不同压强下氡气运移的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氡气作为一种放射性气体,在环境中很容易被人吸收,如果人体长期受到氡及其子体的电离辐射将诱发肺癌、白血病和呼吸道等疾病。氡气在空气中的运移研究是氡气测量和防护的基础理论问题。本论文以实验为基础,采用活性炭累积测氡方法,对氡气在不同气体压强下的运移规律进行研究,并建立氡气在空气中的一维、三维运移方程。
     以下为设计的三组对比实验,用以探索氡气在空气中运移的内在规律:
     1.通过相同的累积时间、温度、湿度、不同的压强,分别在真空度为-0.06MPa、真空度为-0.05MPa、真空度为-0.04MPa、常压下测量了氡气在竖直密闭玻璃管内的分布。
     2.通过相同的压强、湿度、温度、不同的累积时间,在真空度为-0.06MPa下测量氡气在竖直、水平密闭玻璃管内的浓度分布。
     3.利用氡气在空气中的运移方程与氡气在不同气体压强下的浓度分布,估算出氡气在不同压强情况下的平均速度。
     通过实验得出以下结论:氡气在空气中运移速度与空气压强有关,空气压强越大,运移速度越快,在低压状态下向下运移更加明显;对比氡气在竖直方向和水平方向上测量结果,不管压强高低氡气运移在竖直方向上的运移能力远远超过水平方向;在不同压强情况下氡气平均速度估算结果:常压下向上运移平均速度为1.02 10~(-6)m/s、向下运移平均速度为2.08 10~(-6)m/s,低压下(相对真空度为-0.06MPa)时氡气的向上运移平均速度为0.91 10~(-6)m/s、向下运移平均速度为2.77 10~(-6)m/s,与实际测量结果符合性良好。
Radon, as one kind of radioactive gas in environment, can easily be absorbed by human body. If the human body has long been ionizing radiation exposure to the radon and its daughter, it will induce lung cancer, leukemia and respiratory and other diseases. The migration study of Radon in the air is the foundation theory problems of radon measurement and protection. Basing on experiment, this thesis uses the method of active carbon accumulated measuring radon to study the migration regularity of radon gas in different gas pressure, and establish one-dimensional, 3-d migration equations of the radon in the air.
     The three groups of comparative experiments are as following to explore the inherent migration law of radon in the air:
     1.The paper measures the concentration distributions of radon in airtight vertical glass tube under the same cumulative time, temperature, humidity and different pressure in vacuum (respectively for -0.06MPa, -0.05MPa, -0.04MPa, atmospheric conditions).
     2.The paper measures the concentration distributions of radon in airtight horizontal、vertical glass tube under the same pressure(for -0.06MPa vacuum), temperature, humidity and different cumulative times.
     3.Basing on the migration equations of radon gas in the air and the concentration distribution of radon under different gas pressure, the paper estimates the average speed of radon gas under different pressures.
     Through series experiments, following conclusions can be obtained: the migration velocity of radon in the air is related with the air pressure: with greater air pressure, the conveyance speed is faster. Especially at low-pressure state the downward migration is more apparent. Through the comparison of measurement results of radon in vertical direction and a horizontal direction, the migration ability of radon in the vertical height is far larger than that in the horizontal direction whatever the pressure is. The average speed of radon in different pressures cases are estimated as follows: the upward migration average speed under atmospheric environment is 1.02×10~(-6)m/s, the downward migration average speed is 2.08×10~(-6)m/s; The upward migration average speed under -0.06MPa vacuum environment is 0.91×10~(-6)m/s, the downward migration average speed is 2.77×10~(-6)m/s. As is consistent with the practical measurement result.
引文
[1] J.A. Rabi,A.A. Mohamad.Parametric modelling and numerical simulation of natural-convective transport of radon-222 from a phosphogypsum stack into open air [J].Applied Mathematical Modelling, 2006,30:1546-1560..
    [2] G.Butterveek-Dempewolf . Intercomparison of Approximation Algorithms for the Determination of the Size Distribution of the“Unattached”Fraction of Radon Progeny [J].Aerosol Science and Technology, 2000,33 :262-273.
    [3] L. Morawska , M.Jamriska Determination of the Activity Size Distribution of Radon Progeny [J].Aerosol Science and Technology, 1997, 265 .
    [4] LE Ren-Chang,WANG Xiao-Qin,Calculation and measurement of migration coefficient of radon under laboratory conditions[J].Nuclear Science and Techniques, Vol,17, No,2 (2006) 92–96.
    [5]乐仁昌,贾文懿,吴允平.理想条件下氡及其子体运移新理论及其运移方程[J].物理学报,2003,52(10):2457-05.
