoelasticity using redox reaction. J. Am. Chem. Soc.2004,126,12282. (b) Ulijn, R. V. Enzyme-responsive materials:a new class of smart biomaterials. J. Mater. Chem.2006,16,2217. (c)侯秋飞,小分子凝胶因子的设计合成及其性质研究,吉林大学博士学位论文,2010年。
    [4](a) Naota, T.; Koori, H. Molecules that assemble by sound:an application to the instant gelation of stable organic fluids. J. Am. Chem. Soc.2005,127,9324. (b) Chen, X.; Huang, Z.; Chen, S.; Li, K.; Yu, X.; Pu, L. Enantioselective gel collapsing:A new means of visual chiral sensing. J. Am. Chem. Soc.2010,132,7297.
    [5](a) Ye, K.; Wang, J.; Sun, H.; Liu, Y.; Mu, Z. C; Li, F.; Jiang, S. M.; Zhang, J. Y.; Zhang, H. X.; Wang, Y.; Che, C. M. Supramolecular structures and assembly and luminescent properties of quinacridone derivatives. J. Phys. Chem. B 2005,109,8008. (b) Chen, J. J.-A.; Chen, T. L.; Kim, B.; Poulsen, D. A.; Mynar, J. L.; Frechet, J. M. J.; Ma. B.; Quinacridone-based molecular donors for solution processed bulk-heteroj unction organic solar cells. Applied Materials & Interfaces.2010,2679.
    [6](a) Zhao, Y.; Fan, Y.; Mu, X.; Gao, H.; Wang, J.; Zhang, J.; Yang, W.; Chi, L.; Wang, Y. Self-assembly of luminescent twisted fibers based on achiral quinacridone derivatives. Nano Res.2009,2,493. (b) Lin, F.; Zhong, D. Y.; Chi, L. F.; Ye, K.; Wang, Y. Fuchs, H. Temperature-tuned organic monolayer growth:N,N-di(n-butyl)quinacridone on Ag (110). Phys. Rev. B 2006,73,235420.
    [7](a) Felder-Flesch, D.; Rupnicki, L.; Bourgogne, C.; Donnio, B.; Guillon, D. Liquid-crystalline cholesterol-based [60]fullerene hexaadducts. J. Mater. Chem.2006,16, 304. (b) George, M.; Weiss, R. G. Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc. Chem. Res.2006,39,489.(c)吴君臣,功能性胆甾化合物的设计合成、分子组装及对环境的响应能力,复旦大学博士学位论文,2009年。
    [8](a) Ajayaghosh, A.; Vijayakumar, C.; Varghese, R.; George, S. J. Cholesterol-aided supramolecular control over chromophore packing:twisted and coiled helices with distinct optical, chiroptical, and morphological features. Angew. Chem. Int. Ed.2006,45,456. (b) Wang, R.; Geiger, C.; Chen, L. H.; Swanson, B.; Whitten, D. G. Direct observation of sol-gel conversion:the role of the solvent in organogel formation. J. Am. Chem. Soc.2000, 122,2399. (c) Ajay Mallia, V.; Tamaoki, N. Design of chiral dimesogens containing cholesteryl groups:formation of new molecular organizations and their application to molecular photonics. Chem. Soc. Rev.2004,33,76. (d) Lin, Y.; Kachar, B.; Weiss, R. G. Novel family of gelators of organic fluids and the structure of their gels. J. Am. Chem. Soc. 1989,111,5542. (e) Sugiyasu, K.; Fujita, N.; Shinkai, S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives. Angew. Chem. Int. Ed. 2004,43,1229.
    [9]van Esch, J. H.; Feringa, B. L. New functional materials based on self-assembling organogels:from serendipity towards design. Angew. Chem. Int. Ed.2000,39,2263.
    [10](a) Seibt, J.; Marquetand, P.; Engel, V.; Chen, Z.; Dehm, V.; Wurthner, F. On the geometry dependence of molecular dimer spectra with an application to aggregates of perylene bisimide. Chemical Physics 2006,328,354.
