时空耦合系统降维新方法及其在铝合金板带轧制过程建模中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多制造过程具有时间和空间耦合的特征,属于时空耦合系统,典型的例子有轧制过程、半导体制造过程、柔性操作手的高精度定位等。这些过程在数学上由偏微分方程描述,在控制领域称为分布参数系统。由于这类过程的时空耦合特点,所以本质上是无穷维的,且存在非线性、不确定性和多场耦合,很难获得其解析解,因此对于这类时空耦合过程的系统进行快速仿真分析和控制器设计是非常困难的。
     工程上,一般对无穷维非线性时空耦合系统进行降维处理,即利用有穷维系统来近似原系统。传统时空离散方法如差分法和有限元法均只能得到阶数非常高的近似模型,不适用于时空耦合系统的快速仿真和控制器设计。谱方法能得到比传统时空离散方法维数低得多的近似模型,然而只适用于一类能进行快慢分离的系统,且在通常情况下,得到的近似模型的维数不是最低的。因此,针对一大类非线性时空耦合过程,通过有效的计算方法,建立既保证建模精度,维数又最低,适用于系统快速仿真和控制器设计的低维近似模型,不但是工程上亟待解决的难题,也是一个科学上的挑战。
     针对这一难题,本文主要研究非线性时空耦合系统降维新方法及其在铝合金板带轧制过程建模中的应用。通过由谱方法导出的空间正交基函数进行线性变换得到个数较少的新基函数。基于获得的新基函数,直接投影或者结合智能技术获得原系统的一个非常低维的近似。提出的降维新方法能得到比基于传统降维方法更低维的动态模型,而且能保持较好的精度。
     本文主要研究工作包括以下方面:
     针对模型已知的非线性时空耦合系统,对谱方法导出的空间正交基函数进行线性组合得到一组新的正交基函数,空间基函数组合矩阵由时空耦合系统线性部分的平衡截断方法得到,严格地证明了基于新空间基函数的建模误差比基于同阶谱方法建模的误差小。基于获得的新空间基函数,利用混合智能建模方法来近似时空耦合系统,对典型时空耦合系统的降维结果说明了理论结果的正确性,而且表明基于新基函数的低维模型的精度优于更高维基于传统谱方法的降维模型的精度。
     针对模型未知的非线性时空耦合系统,利用正交分解技术获得该系统的实验特征函数和对应的时间系数后,建立原非线性系统的一个线性近似。对上述线性系统利用平衡截断方法得到基函数转换矩阵,从而将实验特征函数转换得到一组个数较少的改进实验特征函数,严格地证明了基于改进实验特征函数的建模误差比基于同阶实验特征函数的建模误差小。基于新的实验特征函数进行时空分离后,利用传统智能方法对系统的动态进行低维建模,仿真结果说明了理论结果的正确性,且表明基于改进实验特征函数的低维模型能达到基于初始实验特征函数的更高维模型的精度。
     针对模型已知的时空耦合系统,通过对谱方法导出的空间正交基函数进行转换得到一组新的个数较少的空问正交基函数,其中空间基函数转换矩阵由最优化方法获得。经过严格地推导得到简明且易于优化计算的的误差函数,提出了求解优化算法计算正交的转换矩阵。得到最优的转换矩阵后,利用空间基函数转换可以得到最优空间基函数。基于获得的最优空间基函数,利用时空分离结合非线性Galerkin方法,可以获得到在一定精度要求下的最低维近似动态模型。
     针对铝合金热轧四辊轧机,建立了工作辊的热力耦合变形模型,然后采用平衡截断降维方法分别对轧辊的热变形和弹性变形进行了低维建模。基于实际生产数据并综合轧辊的热变形和弹性变形,建立了板带横向厚度分布的低维智能模型。对铝合金板带的横向厚度分布的预测表明建立的低维近似模型与实际测量数据吻合较好,能满足工程应用的要求。
Many advanced manufacturing processes, such as rolling processes, semiconductor manufacturing and high accuracy positioning of flexiable arm belong to complex spatio-temporal systems that their states, controls, output and process parameters may vary temporally and spatially. The mechanistic dynamical modeling of spatio-temporal systems typically leads to various partial differential equations (PDEs). These PDEs are infinite-dimensionl in nature, and it is diffcult for prediction, control and optimization of the spatio-temporal systems because of their unavailable analytical solution, the nonlinearities, uncertainties and energy field coupling.
