RNA干扰AKT2对胰腺癌吉西他滨化疗敏感性的影响及相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺癌是一种临床表现隐匿、发展迅速、预后很差的消化道恶性肿瘤,其早期诊断困难,治疗方法有限,因而死亡率很高。在西方国家,胰腺癌的死亡率已由第5位升至第4位。在我国,胰腺癌是消化道恶性肿瘤的三大死亡原因之一,85%的患者就诊时已属晚期,手术切除率仅10%~15%。5年生存率仅为1%~5%,目前化疗仍是胰腺癌辅助治疗的重要手段之一。吉西他滨是新一代阿糖胞苷类似物,可以明显改善晚期胰腺癌患者的疾病相关症状和生活质量,于1996年被美国食品与药品监督管理局(FDA)批准取代5-Fu作为抗胰腺癌一线药物,并被视作临床研究的“金标准”。1997年一项关于吉西他滨的Ⅲ期临床试验显示,该药可明显改善患者症状、延长患者中位生存期并使患者获益。但肿瘤的耐药性是影响化疗效果、疾病预后的最大障碍。如何提高吉西他滨介导的胰腺癌化疗敏感性成为当前研究的热点。
     近年以来,已有多项研究显示PI3K/Akt信号转导网络系统与肿瘤化疗耐药关系密切。多药耐药基因(MDR1)家族是研究最早的公认的肿瘤多药耐药相关基因之一。多药耐药基因的过度表达导致肿瘤细胞抗凋亡能力增强,从而降低化疗药物的细胞毒作用。而这一过程受多种因素影响,其中PI3K/Akt发挥了重要作用。有研究表明PI3K/Akt信号转导网络系统通过上调(multidrug resistance-related protein 1,MRP1)MRP1的表达而导致肿瘤细胞产生耐药,MRP1水平与PI3K/Akt表达在AML细胞中呈正相关性。另有研究利用PI3K抑制剂wortmannin抑制Akt的磷酸化之后,MRP1的水平也随之下降。Abdul-Ghani的研究也表明PI3K/Akt可以上调MRP1的水平,从而使细胞的凋亡减少,而PI3K/Akt的抑制剂LY294002可以使细胞凋亡率大幅度提高。这些结果提示干扰沉默AKT基因表达可能成为临床上增加胰腺癌化疗敏感性的一种方法。
     按照以上设想并在导师王春友教授的指导和支持下,我在普外实验室开展了RNA干扰AKT2对胰腺癌吉西他滨化疗敏感性的影响及相关机制研究。为此,我们通过(1)RNA干扰胰腺癌细胞AKT2的表达对吉西他滨敏感性的体外实验,(2)RNA干扰AKT2对胰腺癌裸鼠移植瘤的吉西他滨敏感性的体内实验,这两部分来观察RNA干扰AKT2对胰腺癌吉西他滨化疗敏感性的影响。然后通过(3)建立胰腺癌吉西他滨耐药细胞系,(4) RNA干扰AKT2表达逆转胰腺癌细胞耐药的实验研究,这两部分来初步探讨RNA干扰AKT2对改变胰腺癌耐药性的相关机制。通过以上实验为进一步阐明胰腺癌化疗耐药的分子生物学机理,从而在分子水平上寻找其中的关键基因并开发相应靶向治疗,达到提高胰腺癌化疗疗效提供理论基础。
     第一部分PANC-1细胞中AKT2的表达对吉西他滨敏感性的实验研究
     目的:
     探讨胰腺癌细胞Panc-1中AKT2的表达对吉西他滨敏感性的影响。
     方法:
     体外将AKT2特异性siRNA表达载体pAKT2-siRNA转染胰癌细胞株Panc-1,应用RT-PCR、Western blot检测转染siRNA后Panc-1细胞AKT2基因和蛋白的表达变化,应用MTT法检测干扰AKT2后Panc-1细胞对吉西他滨敏感性的变化。
     结果:
     转染AKT2 siRNA后Panc-1细胞AKT2基因和蛋白的表达水平明显下降;吉西他滨对Panc-1细胞的半数抑制量从1.96±0.22μg/ml降到0.24±0.03μg/ml,Panc-1细胞对吉西他滨的敏感性明显增加。
     结论:
     AKT2 siRNA抑制AKT2表达,能增加人胰癌细胞株Panc-1对吉西他滨的敏感性。
     第二部分RNA干扰AKT2对人胰腺癌裸鼠移植瘤的吉西他滨敏感性的实验研究
     目的
     探讨RNA干扰AKT2对人胰腺癌裸鼠移植瘤的吉西他滨敏感性的影响。