    [11]Yagai, S.; Seki, T.; Karatsu, T.; Kitamura, A.; Wurthner, F. Transformation from H-to J-aggregated perylene bisimide dyes by complexation with cyanurates. Angew. Chem. Int. Ed.2008,47,3367.
    [12](a) Percec, V.; Ungar, G.; Peterca, M. Self-assembly in action. Science 2006,313, 55.
    [13]Wurthner, F.; Hanke, B.; Lysetska, M.; Lambright, G.; Harms, G S. Gelation of a highly fluorescent urea-functionalized perylene bisimide dye. Org. Lett.2005,7,967.
    [14]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R. Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; et al. Gaussian 03, Revision C.02. Gaussian, Inc.:Pittsburgh, PA,2003.
    [15](a) Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 1999,284,785. (b) Keizer, H. M.; Sijbesma, R. P. Hierarchical self-assembly of columnar aggregates. Chem. Soc. Rev.2005,34,226.
    [16](a) Balch, A. L. Dynamic crystals:visually detected mechanochemical changes in the luminescence of gold and other transition-metal complexes. Angew. Chem. Int. Ed. 2009,48,2641. (b) Sagara, Y.; Mutai, T.; Yoshikawa, I.; Araki, K. Material design for piezochromic luminescence:hydrogen-bond-directed assemblies of a pyrene derivative. J. Am. Chem. Soc.2007,129,1520.
    [17]Ooyama, Y.; Kagawa, Y.; Fukuoka, H.; Ito, G.; Harima, Y. Mechanofluorochromism of a series of Benzofuro[2,3-c]oxazolo[4,5-a]-carbazole-type fluorescent dyes. Eur. J. Org. Chem.2009,5321.
    [1](a) Weiss, R. G.; Terech, P. E. Molecular Gels. Materials with self-assembled fibrillar networks, Springer:Dordrecht, the Netherlands,2005. (b) Bhattacharya, S.; Samanta S. K. Soft functional materials induced by fibrillar networks of small molecular photochromic gelators. Langmuir 2009,25,8378. (f) Low Molecular Mass Gelators. Top. Curr. Chem.2005,256.
    [2](a) Tsuchiya, K.; Orihara, Y.; Kondo, Y.; Yoshino, N.; Ohkubo, T.; Sakai, H.; Abe, M. Control of viscoelasticity using redox reaction. J. Am. Chem. Soc.2004,126,12282. (b) Ulijn, R. V. Enzyme-responsive materials:a new class of smart biomaterials. J. Mater. Chem.2006,16,2217. (c) Yang, Z.; Liang G.; Xu, B. Enzymatic hydrogelation of small molecules. Acc. Chem. Res.2008,41,315.
    [3](a) Kawano, S.; Fujita, N.; Shinkai, S. A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. J. Am. Chem. Soc.2004,126,8592. (b) Kim, H.-J.; Lee, J.-H.; Lee, M. Stimuli-responsive gels from reversible coordination polymers. Angew. Chem., Int. Ed.2005,44,5810.
    [4]Bardelang, D.; Camerel, F.; Margeson, J.; Leek, D.; Schmutz, M.; Zaman, M.; Yu, K.; Soldatov D.; Ziessel, R.; Ratcliffe, C.; Ripmeester, J. Unusual sculpting of dipeptide particles by ultrasound induces gelation. J. Am. Chem. Soc.2008.130,3313.
    [5](a) Weng, W.; Beck, J.; Jamieson, A.; Rowan, S. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. J. Am. Chem. Soc.2006,128,11663. (b) Liu, J.; He, P.; Yan, J.; Fang, X.; Peng, J.; Liu, K.; Fang Y. An organometallic super-gelator with multiple-stimulus responsive properties. Adv. Mater.2008,20,2508.
    [6]Duncan, D.; Whitten, D.(?)H NMR Investigation of the composition, structure, and dynamics of cholesterol-stilbene tethered dyad organogels. Langmuir 2000,16,6445.