    [6]乐仁昌,贾文懿,何志杰.氡在空气中长距离运移实验研究[J].成都理工大学学报(自然科学版),2006,10,第5期.
    [7]乐仁昌,林刚勇理想条件下氦氡团簇离子垂直移动速度的理论计算[J].物理学报, 2005,54(09):4113-04.
    [8]刘鸿福.氡及其子体运移规律研究[D].成都:成都理工学院,1997:
    [9]乐仁昌.氡及其子体的释放和运移规律及机理研究[D].成都:成都理工学院,2001:
    [10]贾文懿,方方,等.氡及其子体向上运移的内因与团簇现象[C] //贾文懿,方方.核地球物理的理论与实践.成都:四川大学出版社,2001:9-14.
    [12]李玉柱,苑明顺.流体力学[M].北京:高等教育出版社,1998:172-179.
    [13]石玉春,吴燕玉.放射性物探[M].北京:原子能出版社,1986:126-173.
    [14]李利红,葛良全,等.空气中氡浓度时间变化规律探讨[J].辐射防护,2007年1月第1期13-18
    [15]童纯菡,李巨初,葛良全,杨凤根.地壳内上升气流对物质的迁移及地气测量原理[J],矿物岩石,1997, 83-88.
    [16]章澄昌,周文贤.大气气溶胶教程[M].北京:气象出版社,1995:70-72.
    [17]张国权.气溶胶力学[M].北京:中国环境科学出版社,1987:30-48.
    [18]贾文懿,方方,周蓉生等.理想条件下氡及其子体运移规律研究[G] //贾文懿,方方.核地球物理的理论与实践.成都:四川大学出版社,2001:4-8.
    [19]贾文懿,方方,周蓉生等.氡释放的实验研究与机理探讨[G] //贾文懿,方方.核地球物理的理论与实践.成都:四川大学出版社,2001:15-21.
    [20]乐仁昌,贾文懿.氡及其子体的释放和运移及机理探讨[G] //贾文懿,方方.核地球物理的理论与实践.成都:四川大学出版社,2001:34-38.
    [21]刘鸿福,贾文懿.氡及其子体运移规律与机理的实验研究[G] //贾文懿,方方.核地球物理的理论与实践.成都:四川大学出版社,2001:28-33.
    [22]秦允豪.普通物理学教程热学[M].北京:高等教育出版社,2004:52-101.
    [23]刘菁华.活断层上覆盖层中氡迁移的数值模拟及反演拟合[D].长春:吉林大学,2006:
    [24]权红梅.居室氡的迁移特征和数值模拟[D].长春:吉林大学,2007:
    [25]林海飞.采动裂隙椭抛带中瓦斯运移规律及其应用分析[D].西安:西安科技大学,2004:
    [26]梁永东.活性炭测氡法的数据处理及应用[D].太原:太原理工大学,2007:
    [27]刘晓慧.大气氡变化及其对伽马辐射场得影响[D].北京:中国地质大学,2008:
    [28]苏日娜.大气压力变化对于土壤氡析出率的影响[D].北京:中国地质大学,2008:
    [29]李明.偏微分方程的MATLAB解法[J].湖南农机,2010,5:89-91.
    [30]徐文平,丁德馨,饶龙.松散破碎射气介质中氡运移的气液两相耦合数学模型及其数值解[J].南华大学学报(自然科学版),2009,12:1-4.
    [31]王俊峰.煤地下自燃时覆岩中氡气运移规律及应用研究[D].太原:太原理工大学,2010:
    [32]冯志华,聂白胜.危险气体泄漏扩散的实验方法研究[J].中国安全科学学报,2006,7:18-25.
    [33]李良,李忠伟.应用气体扩散和氡蜕变理论讨论水氡异常的形成[J].东北地震研究,1999,6:22-29.
    [33]白云生,林玉飞,常桂兰.铀矿找矿中氡的迁移机制探讨[J].铀矿地质,1995,7:224-232.
    [34]邵辉,谢东,葛秀坤.有害气体泄漏扩散规律的实验室研究[J].常州大学学报(自然科学版),2010,6:45-49.
    [35]吴慧山,白云生,林玉飞,常桂兰.氡迁移的接力传递作用[J].地球物理学报,1997,1:136-143.
    [36]乐仁昌,何志杰,卢宇,叶全意.氡及其子体水平扩散系数测量研究[J].核技术,2010,3:219-223.
    [37]张立国,郭秋菊.计算室外大气中氡浓度的模型[J].辐射防护,2006,11:340-347.
    [38]郭建军,杨仕清.纯稀有气体宏观性质的物理力学计算[J].原子与分子物理学报,2001,4:206-210.