     方法
     构建荷胰腺癌裸鼠模型,采用腹腔给药和瘤内注射方式,以吉西他滨配合AKT2siRNA表达载体对瘤鼠进行联合干预治疗对比观测裸鼠肿瘤生长情况,RT-PCR检测肿瘤细胞AKT2 mRNA的表达,免疫组织化学法检测肿瘤AKT2蛋白表达,DNA末端原位标记法(TUNEL法)检测细胞凋亡指数。
     结果
     化疗+AKT2-siRNA组移植瘤组织中AKT2 mRNA及AKT2蛋白表达明显低于空白对照组、化疗组、化疗+阴性质粒组。化疗+AKT2-siRNA组瘤重、肿瘤体积显著低于其他各组。化疗+AKT2-siRNA组抑瘤率、凋亡指数显著高于其他各组。
     结论
     RNA干扰AKT2明显提高人胰腺癌吉西他滨化疗的敏感性。
     第三部分
     胰腺癌吉西他滨耐药细胞系的建立及其特性
     目的
     建立胰腺癌吉西他滨耐药细胞系,并对其细胞生物学特性进行研究。
     方法
     逐步增加培养基中吉西他滨的浓度,建立了对吉西他滨耐药的胰腺癌细胞系Panc1-Gem。采用四甲基偶氮唑蓝(MTT)法和集落形成实验,计算出Panc1和Panc1-Gem的半数抑制浓度(IC_(50))和耐药系数(RI):比较Panc1和Panc1-Gem的生长曲线,并计算出两细胞系的倍增时间。
     结果
     吉西他滨对Panc1和Panc1-Gem的IC_(50)分别为1.96±0.22μg/ml和239.82±35.47μg/ml,RI为122.36(P<0.05)。集落形成实验的RI为118.93。根据生长曲线计算出Panc1和Panc1-Gem的倍增时间为27.1h和35.2h。
     结论
     成功建立了胰腺癌吉西他滨耐药细胞系Panc1-Gem,耐药性能明显、稳定,非常适合用于胰腺癌中吉西他滨耐药的研究。
     第四部分
     AKT2在胰腺癌细胞吉西他滨化疗耐药中的作用
     目的
     探讨AKT2、多药耐药基因(mdr-1)、脱氧胞苷激酶(dCK),在胰腺癌细胞株Panc-1吉西他滨(GEM)化疗耐药中的相互关系及作用。
     方法
     通过浓度递增法,诱导建立耐GEM的胰腺癌细胞株。应用RNA干扰耐GEM的胰腺癌细胞株AKT2表达进行逆转耐药实验,采用了Western Blot、RT-PCR法和MTT法,评估AKT2与mdr-1、dCK基因表达的相互关系及逆转耐药的效果。
     结果
     Western Blot、RT-PCR结果显示,耐药细胞Panc1-GEM的mdr-1在蛋白表达、mRNA转录水平上比其亲本细胞系Panc1增强,而脱氧胞苷激酶(dCK)基因在蛋白表达、mRNA转录水平上比其亲本细胞系Panc1减弱。经过RNA干扰耐GEM的胰腺癌细胞株AKT2表达作用后,mdr-1在蛋白表达、mRNA转录水平上减弱,而脱氧胞苷激酶(dCK)基因在蛋白表达、mRNA转录水平上增强。耐药细胞Panc1-GEM对吉西他滨的IC_(50)为239.82±35.47μg/ml,耐药系数(RI)为121.94;经过RNA干扰耐GEM的胰腺癌细胞株AKT2表达作用后对吉西他滨的IC_(50)为113.45±21.89μg/ml,RI为57.88。
     结论
     胰腺癌细胞对吉西他滨耐药的原因与dCK减少有关,同时也与mdr-1升高相关。AKT2可能参与调控mdr-1、dCK基因表达,从而介导胰腺癌细胞株Panc-1吉西他滨化疗抵抗。
PartⅠEffects of the Expression of AKT2 on Sensitivity of Pancreatic Cancer Cell LinePanc-1 to Gemcitabine
     Objective
     To explore the effects of the expression of AKT2 on sensitivity of pancreatic cancercell line Panc-1 to gemcitabine.