     In practical engineering applications, the model reduction of infinite-dimensional systems to finite-dimensional systems is needed because of finite actuators/sensors and limited computing powers. Conventional time/space discretization approaches, such as finite difference method (FDM) and finite element method (FEM), often lead to high-order models, which are not suitable for simulations and control design of spatio-temporal systems. Modeling by spectral method can obtain much lower dimensional models than conventional methods. However, it is only appropriate to modeling a kind of PDE system typically involves spatial differential operators with eigenspectra that can be partitioned into a slow and a fast complements and the dimension of the reduced model is not the lowest for a given accuracy. Thus, lower-dimensional approximate modeling with less computation cost to reveal the dynamics of DPSs is a very difficult and challenging problem in engineering and science.
     Some studies have been carried out for new model reduction approaches of spatio-temporal systems and its application in aluminum alloy rolling processes. A smaller class of new spatial basis functions is obtained by the transform from spectral basis functions. Based on new basis functions, lower-dimensional ODE systems with satisfied accuracy are developed to approximate the dynamics of spatio-temporal systems.
     The studies of this note mainly contain the following four parts:
     With the known DPSs, new spatial orthogonal basis functions are obtained by linear combinations from spectral basis functions, where the combinations matrix are developed by balanced truncation for linear terms. That the model error based on new basis function is small than spectral basis functions with the same order is proved theoretically. Based on the obtained new basis functions, a hybrid intelligent model is developed to approximate the spatio-temporal systems. Simulations for a typical spatio-temporal system are used to demonstrate the effectiveness of the proposed approach.
     For unknown DPSs, the EEFs and the corresponding temporal coefficients are obtained by POD from spatio-temporal measured output, thus a linear ODE system is used to approximate the temporal dynamics for nonlinear systems. Improved EEFs are obtained from spatial basis transform and transformation matrix is obtained by balanced truncation for the linear ODE system. That the model error based on improved EEFs is small than the same order EEFs is also proved theoretically After time/space separation based on the improved EEFs, traditional intelligent models are used to identify the dynamics of the unknown spatio-temporal processes.
     For the known DPSs, new spatial orthogonal basis functions are obtained by basis function transforms from spectral basis functions, and transformation matrix are developed by optimization method. A simple error functions related to transform matrix are derived strictly for optimization. The algorithm based on PSO is proposed for optimization of an orthogonal transformation matrix. Lower-dimensional optimal spatial basis functions are obtained from spectral basis function by transform. Using the optimal basis functions for expansions and nonlinear Galerkin method, lower-dimensional ODE systems can be derived.
     For four-high mill of aluminum alloy hot rolling, a thermal mechanically coupled model is obtained for the deformation of working rolls. The new model reduction approaches based on balanced truncation are used for low dimensional modeling of the thermal deformation and elastic deformation. Based on actual production data, low dimensional intelligent models of the transverse thickness distributions of aluminum alloy hot rolled strip by synthsis of thermal deformation and elastic deformation of work rolls. The predictions show that it has a good agreement with the requirements of the engineering applications.
引文
[1]Dochain D, Dumont, G., Gorinevsky, D., et al. Special issue on 'control of industrial spatially distributed processes'[J]. IEEE Transactions on Control Systems Technology,2003,11(5):609-611.
    [2]Christofides P.D, et al. Special volume on 'control of distributed parameter systems'[J]. Computers and Chemical Engineering,2002,26(7-8):939-940.
    [3]Christofides P.D. Special issue on 'control of complex process systems'[J]. International Journal of Robust and Nonlinear Control,2004,14(2):87-88.
    [4]Christofides P.D, Armaou, A., Eds. Control of multiscale and distributed process systems-Preface[J].Computers and Chemical Engineering,2005,29(4):687-688.
    [5]Christofides P.D, Wang, X. Z., Eds. Special issue on 'control of particulate processes'[J]. Chemical Engineering Science,2008,63(5):1155.
    [6]C.R.MacCluer. Boundary Value Problems and Orthogonal Expansions. [M]. E: Elsevier,1999.
    [7]Butkovskiy. Green's Functions and Transfer Functions Handbook[M]. A.G. Horwood Ltd:Chichester,1982:1-15.
    [8]R.F.Warming, B.J.Hyett. The modifiedequationapproach to the stability and accuracyanalysis of finite-difference methods[J]. Journal of computational science,1974,14(2):159-179.
    [9]Bao, W., H. Han, et al. Numerical simulations of fracture problems by coupling the FEM and the direct method of lines. Computer Methods in Applied Mechanics and Engineering, (2001),190(37-38):4831-4846.
