雷帕霉素缓释胶束的制备及其释放行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种广谱的免疫抑制药物,雷帕霉素具有低的肾毒性和抗排斥反应活性,可以治疗多种自身免疫性疾病。然而,它的水溶性很差,在每毫升的水中只能溶解2.6微克。无论在临床上还是商业上都限制了其应用范围。因此,增加其水溶性、提高其生物利用率是非常重要的。树状高分子由于特殊的结构,已经广泛应用于药物的载体。
     本文以嵌段树状高分子为载体,包裹难溶性的药物雷帕霉素,并对其释放行为进行了研究。
     采用透析法,制备了聚合物空心胶束。通过扫描电镜对其形貌的观察,发现它为空心的囊泡结构。通过改变实验的条件,得到了制备胶束的最佳条件。选用疏水嵌段比例不同的树状高分子制备胶束溶液,可以得到不同大小的胶束。
     同样采用透析法制备了雷帕霉素缓释胶束,平均包封率和载药量为40%和91%。研究结果显示:所制备的载药胶束同样为中空结构的囊泡;载药胶束的载药量和包封率大大增加;体外释放结果显示其有明显的缓释效果;随着疏水嵌段PLLA比例的增大,药物释放速度减慢,可根据需要合成疏水嵌段比例不同的树状嵌段共聚物载体,得到所需的释放速度。
     对雷帕霉素缓释胶束的体外释放行为运用多种药物释放模型进行了拟合。通过拟合发现最佳的模型都为Gompertz二级函数模型,能够较好的预测雷帕霉素缓释胶束真实的体外释放。
     本文采用生物可降解树状共聚物制备的雷帕霉素缓释胶束,与文献报道的同类药物缓释胶囊(或胶束)相比,载药量提高了将近一倍,缓释速度更慢,且可通过树状共聚物的结构进行缓释速度调控,具有更大的临床应用前景。
As a broad-spectrum immunosuppressive drugs, Rapamycin has low renal toxicity and anti-rejection activity, can treat a variety of autoimmune diseases. However, the solubility of Rapamycin in water is 2.6μg/ml, the poor water solubility limited its application both in clinical and commercial. Therefore, It is very important to increase its water solubility and increase its bioavailability. Due to the special structure, biodegradable dendrimer has been widely used as drug carrier.
     In this paper, the dendrimer was used as a drug carrier to package insoluble Rapamycin, and then we studied its release behavior.
     Hollow polymer micelles were prepared by dialysis method. Scanning electron microscopy observation indicate its hollow vesicle structure. We get the best conditions for preparing micelles from changing the experimental conditions. Choosing different structure of dendritic copolymer, the size of micelles would be different.
     We prepared Rapamycin micelles by dialysis method. The average drug content and encapsulation efficiency were 40% and 91%. The results showed that:the drug-loaded micelles has the same hollow vesicle structure; the drug content and encapsulation efficiency of the drug-loaded micelles significantly increased; in vitro release results show its obvious sustained release. As the incresing ratio of hydrophobic PLLA segment, the release rate of drug slow down, according to the different need, we can synthesis different dendrimer polymer carrier to obtain the required release rate.
     Several models of drug release were used to fit the vitro release of Rapamycin from drug-loaded micelles. From the fitting we found the secondary Gompertz is the best models, which can predict the true release of Rapamycin from drug-loaded micelles in vitro release.
     In this paper, the Rapamycin-loaded micelles which used biodegradable dendrimer, compared to the similar drug sustained-release capsules(or micelles) whiich were reported, has nearly double drug content and lower sustained-release, we can change the structure of the dendrimer to control the drug release speed,has greater clinical application.