     Methods
     In vitro the expression vector of pAKT2-siRNA was constructed and transferred intoPanc-1 cell by lipofection. The mRNA and protein expression of AKT2 was detected byusing RT-PCR and Western blot. The changes of gemcitabine sensitivity after siRNA wereexamined by MTT assay.
     Results
     The mRNA and protein levels of AKT2 in Panc-1 cells were significantly decreasedafter transfection, and the median inhibition concentration of gemcitabine against Panc-1cells was reduced from 1.96±0.22μg / ml to 0.24±0.03μg / ml. The sensitivity of Panc-1 cells to gemcitabine was increased significantly after AKT2 siRNA.
     Conclusion
     The sensitivity of Panc-1 cells to gemcitabine could be enhanced by AKT2-siRNA.
     PartⅡThe Effect of Sensitivity of Human Pancreatic Cancer Cell Xenograft in Nude Mice toGemcitabine by RNA Interference Suppressing the Expression of AKT2
     Objective
     To study the effect of sensitivity of human pancreatic cancer cell xenograft in nudemice to gemcitabine by RNA interference suppressing the expression of AKT2.
     Methods
     The human pancreatic cancer cell implanted tumor model in the nude mice wasestablished. By abdominal cavity administration and intratumoral injection ,the micebearing tumor were treated with gemcitabine in combination with vector ofpAKT2-siRNA. Tumor growth of tumor tissues were observed,the AKT2 mRNAexpression levels by RT-PCR method and, AKT2 protein expression in tumor tissues wasdetected by immunohistochemistry and tumor apoptosis by Tdt-mediated dUTP nick endlabeling(TUNEL).
     Results
     In chemotherapy+AKT2-siRNA group the expression of mRNA and protein wassignificantly lower than in control group, chemotherapy group and chemotherapy+ blankplasmid group. The tumor weight and tumor volume in chemotherapy+AKT2-siRNA groupwere significantly lower than those in other three groups. The inhibition rate and apoptosisin chemotherapy+AKT2-siRNA group were significantly higher than those in other three groups.
     Conclusion
     sensitivity of human pancreatic cancer cell to gemcitabine could be significantlyimproved by RNA interference suppressing the expression of AKT2.
     PartⅢDevelopment and Characterization of Gemcitabine-resistant Pancreatic Cancer CellLine Pane-1
     Objective
     To establish the resistance to gemcitabine in human pancreatic cancer cell line Panc-1and describe the characteristics of its resistant variant.
     Methods
     Resistance of gemcitabine was established by exposing Panc-1 cells to increasingconcentration of gemcitabine, which was designated as Panc1-Gem. The IC_(50) and resistanceindex (RI) were tested by MTT assay and colony formation test. The growth curve and cellcycle of Panc1 and Panc1-Gem were compared.