    [10]Ray WH. Advanced process control[M]. McGraw-Hill Companies, 1981:191-207.
    [11]Fletcher CAJ. Computational galerkin methods[M]. New York:Springer-Verlag, 1984:1-30.
    [12]Zill D.G, Cullen, M.R. Differential equations with boundary-value problems (5th ed.) [M], vol. Brooks/Cole Thomson Learning. Australia:Pacific Grove. CA,2001:44-53.
    [13]Balas MJ. The galerkin method and feedback control of linear distributed parameter systems[J]. Journal of Mathematical Analysis and Applications,1983, 91(2):527-546.
    [14]Christofides P.D. Control of nonlinear distributed process systems:Recent developments and challenges[J]. AIChE Journal 2001b,47(3):514-518.
    [15]Lefevre L, Dochain D, Feyo de Azevedo S, et al. Optimal selection of orthogonal polynomials applied to the integration of chemical reactor equations by collocation methods[J]. Computers & Chemical Engineering,2000, 24(12):2571-2588.
    [16]Dochain D, Babary JP, Tali-Maamar N. Modelling and adaptive control of nonlinear distributed parameter bioreactors via orthogonal collocation[J]. Automatica,1992,28(5):873-883.
    [17]Temam R. Infinite-dimensional dynamical systems in mechanics and physics[M]. New York:Springer-Verlag,1988:498-525.
    [18]Foias C, Jolly M, Kevrekidis I, et al. On the computation of inertial manifolds[J]. Physics Letters A,1988,131(7-8):433-436.
    [19]Shvartsman SY, Kevrekidis IG. Nonlinear model reduction for control of distributed systems:A computer assisted study[J]. AIChE journal,1998, 44(7):1579-1595.
    [20]Christofides P.D, Daoutidis P. Finite-Dimensional Control of Parabolic PDE Systems Using Approximate Inertial Manifolds [J]. Journal of Mathematical Analysis and Applications,1997,216(2):398-420.
    [21]Alois Steindl, Hans Troge. Methods for dimension reduction and their application in nonlinear dynamics[J]. International Journal of Solids and structures,2001,38:2131-2147.
    [22]Foias C, Temam R. The algebraic approximation of attractors:The finite dimensional case[J]. Physica D:Nonlinear Phenomena,1988,32(2):163-182.
    [23]Brenner SC, Ridgway Scott, L. The mathematical theory of finite element methods[M]. New York:Springer-Verlag,1994:93-123.
    [24]Hollig K. Finite element methods with B-splines[M]. Philadelphia:Society Industrial and Applied Mathematics,2003:23-25.
    [25]Ko J, Kurdila, A. J., Pilant MS. A class of finite element methods based on orthogonal compactly supported wavelets[J]. Computational Mechanics,1995, 16(4):235-244.
    [26]Mahadevan N, Hoo K.A. Wavelet-based model reduction of distributed parameter systems[J]. Chemical Engineering Science,2000,55(19):4271-4290.
    [27]Balas MJ. Finite-dimensional control of distributed parameter systems by Galerkin approximation of infinite dimensional controllers[J]. Journal of Mathematical Analysis and Applications,1986,114(1):17-36.
    [28]Marion M, Temam. Nonlinear Galerkin methods:The finite elements case[J]. Numerische Mathematik,1990,57(1):205-226.
    [29]Cruz P, Mendes A, Magalhaes FD. Using wavelets for solving PDEs:an adaptive collocation method[J]. Chemical Engineering Science,2001, 56(10):3305-3309.
    [30]Adrover A, Continillo G, Crescitelli S, et al. Wavelet-like collocation method for finite-dimensional reduction of distributed systems[J]. Computers & Chemical Engineering,2000,24(12):2687-2703.
    [31]Adrover A, Continillo G, Crescitelli S, et al. Construction of approximate inertial manifold by decimation of collocation equations of distributed parameter systems[J]. Computers & Chemical Engineering,2002, 26(1):113-123.
    [32]Canute C., et al. Spectral methods in fluid dynamics[M]. New York:Springer-Verlag,1988:171-200.
    [33]Boyd J.P. Chebyshev and Fourier spectral methods[M]. DoverPubns,2000:1-17.
    [34]Dubljevic S, Christofides P.D, Kevrekidis IG. Distributed nonlinear control of diffusion-reaction processes[J]. International Journal of Robust and Nonlinear Control,2004,14(2):133-156.
    [35]Armaou, Christofides. Robust control of parabolic PDE systems with time-dependent spatial domains[J]. Automatica,2001,37(1):61-69.