引文
[1]王定营.缓释、控释药物制剂的研究进展及临床应用[J].吉林医学.2008,29(5):426-428
    [2]郭艳云,王标兵,史勇文,杨云峰.药物缓释载体材料的应用及发展[J].天津化工.2008,22(3):7-9
    [3]Price C, Chan EKM, Hudd AL, et al. Polym. Comm.1986,27:196-198
    [4]Hamley I W. et al. The Physics of Block Copolymers[J]. Oxford:Oxford, University Press, 1998
    [5]Buhleier E, Wehner W, Vogtle F. Cascade and nonskid-chain-like syntheses of molecular cavity topologies[J]. Synthesis.1978:155-158
    [6]Newkome, G.. R. Yao Z.Q, et al. Cascade molecules:a new approach to micelles A[27]-arborol[J]. Org. Chem.1985,50:2003-2004
    [7]Tomalia D. A, Baker H, Dewald J, et al. A new class of molecules:starburst-dendritic macromolecules[J]. Polymer J.1985,17:117-132
    [8]J. F Jasen, E. M, De brabander vanden Berg, E.W.Meijei,Science.1994,266:12-26
    [9]Tomalia D. A, Dewald J R. Dense star polymer having core, core branches terminal groups[P]. US,4507466.1985
    [10]Flory P J. Molecular size dimensional polymers VI, Branched polymers containing A-R-Bf-1 type units[J]. J Am Chem Soc.1952,74(11):2718-2723
    [11]D.A. Tomalia,B.Huang, D.R. Swanson,et al. Structure control within poly(amidoamine) dendrimers:size, shape and regio-chemical mimicry of globular proteins. Tetrahedron 2003,59:3799-3813
    [12]Hawker, C. J., Frechet, J. M. J. J Chem Soc Chem Commun,1990:1010-1013
    [13]Hawker, C. J., Frechet, J. M. J. J J. Am. Chem. Soc.1990,112:638-7647
    [14]郑世昭,徐伟箭.聚酰胺-胺树形大分子的合成与应用[J].高分子通报.2004,2:81-84.
    [15]Parag Kolhe, Ekta Misra, Rangaramanujam M. Kannan, et al. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers[J]. International Journal of Pharmaceutics.2003,259:143-160
    [16]Zhuo,R. X. Du, B. J. Control Release.1999,57:249-257
    [17]曹伟松,朱宏.树枝状高分子聚酰胺-胺(PAMAM)对水杨酸增溶作用研究[J].化工之友.2003,13:6-7
    [18]Liu M, Kono K, Frechet J M J, et al. Water-soluble dendritic unimolecular micelles:their potential as drug delivery agents[J]. J Control Release.2000,65:121
    [19]Chandrasekara D, Sistlaa R. Ahmadb F J. et al. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their phamcokinetics and biodistribution in arthritic rats[J]. Biomaterials.2007,28:504—512
    [20]唐杨,马丽芳,郭丽等.树状大分子作为药物载体的研究新进展[J].材料导报.2008,4(22):100-103
    [21]平其能.纳米药物和纳米载体系统[J].中国新药杂志.2002,11(1):42-46.
    [22]Verdun C Brasseur F, Vranckx H, et al. Tissue distribution of doxorubicin associated with polyhexylcyanoacrylate nanoparticles[J]. Pharmacol.1990,26:13-18.
    [23]Rolland A. Clinical phamaco kinetics of doxorubicin in hepatoma patients after a single intravenous injection of free or nanoparticle-bound anthracyclinc[J]. Int J Pharm.1989, 54:113-121.
    [24]Torchin V. P. Structure and design of polymeric surfactant-based drug delivery systems[J]. Journal of Controlled Release.2001,732:137-172.
    [25]Lam X, Duenas E, Daugherty L, etal. J Control Release.2000,67:281-292
    [26]Kataoka K, Matsumoto T, Yokoyama M, et al. Dox-orubucin-loaded poly(ethylene glycol)-poly(β-benzyl-L-as partate) copolymer micelles:their pharmaceutical characteristics and biological significance[J]. J Controlled Release.2000,64:143-153.
    [27]王彩霞,冯霞,徐芳等.透析法制备紫杉醇聚合物胶束给药系统.化学工业与工程[J].2007,24(1):24-27
    [28]G. Kwon, M. Natio, M. Yokoyama, et al. Block copolymer micelles for drug delivery: loading and release of doxorubicin[J]. Journal of Controlled Release.1997,48:195-201
    [29]Rapoport N. Pitt W. G, Sun H. et al. Drug delivery in polymeric micelles:from in vitro to in vivo. Journal of Controlled Release 2003,911-2:85-95.
    [30]R. I. Lechler, M. Sykes, A.W. Thomson, L. A. Turka, Organ transplantation-how much of the promise has been realizied[J]. Nature Medicine.2005,11 (6):605-613.
    [31]M.Laird Forrest, Chee-Youb Won, A.Waseem Malick, Glen S Kwon. In vitro release of the mTOR inhibitor rapamycin from poly(ethylene glycol)-b-poly(ε-caprolacton) micelles[J]. Journal of Controlled Release.2006,110:370-377.