     Results
     The IC_(50) increased from 1.96±0.22μg/ml in Pancl to 239.82±35.47μg/ml inPancl-Gem as tested by MTT assay at 72h exposure, the RI was 122. 36(P<0.05). The RIof colony formation test was 118.93. Double time of Panc1 and Panc1-Gem were 27.1h and35.2h respectively, as evaluated by the growth curve.
     Conclusion
     Panc 1-Gem, the gemcitabine resistant phenotype, is stable and suitable for the study ofgemcitabine resistance in pancreatic cancer.
     PartⅣThe Role of AKT2 in Resistance to Gemcitabine in Pancreatic Cancer Cell
     Objective
     To investigate the role of AKT2, multidrugresistance-1(mdr-1) and deoxycytidinekinase(dCK) in Gemcitabine (GEM) chemoresistance in the pancreatic cancer cell linePanc-1.
     Methods
     The GEM-resistant pancreatic cancer cell line model was constructed using a stepwiseincrease in concentration gradient of Gemcitabine. RNA interference of AKT2 was used toreverse the drug resistance in gemcitabine-resistant pancreatic cancer cell line(Panel-GEM), RT-PCR, Western Blot and MTT assay were employed to evaluate therelationship between AKT2 and mdr-1,dCK and the effect of reversing drug resistance byRNA interference of AKT2.
     Results
     As compared to the parental Panc-1 cells, Panc1-GEM cells showed increasedexpression of mdr-1 revealed by Western Blot and RT-PCR, while Panc1-GEM cells alsoshowed decreased expression of dCK revealed by Western Blot and RT-PCR. After theAKT2 expression of Panc1-GEM had been interferenced by siRNA, Panc1-GEM showeddecreased expression of mdr-1 revealed by Western Blot and RT-PCR, while Panc1-GEMcells also showed increased expression of dCK revealed by Western Blot and RT-PCR. TheIC50 of Pancl-GEM to gemcitabine was 239.82±35.47μg/ml and RI of Panc1-GEM was 121. 94. After the AKT2 expression of Panc1-GEM had been interferenced by siRNA, theIC50 of Panc1-GEM to gemcitabine was 113.45±21.89μg/ml and RI of Pancl-GEM was57.88.
     Conclusion
     The resistance to gemcitabine of pancreatic cancer cell line is due to decreasedexpression of dCK and increased expression of mdr-1. The AKT2 participates in theregulation of the expression of mdr-1 and dCK, most likely contributing to the GEMchemoresistance in the Panc-1 pancreatic cancer cell line.
引文
1 Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer[J].Lancet, 2004;363:1049-1057.
    2 郭俊超,赵玉沛.多药耐药基因与胰腺癌化疗[J].胰腺病学,2002;2(4):24.
    3 Ross A. Abrams. Adjuvant therapy for pancreatic adenocarcinoma[J]. Journal of Gastrointestinal Surgery, 1997; 2:6-7.
    4 徐志渊,李德锐.肿瘤化疗多药耐药研究新进展[J].中国肿瘤,2006;15(6):382-385
    5 Tazzari PL, Cappellini A, Ricci F, et al. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase / Akt signal transduction network in human acute myelogenous leukemia blasts[J]. Leukemia,2007, 21(3): 4271.
    6 Abdul-Ghani R. Serra V. et al. The PI3K inhibitor LY294002 blocks drug export from resistant colon carcinoma cells overexpressing MRP1 [J]. Oncogene. 2006, 25(12):1743.
    1 Gao N, Flynn DC, Zhang Z, et al. The GI cell cycle progression and the expression of Gl cyclins are regulated by PDK/AKT/mTOR /p70S6KI signaling in human ovarian cancer cells[J]. Am J Physiol Cell Physiol, 2004, 287(127): C281-C291.
    2 Jemal A, et al. CA Cancer J Clin 2003; 53:5-26.
    3 Dicholson KM, Anderson NG. The protein kinase B/Akt signaling pathy in human maliganancy. Cell Signal, 2002, 14(5): 381-395.