    [36]Christofides P.D, Baker J. Robust output feedback control of quasi-linear parabolic PDE systems[J]. Systems & Control Letters,1999,36(5):307-316.
    [37]El-Farra N.H, Armaou A, Christofides P.D. Analysis and control of parabolic PDE systems with input constraints [J]. Automatica,2003,39(4):715-725.
    [38]El-Farra N.H, Christofides P.D. Coordinating feedback and switching for control of spatially distributed processes[J]. Computers & Chemical Engineering,2004,28(1-2):111-128.
    [39]Armaou A.C, Christofides P.D. Nonlinear Feedback Control of Parabolic Partial Differential Equation Systems with Time-dependent Spatial Domains[J]. Journal of Mathematical Analysis and Applications,1999,239(1):124-157.
    [40]Christofides P.D. Robust control of parabolic PDE systems[J]. Chemical Engineering Science,1998,53(16):2949-2965.
    [41]Gay D.H, Ray W.H. Identification and control of distributed parameter systems by means of the singular value decomposition[J]. Chemical Engineering Science, 1995,50(10):1519-1539.
    [42]Hoo K.A, Zheng D. Low-order control-relevant models for a class of distributed parameter systems[J]. Chemical Engineering Science,2001,56(23):6683-6710.
    [43]Hasselmann K. PIPs and POPs:The reduction of complex dynamical systems using principal interaction and oscillation patterns[J]. Jounral of Geophysical Research,1988,93:11015-11021.
    [44]Kwasniok F. The reduction of complex dynamical systems using principal interaction patterns[J]. Physica D:Nonlinear Phenomena,1996,92(1-2):28-60.
    [45]Kwasniok F. Optimal Galerkin approximations of partial differential equations using principal interaction patterns [J]. Physical Review E,1997,55(5):53-65.
    [46]Kwasniok F. Empirical low-order models of barotropic flow[J]. Journal of the atmospheric sciences,2004,61(2):235-245.
    [47]Sirovich L. Turbulence and the dynamics of coherent structures parts I-III[J]. Quarterly of Applied Mathematics,1987,45(3):561-590.
    [48]Holmes P, Lumley, J. L., Berkooz G. Turbulence, coherent structures, dynamical systems, and symmetry [M]. New York:Cambridge University Press, 1996:68-100.
    [49]Newman A.J. Model reduction via the Karhunen-Loeve expansion part I:An exposition, In:Technical Report TR96-32[R]. Maryland:University of Maryland, College Park,1996a.
    [50]Deane AE, Kevrekidis, I. G., Karniadakis, et al. Low dimensional models for complex geometry flows:Application to grooved channels and circular cylinders[J]. Fluids Physics A,1991,3(10):2337-2354.
    [51]Park H.M, Cho D.H. The use of the Karhunen-Loeve decomposition for the modeling of distributed parameter systems[J]. Chemical Engineering Science,1996,51(1):81-98.
    [52]Park H.M, Cho D.H. The use of the Karhunen-Loeve decomposition for the modeling of distributed parameter systems[J]. Chemical Engineering Science,1996,51(1):81-98.
    [53]Newman A.J. Model reduction via the Karhunen-Loeve expansion part II:Some elementary examples, In:Technical Report TR96-33[R]. Maryland:University of Maryland, College Park,1996.
    [54]Banerjee S, Cole, J. V., Jensen K.F. Nonlinear model reduction strategies for rapid thermal processing systems[J]. IEEE Transactions on Semiconductor Manufacturing,1998,11(2):266-275.
    [55]Adomaitis R.A. A reduced-basis discretization method for chemical vapor deposition reactor simulation[J]. Mathematical and Computer Modelling,2003, 38(1-2):159-175.
    [56]Armaou, Christofides. Computation of empirical eigenfunctions and order reduction for nonlinear parabolic PDE systems with time-dependent spatial domains[J]. Nonlinear Analysis,2001,47(4):2869-2874.
    [57]Banks H.T, Beeler, R. C., Kepler, G. M., et al. Reduced-order model modeling and control of thin film growth in a HPCVD reactor[J]. SIAM Journal on Applied Mathematics,2002,62(4):1251-1280.
    [58]Armaou, Christofides.P.D. Robust control of parabolic PDE systems with time-dependent spatial domains[J]. Automatica,2001,37(1):61-69.
    [59]Banks HT, Rosario, R. C. H., et al. Reduced-order model feedback control design:Numerical implementation in a thin shell model[J]. IEEE transaction on Automatic Control,2000,45(7):1312-1324.