    [7]Isozaki, K.; Takaya, H.; Naota, T. Ultrasound-induced gelation of organic fluids with metalated peptides. Angew. Chem., Int. Ed.2007,46,2855.
    [8]Ye, K. Q.; Wang, J.; Sun, H.; Liu, Y.; Mu, Z. C.; Li, F.; Jiang, S. M.; Zhang, J. Y.; Zhang, H. X.; Wang, Y.; Che, C. M. Supramolecular structures and assembly and luminescent properties of quinacridone derivatives. J. Phys. Chem. B 2005,109,8008.
    [9](a) Kobayashi, T. J-Aggregates, World Scientific Publishing (Singapore),1996, p.98. (b) Wurthner, F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun.2004,1567. (c) Seibt, P.; Volker Engel, M.; Chen, Z.; Dehm, V.; Wurthner, F. On the geometry dependence of molecular dimer spectra with an application to aggregates of perylene bisimide. Chem. Phys.2006,328,354. (d) Yagai, S.; Seki, T.; Karatsu, T.; Kitamura, A.; Wurthner, F. Transformation from H-to J-aggregated perylene bisimide dyes by complexation with cyanurates. Angew. Chem. Int. Ed.2008,47,3367.
    [10]Wang, J.; Zhao, Y.; Zhang, J.; Zhang, J.; Yang, B.; Wang, Y.; Zhang, D.; You, Han.; Ma, D. Assembly of one-dimensional organic luminescent nanowires based on quinacridone derivatives. J. Phys. Chem. C 2007,111,9177.
    [11]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery J. A., Jr.; Vreven, T. Kudin, K. N.; Burant, J. C. et al. Gaussian 03, Revision C.02. Gaussian, Inc.:Pittsburgh, PA 2003.
    [1](a) Weiss, R. G.; Terech, P. E. Molecular gels. Materials with self-assembled fibrillar networks, Springer:Dordrecht, The Netherlands,2005. (b) Fages, F.; Vogtle, F.; Zinic, M. Low molecular mass gelators:systematic design of amide-and urea-type gelators with tailored properties, Top. Curr. Chem.2005,256,77.
    [2](a) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. About supramolecular assemblies of л-conjugated systems. Chem. Rev.2005,105,1491. (b) Sada, K.; Takeuchi, M.; Fujita, N.; Numata, M.; Shinkai, S. Post-polymerization of preorganized assemblies for creating shapecontrolled functional materials. Chem. Soc. Rev.2007,36, 415. (c) Yamaguchi, S.; Matsumoto, S.; Ishizuka, K.; Iko, Y.; Tabata, K. V.; Arata, H. F.; Fujita, H.; Noji, H.; Hamachi, I. Thermally responsive supramolecular nanomeshes for on/off switching of the rotary motion of Fl-ATPase at the single-molecule level. Chem. Eur.J.2008,14,1891. (d)何盼丽,新型二茂铁双胆固醇衍生物的合成及其胶凝行为,陕西师范大学硕士学位论文,2010年。(e)徐淼,基于偶氮苯的超分子液晶及有机小分子凝胶研究,复旦大学硕士学位论文,2008年。
    [3](a) Llusar, M.; Sanchez, C. Inorganic and hybrid nanofibrous materials templated with organogelators. Chem. Mater.2008,20,782. (b) Yang, Z. M.; Liang, G. L.; Xu, B. Enzymatic hydrogelation of small molecules. Acc. Chem. Res.2008,41,315. (c) Trivedi, D. R.; Ballabh, A.; Dastidar, P.; Ganguly, B. Structure-property correlation of a new family of organogelators based on organic salts and their selective gelation of oil from oil/water mixtures. Chem. Eur. J.2004,10,5311.
    [4](a) Naota, T.; Koori, H. Molecules that assemble by sound:an application to the instant gelation of stable organic fluids. J. Am. Chem. Soc.2005,127,9324. (b) Wu, J. C.; Yi, T.; Xia, Q.; Zou, Y.; Liu, F.; Dong, J.; Shu, T. M.; Li, F. Y.; Huang, C. H. Tunable fel formation by both sonication and thermal processing in a cholesterol-based self-assembly system. Chem. Eur. J.2009,15,6234.