    1 Gao N, Flynn DC, Zhang Z, et al. The GI cell cycle progression and the expression of Gl cyclins are regulated by PDK / AKT / mTOR / p70S6KI signaling in human ovarian cancer cells[J]. Am JPhysiol Cell Physiol, 2004, 287(127): 281-291.
    2 Parkin DM, Bray F, FerlayJ, et al. Global cancer statistics 2002 [J]. CA Cancer J Clin, 2005, 55(957): 74-108.
    3 Sultana A, Smith CT, Cunningham D, et al. Meta-analyses of chemotherapy for locally advanced and metastatic pancreatic cancer[J]. J Clin Oncol, 2007, 25(18): 2607-2615.
    4 Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy[J]. Cell Signal. 2002,14(5):381-395.
    1 Abratt RP, Sandler A, Crino L,et al. Combined cisplatin and gemcitabine for non-small cell lung cancer: influence of scheduling on toxicity and drug delivery[J]. Semin Oncol, 1998, 25(4 suppl 9): 35-43.
    2 Bergman AM, Pinedo HM, Jongsma AP, et al. Decreased resistance to gemcitabine(2', 2'-difluoredeoxycydine) of cytosine arabinoside-resistant myeloblastic murine and rat leukemia cell lines: role of altered activity and substrate specificity of deoxycytidine kinase [J]. Biochem Pharma, 1999, 57: 397-406.
    3 Dumontet C, Fabianowska-Majewska K, Mantincic D, et al. Common resistance mechanisms to deoxynucleoside analogues in variants of the human erythroleukaemic line K562 [J]. Br J Haematology, 1999, 106: 78-85.
    4 Ruiz van Haperen VW, Veerman G, Eriksson S, et al. Development and molecular characterization of a 2', 2'-difluorodeoxycydine-resistant variant of the human ovarian carcinoma cell line A2780 [J]. Cancer Res, 1994,54: 4138-4143.
    5 Bergman AM, Giaccone G, van Moorsel CJ. et al. Cross-resistance in the 2',2'-difluoro-deoxycydine(gemicitabine)-resistant human ovarian cancer cell line AG6000 to standard and investigational drugs[J]. Eur j Cancer,2000, 36: 1974-1983.
    6 Goan YG, Zhou BS, Hu E, et al. Overexpression of ribonucleotide reductase as a mechanism of resistance to 2', 2'-difluorodeoxycydine in the human KB cancer cell line[J]. Cancer Res, 1999, 59: 4204-4207.
    7 Hunsucker SA, Spychala J, Mitchell BS. Human cytosolic 5'-nucleotidase Ⅰ:characterization and role in nucleoside analog resistance[J]. J Bio Chem, 2001,276(13): 10498-10504.
    8 张均田.现代药理实验方法(上册)[M].北京:北京医科大学,中国协和医科大学联合出版社,1997:226.
    1 Germann U Pastan I, Gottesman M M. P-gtycoproteins: mediators of mulfidrug resistance[J], Semin Cell Biol, 1993, 4(1): 63-76.
    2 Karbownik M , Brzezianska E , Lewinski A, et al. Increased expression of mRNA specific for thymidine kinase, deoxycytidine kinase or thymidine phosphorylase in human papillary thyroid carcinoma[J]. Cancer Lett, 2005, 225(2): 267-273.
    3 要洁,林晨,冯奉仪,等.人胰腺癌吉西他滨耐药细胞系的建立及耐药特性的检测[J],实用肿瘤杂志,2005,20(3):199—203.
    4 Germann U Pastan I, Gottesman M. P-gtycoproteins: mediators of multidrug resistance[J], Semin Cell Biol, 1993, 4(1): 63-76.