    [60]Bendersky E, Christofides P.D. Optimization of transport-reaction processes using nonlinear model reduction[J]. Chemical Engineering Science,2000, 55(19):4349-4366.
    [61]Aling Hea. Nonlinear model reduction for simulation and control of rapid thermal processing[J]. Proceedings of the 1977 American Control Conference, 1997,2233-2238.
    [62]Adomaitis R.A.RTCVD model reduction:A collocation on empirical eigenfunctions approach, In Technical Report TR95-64[R]. Maryland: University of Maryland, College Park,1995.
    [63]Baker J, Christofides, P. D. Output feedback control of parabolic PDE systems with nonlinear spatial differential operators[J]. Industrial & engineering chemistry research,1999,38(11):4372-4380.
    [64]Theodoropoulou et al. Model reduction for optimization of rapid thermal chemical vapor deposition systems[J]. IEEE Transactions on Semiconductor Manufacturing,1998,11(1):85-98.
    [65]Diir A. On the optimality of the discrete Karhunen-Loeve expansion[J]. SIAM Journal on Control and Optimization,1998,36(6):1937-1939.
    [66]Graham M.D, Kevrekidis I.G. Alternative approaches to the Karhunen-Loeve decomposition for model reduction and data analysis[J]. Computers & Chemical Engineering,1996,20(5):495-506.
    [67]Kirby M. Minimal dynamical systems from PDEs using Sobolev eigenfunctions[J]. Physica D:Nonlinear Phenomena,1992,57(3-4):466-475.
    [68]Malthouse E.C. Limitations of nonlinear PCA as performed with generic neural networks[J]. IEEE Transactions on Neural Networks,1998,9(1):165-173.
    [69]Wilson DJH, Irwin G.W, Lightbody G. RBF principal manifolds for process monitoring[J]. IEEE Transactions on Neural Networks,1999,10(6):1424-1434.
    [70]Qi C-K, Li H-X. Nonlinear dimension reduction based neural modeling for distributed parameter processes [J]. Chemical Engineering Science,2009, 64(19):4164-4170.
    [71]Banks H.T. Control and Estimation in distributed parameter systems[M]. Boston: Birkhauser,1992:41-85.
    [72]Kubrusly C.S. Distributed parameter system identification-a survey[J]. International Journal of Control,1977,26(4):509-535.
    [73]Polis MP, Goodson, R. E. Parameter identification in distributed systems:A synthesizing overview[J]. Proceedings of the IEEE,1976,64(1):45-61.
    [74]Coca D, Billings, S. A. Direct parameter identification of distributed parameter systems[J]. International Journal of Systems Science,2000,31(1):11-17.
    [75]Muller TG, Timmer, J. Parameter identification techniques for partial differential equations[J]. International Journal of Bifurcation and Chaos,2004, 14(6):2053-2060.
    [76]Ucinski D, Korbicz, J. Parameter identification of two-dimensional distributed systems[J]. International Journal of Systems Science,1990,21(12):2441-2456.
    [77]Vande Wouwer A, Renotte, C., Queinnec, I., etal. Transient analysis of a wastewater treatment biofilter-Distributed parameter modelling and state estimation[J]. Mathematical and Computer Modelling of Dynamical Systems, 2006,12(5):423-440.
    [78]Rannacher R, Vexler. A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements[J]. SIAM Journal on Control and Optimization,2005, 44(5):1844-1863.
    [79]Fernandez-Berdaguer E.M, Santos J.E, Sheen D. An iterative procedure for estimation of variable coefficients in a hyperbolic system[J]. Applied Mathematics and Computation,1996,76(2-3):213-250.
    [80]Carotenuto L, Raiconi. Identifiability and identification of a Galerkin approximation for a class of distributed parameter-systems[J]. International Journal of Systems Science,1980,11 (9):1035-1049.
    [81]Banks H.T, Crowley, J. M., Kunisch, K. Cubic spline approximation techniques for parameter estimation in distributed systems[J]. IEEE Transactions on Automatic Control,1983,28(7):773-786.
    [82]Banks HT, Daniel Lamm, P. K. Estimation of variable coefficients in parabolic distributed systems[J]. IEEE Transactions of Automatic Control,1985, 30(4):386-398.
    [83]Banks HT, Reich, S., Rosen. Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems[J]. Applied Mathematics and Optimization,1991,24(3):233-256.