    [32]穆云龙.雷帕霉素研究进展[J].河北化工.2010,33(1):21-23
    [33]B.D. Kahan, Two-year results of multicenter phase III trials on the effect of the addition of sirolimus to cyclosporine-based immunosuppressive regimens in renal transplantation, Transplantation Proceedings 2003,35(3):37S-51S.
    [34]何京涛.生物降解药物控释体系中分子扩散行为及药物释放动力学研究[D].北京化工大学学位论文.2005,11
    [35]Gibaldi, M, Feldman, S. Establishment of sink conditions in dissolution rate determinations-thoretical considerations and application to nondisintegrating dosage forms[J]. Pharm. Sci.1967,56:1238-1242
    [36]Weibull, W. A statistical distribution function of wide applicability[J]. Appl. Mech.-Trans. ASME.1951,18:293-297
    [37]彭永富,董慧.药物溶出度Weibull分布的计算机求解[J].中国药学杂志.1996,31(10):606-608
    [38]龚军辉.Logistic方程的推导及其生物学意义[J].高等函授学报(自然科学版).2008, 22(1):48-50
    [39]Feirong Gong, Xiaoyan Cheng, Shanfeng Wang,et al. Biodegradable comb-dendritic tri-block copolymers consisting of poly(ethylene glycol) and poly(L-lactide):Synthesis, characterizations, and regulation of surface morphology and cell responses[J]. Polymer. 2009,50:2775-2785
    [40]谢威等.树枝状聚L-丙交酯-dendron-聚乙二醇-dendron-聚L-丙交酯的自组装[J].华东理工大学学报(自然科学版).2010,4(36):529-534
    [41]S. Ho, N. Clipstone, L. Timmerman, J. Northrop, I. Graef, D.Fiorentino, J. Nourse, G.R. Crabtree. The mechanism of action of cyclosporine A and FK506[J]. Clin. Immunol. Immunopathol.1996,80:S40-S45
    [42]P. Simamora, J. M. Alvarez, S.H. Yalkowsky, Solubilization of rapamycin[J]. Int. J. Pharm.2001,213:25-29
    [43]Thirumala G, Sniezana S. PLGA nanaoparticles prepared by nanoprecipitation: drug loading and release studied of a water soluble drug.[J]. J Controlled Release.1999,57: 171-185
    [44]Yang Miao, Wang Wei, Yuan Fei, et al. Soft vesicles formed by diblock codendrimers of poly(benzylether) and poly(methallyl dichloride)[J]. Journal of the American Chemical Society.2005,127(43):15107-15111
    [45]S.Jhunjhunwala, G. Raimondi, A.W. Thomson, S.R. Little. Delivery of rapamycin to dendritic cells using degradable microparticles[J]. Journal of Controlled Release.2009, 133:191-197
    [46]魏靖明,邓阳全等.海藻酸钠/聚氨酯共混微球的制备及其性能研究[J].西南民族大学学报(自然科学版).2008,34(4):704-707
    [47]裴蛟淼,薛晓燕,刘蓓等.局部用雷帕霉素聚乳酸乙醇酸共聚物缓释微球的制备及释药研究[J].中国美容医学.2010,3(19):334-337
    [48]苗立夫,杨菁,黄超联等.雷帕霉素聚乳酸-聚乙醇酸纳米粒子的制备、表征及血管内局部给药效能[J].中国医学科学学报.2008,4:491-497
    [49]XuBo Yuan, YanBo Yuan, Wei Jiang, et al. Preparation of rapamycin-loader chitosan/PLA nanoparticles for immunosuppression in corneal transplantation [J]. International Journal of Pharmaceutics.2008,349:241-248
    [50]Higuchi, T. Rate of release of medicaments from ointment bases containing drugs in suspension [J]. J. Pharm. Sci.1961,50:874-875
    [51]林亚平,董芸.药物释放数学模型的评价及选择.数理医学杂志.1994,7(4):308-310
    [52]林亚平.Gompertz函数在药物释放模型中的应用.现代应用药学.1992,9(2):74-77
    [53]刘璋温,吴国富.选择回归模型的几个准则.数学的实践与认识.1983,1:64-67
    [54]W.H.Greene, Econometric Analysis[M]. New York:Macmillan,1990.
    [55]David W.Hosmer. S. Lemeshow. Applied Logistic Regression[M]. New York:John Wiley and Sons.1989.
    [56]方开泰,全辉等.实用回归分析[M].北京:科学出版社,1988:151-153.
    [57]杨昭军,师义民.Logistic模型参数估计及预测实例.数理统计与管理.1997,16(3):13-15