    5 Zhao Y, Shen S, GuoJ, et al. Mitogen-activated protein kinases and chemoresistance in pancreatic cancer cells[J]. J Surg Res, 2006, 136(2): 325-335.
    1 Biseardi M, Teodofi E, Caporale R, et al. Muhidrug reverting activity toward leukemia cells in a group of new verapamil analogues with low cardiovascular activity. Leuk Res, 2006, 30(1): 1-8.
    2 Pajak B, Molnar J, Engi H, et al. Preliminary studies on phenothiazine-mediated reversal of multidrug resistance in mouse lymphoma and COLO 320 cells. In Vivo,2005, 19(6): 1101-1104.
    3 Cagliero E, Ferracini R, Morello E, et al. Reversal of multidrug-resistance using Valspodar(PSC 833) and doxorubicin in osteosarcoma, Oncol Rep, 2004, 12(5):1023-1031.
    4 Salary E, Mannone L, Moreau D, et al. Phase I study of cinchonine, a multidrug resistance reversing agent, combined with the CHVP regimen in relapsed and refractory lymphoproliferative syndromes. Leukemia, 2000, 14(12): 2085-2094.
    5 Shen IZ , Hua YB, Yu XM, et aL Tamoxifen can reverse multidrug resistance of colorectal carcinoma in vivo. World J Gastroenterol. 2005, 11(7): 1060-1064.
    6 Ding L, Chen XP, Zhang ZW, et al. Synergistic effect of bromocfipfine and tumor necrosis factor-alpha on reversing hepatocellular carcinoma multidrug resistance in nude mouse MDR1 model of liver neoplasm. World J Gastroenterol, 2005, 11(36):5621-5626.
    7 de Jong MC, Schefer GL, Broxterman HJ, et al. Multidrug-resistant tumor cells remain sensitive to a recombinant interleukin-4-Pseudomonas exotoxin , except when overexpressing the multidrug resistance protein MRP 1. Clin Cancer Res, 2003, 9(13):5009-5017.
    8 van Brussel JP, Oomen MA, Vossebeld PJ, et al. Identification of multidrug resistance-associated protein 1 and glutathione as multidrug resistance mechanisms in human prostate cancer cells: chemosensitization with leukotriene D4 antagonists and buthionine sulfoximine. BJUInt, 2004, 93(9): 1333-1338.
    9 Lin XM, Xie ZX, Qin Q. Influence of neferine and erythromycin on cellular GSH concentration in K562 / A02 cell line. Zhong Nan Da Xue Xue Bao Yi Xue Ban ,2004, 29(3): 284-286.
    10 Silva KL, Vasconeelos FC, Marques-Santos LF, et al. CPT-?-induced cell death in leukemic cells is not affected by the MDR phenotype. Leuk Res, 2003,27(3): 243-251.
    11 MistryP, Stewart AJ, DangerfieldW , etal. In vivo characterization of XR11576,a novel, orally active, dual inhibitor of topoisomerase I and II. Anticancer Drug, 2002,13(1): 15-28.
    12 Chen B, Jin F, Lu XL, et, al. Effect of PKC inhibitor on P-gp expression and drug-resistance in MGC803 cells. Ai Zheng, 2004, 23(4): 396-400.
    13 Cenni V, Maraldi NM, Ruggeri A, et al. Sensitization of multidrug resistant human ostesarcoma cells to Apo2 Ligand / TRAIL-induced apoptosis by inhibition of the Akt /PKB kinase. Int J Oncol. 2004, 25(6): 1599-1608.
    14 Yuki K, Takahashi A, Ota I, et al. Glycerol enhances CDDP-induced growth inhibition of thyroid anaplastic carcinoma tumor carrying mutated p53 gene. Oncol Rep, 2004,11(4): 821-824.
    15 Straughn JM Jr, Oliver PG, Zhou T, et al. Anti. tumor activity of TRA-8 anti-death receptor 5(DR5) monoclonal antibody in combination with chemotherapy and radiation therapy in a cervical cancer model. Gynecol Oncol, 2006, 101(1): 46-54.