    [84]Demetriou M.A, Rosen, I. G. Adaptive identification of second-order distributed parameter systems [J]. Inverse Problems,1994,10(2):261-294.
    [85]Mohan B.M, Datta, K. B. Identification via Fourier series for a class of lumped and distributed parameter systems[J]. IEEE Transactions on Circuits and Systems,1989,36(11):1454-1458.
    [86]Horng I-R, Chou, J.-H., Tsai. Analysis and identification of linear distributed systems via Chebyshev series[J]. International Journal of Systems Science,1986, 17(7):1089-1095.
    [87]Paraskevopoulos P.N, Bounas, A. C. Distributed parameter system identification via Walsh-functions [J]. International Journal of Systems Science,1978, 9(1):75-83.
    [88]Ranganathan V, Jha, A. N., Rajamani, V. S. Identification of linear distributed systems via Laguerre-polynomials[J]. International Journal of Systems Science, 1984,15(10):1101-1106.
    [89]Ranganathan V, Jha, A. N., Rajamani V.S. Identification of nonlinear distributed systems via a Laguerre-polynomial approach[J]. International Journal of Systems Science,1986,17(2):241-249.
    [90]Mohan BM, Datta, K. B. Linear time-invariant distributed parameter system identification via orthogonal functions[J]. Automatica,1991,27(2):409-412.
    [91]Omatu S, Matumoto, K. Parameter identification for distributed systems and its application to air pollution estimation[J]. International Journal of Systems Science,1991,22(10):1993-2000.
    [92]Ding L, Gustafsson, T., Johansson, A. Model parameter estimation of simplified linear models for a continuous paper pulp digester[J]. Journal of Process Control, 2007,17(2):115-127.
    [93]Park H.M, Kim, T.H., Cho, D.H. Estimation of parameters in flow reactors using the Karhunen-Loeve decomposition[J]. Computers and Chemical Engineering,1998,23(1):109-123.
    [94]Ghosh A, Ravi Kumar, V., Kulkarni, B. D. Parameter estimation in spatially extended systems:The Karhunen-Loeve and Galerkin multiple shooting approach[J]. Physical Review E,2001,64(5):056222.
    [95]Zheng D, Hoo, K. A., Piovoso, M. J. Low-order model identification of distributed parameter systems by a combination of singular value decomposition and the Karhunen-Loeve expansion[J]. Industrial & Engineering Chemistry Research,2002.41(6):1545-1556.
    [96]Zheng D, Hoo, K. A. Low-order model identification for implementable control solutions of distributed parameter systems[J]. Computers and Chemical Engineering,2002,26(7-8):1049-1076.
    [97]Zheng D, Hoo, K. A. System identification and model-based control for distributed parameter systems[J]. Computers and Chemical Engineering,2004, 28(8):1361-1375.
    [98]Doumanidis C.C, Fourligkas, N. Temperature distribution control in scanned thermal processing of thin circular parts[J]. IEEE Transactions on Control Systems Technology,2001,9(5):708-717.
    [99]Qi C-K. Modeling of nonlinear distributed parameter system for industrial thermal processes. [D]. Hongkong:CIty university of Hongkong; 2009.
    [100]Qi C-K, Li H-X. A time/space separation-based Hammerstein modeling approach for nonlinear distributed parameter processes[J]. Computers & Chemical Engineering,2009,33(7):1247-1260.
    [101]Boyd S, Chua, L.O. Fading memory and the problem of approximating nonlinear operators with Volterra series[J]. IEEE Transactions on Circuits and Systems.1985,32(11):1150-1161.
    [102]Schetzen M. The Volterra and Wiener theories of nonlinear systems[M]. New York:Wiley,1980:199-259.
    [103]Han-Xiong Li, Chenkun Qi. Spatio-temporal Modeling of Nonlinear Distributed Parameter Systems[M]. New York:Spinger,2011.
    [104]Doyle F.J. Nonlinear model-based control using second-order Volterra models[J]. Automatica,1995,31(5):697-714.
    [105]Maner B.R, Doyle F.J. Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models[J]. Automatica,1996,32(9):1285-1301.
    [106]Parker R.S, Heemstra, D., Doyle Ⅲ, F. J., et al. The identification of nonlinear models for process control using tailored "plant-friendly" input sequences[J]. Journal of Process Control,2001,11(2):237-250.
    [107]Li H-X, Qi C-K, Yu Y. A spatio-temporal Volterra modeling approach for a class of distributed industrial processes[J]. Journal of Process Control,2009, 19(7):1126-1142.