    [39]曹玲玲,王宗礼,刘耀炜.氡迁移机理研究进展概述[J].地震研究,2005,7:302-306.
    [40]谭延亮,肖德涛,赵桂芝,周青芝.“氦氡团簇”粒径实验研究[J].核电子学与探测技术,2009,11:1498-1501.
    [41]曾兵,张金钊,王青.理想情况下氡及其子体在大气中运动的探讨[J].核电子学与探测技术,2010,5:673-676.
    [42]孙雪瑜.高纯锗核辐射探测器[J].核电子学与探测技术,1985,11:338-344.
    [43]刘庆成,程业勋,章晔.环境中氡运移理论与计算方法研究[J].物探与化探,1998,4:149-154.
    [44]刘敦旺,刘鸿福,梁永东.活性炭测氡法的数据处理与应用[J].物探与化探,2009,4:151-155.
    [45]邱元德,童运福.活性炭测氡法的特点[J].核技术,1996,9:554-559.
    [46]关卓明,刘国勋,杜娟.Ag/Cu系的DIGM及迁移晶界扩散系数[J].北京科技大学学报,1993,1:48-55.
    [47]刘庆成,程业勋,章晔.介质中氡运移的模拟[J].华东地质学院学报,1995,12:366-371.
    [48]程业勋,王南萍,候胜利,刘庆成.空气氡的大地来源理论研究[J].辐射防护通讯,2001,4:5-9.
    [49]郭建军.惰性气体输运性质的理论计算[J].物理学报,2002,3:497-501.
    [50] C.Duenas,M.Pérez,M.C.Fernádez&J,Carretero.Radon Concentratios in Surface Air and Vertical Atmospheric Stability of the lower Atmosphere[J].J.Environ.Radioactivity,1996,1:87-102.
    [51] V.Roca,P.De Felice,A.M.Pugliese,C.Sabbarese,J.Vaupotich. The influence of environmental parameters in electrostatic cell radon monitor response[J].Applied Radiation and isotops,2004,61:243-247.
    [52] G.J?NSSON. RAD gas– where from and what to do?[J].Radiation Measurements,1995,1-4:537-546.
    [53] D.Pressyanoy,JBuyss,A.Poffijn,G.Meesen,A.VanDeynse. Polycarbonates:a long-term highly sensitive radon monitor[J].NUCLEAR INSTRUMENTS&METHODS IN PHYSICS PESEARCH,2000,A447:619-621.
    [54] Sadaaki Furuta,Kimio Ito,Yuu Ishimori. Measurements of radon around closed uranium mines [J]. Journal of Environmental Radioactivity,2002,62:97-114.
    [55] P. Schmidt,J. Regner. Improvement of the radon situation at former uranium mining and milling sites in East Germany [J]. International Congress Series, 2005,1276:238-239.
    [56] E. Choi,M. Komori,K. Takahisa,N. Kudomi,K. Kume,K. Hayashi. Highly sensitive radon monitor and radon emanation rates for detector components [J]. Nuclear Instruments and Methods in Physics Research ,2005,1276:238-239.
    [57] C. Papastefanou. An overview of instrumentantion for measuring radon in soil gas and groundwaters [J]. Journal of Environmental Radioactivity,2002,63:271-283.
    [58] M. Joppien,R.Karnbach. Exicitations in Liquid Helium:The Evolution from Small Clusters to Large Droplets [J]. PHYSICAL RECIEW LETTERS,1993,OCTOBER:2654-2657.
    [59] Vinay M. Choubey,K.S. Bist,N.K. Saini,R.C. Ramola. Relation between soil-gas radon variation and different lithotectonic units, Garhwal Himalaya, India [J]. Applied Radiation and Isotopes,1999,51:587-592.
    [60] G. Ielsch,D. Thie?blemont,V. Labed,P. Richon,G. Tymen,C. Ferry,M.C. Robe?. Radon (222Rn) level variations on a regional scale:influence of the basement trace element (U, Th)geochemistry on radon exhalation rates [J]. Journal of Environmental Radioactivity,2001,53:75-90.
    [61] Lucia Sesana,D. Barbara Ottobrini,Giancarla Polla,G. Ugo Facchini. 222Rn as indicator of atmospheric turbulence:measurements at Lake Maggiore and on the pre-Alps [J]. Journal of Environmental Radioactivity,2006,86:271-288.
    [62] A. Tidjani,J.L. Seidel,M. Monnin、D.B. Isabelle.Realization of a simulator for radon-222 underground migration studies[J]. Nuclear Instruments and Methods A255,423,1987
    [63]田兵.用MATLAB解偏微分方程[J].阴山学刊,2006,12:12-13.
    [64]程业勋.核辐射场与放射性勘查[M].北京:地质出版社,2005:151-200.