    16 Mahoney BP, Raghunand N, Baggett B, et al. Tumor acidity, ion trapping and chemotherapeutics I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol, 2003, 66(7): 1207-1218.
    17 Shalinsky DR, Brekken J, Zou H, et al. Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann N Y Acad Sci, 1999, 878: 236-270.
    1 Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer[J]. Nat Rev Cancer, 2002, 2: 489-501.
    2 Murthy S S, Tosolini A, Taguchi T, et al. Mapping of AKT3, encoding amember of the Akt/protein kinase B family, to human and rodent chromosomes by fluorescence in situ hybridization[J]. Cell Genet, 2000, 88(1-2): 38-40,
    3 Testa JR, Bellacosa. AKT plays a central role in tumorgenesis[J]. Proc Natl Acad Sci U S A. 2001, 98(20): 10983-10985.
    4 Nicholson KM, Anderson NG. The protein kinase B / Akt signaling pathway in human malignancy[J]. Cellular Signaling, 2002, 14(5): 381-395.
    5 Dicholson KM, Anderson NG. The protein kinase B / Akt signaling pathy in human maliganancy[J]. Cell Signal, 2002, 14(5): 381-395.
    6 Lee SH, Kim Hs, Park Ws, et al. Non-small cell lung cancer frequently expression phosphorylated Akt: an immunohistochemical study[J]. APMIS, 2002, 110(7-8):587-592.
    7 Brognard J, Clark AS, Ni Y. Akt/protein kinase B is constitutively active in Non-small cell lung cancer cells and promotes celluar surrival and resistance to chemotherapy andradiation[J]. Cancer Res, 2001, 61(10): 3686-3697.
    8 West KA, Brognard J, Clark AS, et al. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of ormal human airway epithelial ceils[J]. J Clin Invest, 2003, 111(1): 81-90.
    9 Nanawin IT, Shuho SE, Masafumi IT. Phosphorylation of Akt / PKB is required for suppression of cancer cell Apoptosis and Tumor progression in human colorectal carcinoma[J]. Cancer, 2002, 94(12): 3127-3134
    10 Hajduch E, Litherland GJ, Hundal HS. Protein kinase B(PKB/Akt)-a key regulator of glucose transport?[J]. FEBS Lett, 2001, 492(3): 199-203.
    11 Mayold, Donner DB. A phosphatidylinosit01 3-kinase/Akt pathy promotes translocation of mdm2 from the cytoplasm to the nucleus[J]. Proc Natl Acad Sci USA,2001, 98(20): 11598-11603.
    12 Kurose K, Zhou XP, Araki T, et a1. Frequent loss of PTEN expression is linked to elevated phosphorylated Akt levels, but not associated with p27 and cyclin D1 expression, in primary epithelial ovarian carcinomas[J]. Am J Pathol, 2001, 158(6):2097-2106.
    13 Sun M, Wang G, Paciga JE, et al. AKT1 / PKB alpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells[J]. Am J Pathol, 2001, 159(2): 431-437.
    14 Yamamoto S, Tomita Y, Hoshida Y, et al. Prognostic significance of activated akt expression in pancreatic ductal adenocarcinoma[J]. Clin Cancer Res, 2004, 10:2846-2850.
    15 Tsao AS, Mc Donnell T, Lam S, et al. Increased phosph-AKT(Ser(473))expression in bronchial dysplasia[J]. Cancer Epidemiol Biomarkers Prev, 2003, 12(7): 660-664.
    16 蒋红.食管癌中AKT和PTEN蛋白表达及其临床相关相关性研究[J].中国肿瘤生物治疗杂志,2003,10(4):265-268.
    17 Zhang D, Brodt P. Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI3-kinase/Akt signaling[J]. Oncogene, 2003, 22(7): 974-982.