    [108]Qi C-K, Zhang H-T, Li H-X. A multi-channel spatio-temporal Hammerstein modeling approach for nonlinear distributed parameter processes[J]. Journal of Process Control,2009,19(1):85-99.
    [109]Voss H, Bunner, M. J., Abel, M. Identification of continuous, spatiotemporal systems[J]. Physical Review E,1998,57(3):2820-2823.
    [110]Bar M, Hegger, R., Kantz, H. Fitting partial differential equations to space-time dynamics[J]. Physical Review E,1999,59(1):337-342.
    [111]Guo L.Z, Billings, S. A. Identification of partial differential equation models for continuous spatio-temporal dynamical systems [J]. IEEE Transactions on Circuits and Systems-Ⅱ:Express Briefs,2006,53(8):657-661.
    [112]Guo L.Z, Billings, S. A., Wei, H. L. Estimation of spatial derivativesn and identification of continuous spatio-temporal dynamical systems[J]. International Journal of Control,2006,79(9):1118-1135.
    [113]Parlitz U, Merkwirth, C. Prediction of spatiotemporal time series based on reconstructed local states[J]. Physical Review Letters,2000,84(9):1890-1893.
    [114]Mandelj S, Grabec, I., Govekar, E. Statistical approach to modeling of spatiotemporal dynamics[J]. International Journal of Bifurcation and Chaos, 2001,11(11):2731-2738.
    [115]Guo L.Z, Billings, S. A. Sate-space reconstruction and spatiotemporal prediction of lattice dynamical systems [J]. IEEE Transactions on Automatic Control,2007,52(4):622-632.
    [116]Mandelj S, Grabec, I., Govekar, E. Nonparametric statistical modeling approach of spatiotemporal dynamics based on recorded data[J]. International Journal of Bifurcation and Chaos,2004,14(6):2011-2025.
    [117]Abel M. Nonparametric modeling and spatiotemporal dynamical systems[J]. International Journal of Bifurcation and Chaos,2004,14(6):2027-2039.
    [118]Coca D, Billings S.A. Identification of coupled map lattice models of complex spatio-temporal patterns[J]. Physics Letters A,2001,287(1-2):65-73.
    [119]Billings S.A, Coca, D. Identification of coupled map lattice models of deterministic distributed parameter systems[J]. International Journal of Systems Science,2002,33(8):623-634.
    [120]Gonzalez-Garcia R, Rico-Martinez, R., Kevredidis, I. G. Identification of distributed parameter systems:A neural net based approach[J]. Computers and Chemical Engineering,1998,22:S965-S968.
    [121]Coca D, Billings S.A. Identification of finite dimensional models of infinite dimensional dynamical systems[J]. Automatica,2002,38(11):1851-1865.
    [122]Deng H, Li H-X, Chen G-R. Spectral-approximation-based intelligent modeling for distributed thermal processes[J]. IEEE Transactions on Control Systems Technology,2005,13(5):686-700.
    [123]Li H-X, Deng H, Zhong, J. Model-based integration of control and supervision for one kind of curing process[J]. IEEE Trans on Electronics Packaging Manufacturing,2004,27(3):2004.
    [124]Zhou X-G, Liu L-H., Dai Y-C., etal. Modeling of a fixed-bed reactor using the KL expansion and neural networks[J]. Chemical Engineering Science,1996, 51(10):2179-2188.
    [125]Smaoui N, Al-Enezi, S. Modelling the dynamics of nonlinear partial differential equations using neural networks[J]. Journal of Computational and Applied Mathematics,2004,170(1):27-58.
    [126]Sahan RA, Koc-Sahan, N., Albin, D. C., etal. Artificial neural network-based modeling and intelligent control of transitional flows[J]. Proceeding of the 1997 IEEE International Conference on Control Applications,1997, Hartford, CT:359-364.
    [127]Romijn R, Ozkan L, Weiland S, et al. A grey-box modeling approach for the reduction of nonlinear systems [J]. Journal of Process Control,2008, 18(9):906-914.
    [128]Aggelogiannaki E, Sarimveis, H. Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models[J]. Computers and Chemical Engineering,2008,32(6):1225-1237.
    [129]Qi C-K, Li H-X. A LS-SVM modeling approach for nonlinear distributed parameter processes[J]. In The 7th World Congress on Intelligent Control and Automation, China,2008.
    [130]Christofides P.D. Nonlinear and robust control of PDE systems:Methods and applications to transport-reaction processes[M].Birkhauser,2001:71-97.