    [5](a) Bardelang, D.; Camerel, F.; Margeson, J. C.; Leek, D. M.; Schmutz, M.; Zaman, M. B.; Yu, K.; Soldatov, D. V.; Ziessel, R.; Ratcliffe, C. I.; Ripmeester, J. A. Unusual sculpting of dipeptide particles by ultrasound induces gelation. J. Am. Chem. Soc.2008, 130,3313. (b) Wang, C; Zhang, D. Q.; Zhu, D. B. A low-molecular-mass gelator with an electroactive tetrathiafulvalene group:tuning the gel formation by charge-transfer interaction and oxidation. J. Am. Chem. Soc.2005,127,16372.
    [6]Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, Wiley, Chichester,2000.
    [7]Yang, Z.; Liang G.; Xu, B. Enzymatic hydrogelation of small molecules. Acc. Chem. Res.2008,41,315.
    [8]Isozaki, K.; Takaya, H.; Naota, T. Ultrasound-induced gelation of organic fluids with metalated peptides. Angew. Chem. Int. Ed.2007,46,2855.
    [9](a) Kishida, T.; Fujita, N.; Sada, K.; Shinkai, S. Porphyrin gels reinforced by sol-gel reaction via the organogel phase. Langmuir.2005,21,9432. (b) Yagai, S.; Kubota, S.; Iwashima, T.; Kishikawa, K.; Nakanishi, T.; Karatsu, T.; Kitamura, A. Supramolecular polymerization and polymorphs of oligo(p-phenylene vinylene)-functionalized bis-and monoureas. Chem. Eur. J.2008,14,5246.
    [10](a) Luboradzki, R.; Gronwald, O.; Ikeda, A.; Shinkai, S. Sugar-integrated "supergelators" which can form organogels with 0.03-0.05%[g mL-1]. Chem. Lett.2000, 1148. (b) Mukhopadhyay, S.; Maitra, U.; Ira, I.; Krishnamoorthy, G.; Schmidt, J.; Talmon, Y. Structure and dynamics of a molecular hydrogel derived from a tripodal cholamide. J. Am. Chem. Soc.2004,126,15905.
    [11]Zhu, G Y.; Dordick, J. S. Solvent effect on organogel formation by low molecular weight molecules. Chem. Mater.2006,18,5988.
    [12]Wu, J. S.; Fechtenkotter, A.; Gauss, J.; Watson, M. D.; Kastler, M.; Fechtenkotter, C; Wagner, M.; Mullen, K. Controlled self-assembly of hexa-peri-hexabenzocoronenes in solution. J. Am. Chem. Soc.2004,126,11311.
    [13]van Esch, J.; Schoonbeek, F.; de Loos, M.; Kooijman, H.; Spek, A. L.; Kellogg, R. M.; Feringa, B. L. Cyclic bis-urea compounds as gelators for organic solvents. Chem. Eur. J.1999,5,937.
    [14](a) Lewis, F. D.; Wu, T.; Burch, E. L.; Bassani, D. M.; Yang, J. S.; Schneider, S.; Jager, W.; Letsinger, R. L. Hybrid oligonucleotides containing stilbene units. Excimer fluorescence and photodimerization. J. Am. Chem. Soc.1995,117,8785. (b) Kobayashi, T. J-Aggregates, World Scientific Publishing (Singapore),1996, p.98.
    [15]Schenning, A. P. H. J.; Jonkheijm, P.; Peeters, E.; Meijer, E. W. Hierarchical order in supramolecular assemblies of hydrogen-bonded oligo(p-phenylene vinylene)s. J. Am. Chem. Soc.2001,123,409.
    [16]Tanaka, S.; Shirakawa, M.; Kaneko, K.; Takeuchi, M.; Shinkai, S. Porphyrin-based organogels:control of the aggregation mode by a pyridine-carboxylic acid interaction. Langmuir 2005,21,2163.