    [131]Gottlieb D, Orszag S.A. Numerical analysis of spectral methods:theory and applications[M]. Society for industrial and applied mathematics,1993:61-79.
    [132]Ya-Song, Sun B-W.L. Chebyshev collocation spectral method for one-dimensional radiative heat transfer in graded index media[J]. International Journal of Thermal Sciences,2009,48:691-698.
    [133]Liberge, A.Hamdouni E. Reduced order modelling method via proper orthogonal decomposition (POD) for flow around an oscillating cylinder[J]. Journal of Fluids and Structures,2010,26:292-311.
    [134]Sadek I, Bokhari M. Optimal control of a parabolic distributed parameter system via orthogonal polynomials[J]. Optimal Control Applications and Methods,1998,19(3):205-213.
    [135]Lee T, Wang F, Newell R. Robust model-order reduction of complex biological processes[J]. Journal of Process Control,2002,12(7):807-821.
    [136]Moheimani SOR, Pota H.R, Petersen I.R. Spatial balanced model reduction for flexible structures [J]. Automatic-Oxford,1999,35:269-278.
    [137]Moore B. Principal component analysis in linear systems:Controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control, 1981,26(1):17-32.
    [138]Glover K. All optimal Hankel-norm approximations of linear multivariable systems and their L1-errors bounds[J]. International Journal of Control,1984, 39.
    [139]Hahn J, Edgar T.F. Balancing approach to minimal realization and model reduction of stable nonlinear systems[J]. Industrial & engineering chemistry research,2002,41(9):2204-2212.
    [140]Laub A, Heath M, Paige C, Ward R. Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms[J]. IEEE Transactions on Automatic Control,1987,32(2):115-122.
    [141]Safonov M, Chiang R. A Schur method for balanced-truncation model reduction [J]. IEEE Transactions on Automatic Control,1989,34(7):729-733.
    [142]Tombs M, Postlethwaite I. Truncated balanced realization of a stable non-minimal state-space system[J]. International Journal of Control,1987, 46(4):1319-1330.
    [143]Skogestad S, Postlethwaite I, NetLibrary I. Multivariable feedback control: analysis and design[M].UK:Wiley Chichester,1996:289-341.
    [144]Zhou K, Doyle JC, Glover K. Robust and optimal control:vol.40[M]. Prentice Hall Upper Saddle River, NJ,1996:42-80.
    [145]Deng H, Li H-X, Wu Y-H. Feedback-linearization-based neural adaptive control for unknown non-affine nonlinear discrete-time systems[J]. IEEE Transactions on Neural Networks,2008,19(9):1615-1625.
    [146]Deng H, Xu Z, Li H-X. A novel neural internal model control for multi-input multi-output nonlinear discrete-time processes[J]. Journal of Process Control, 2009,19(8):1392-1400.
    [147]Kennedy J, Eberhart, "Particle swarm optimization" [J]. In IEEE International Conference on Neural Network,1995:1942-1948.
    [148]Kennedy J. The particle swarm:Social adaptation of knowledge[J]. In International Conference on Evolutional Computation. Indianapolis,1997: 303-308.
    [149]Kennedy J, Eberhart, Swarm Intelligence[M]. San Francisco:CA, Morgan Kaufmann,2001:309-318.
    [150]Stefano Sellerie. Some Insight over new variations of the Particle Swarm Optimization method[J]. IEEE Antennas and Wireless Propagation Letters,2006, 5:235-238.
    [151]Demetriou, Rosen. On-line robust parameter identification for parabolic systems[J]. International Journal of Adaptive Control and Signal Processing, 2001,15(6):615-631.
    [152]Armbruster D, R. Heiland, E-J. Kostelich, etal. Phase-space analysis of bursting behavior in Kolmogorov flow[J]. Physica D,1992,58:392-401.
    [153]Aubry N, W.-Y. Lian, E. S. Titi. Preserving symmetries in the proper orthogonal decomposition[J]. SIAM Journal Science Computation,1993,14:483-505.
    [154]王国栋.板型控制和板型理论[M].北京:冶金工业出版社,1986:307-324.
    [155]王蕊宁,高文柱,戚运莲.有限元模拟在板材轧制中的应用[n中国材料进展,2009,28(4):56-60.
    [156]刘宏民,F.Sanfilipopo F.D热带钢连轧机板形设定控制数学模型[J].钢铁,1996,31(10):30-34.
    [157]贾春玉.基于人工智能的白适应板型控制[J].钢铁研究学报,2001,13(4):58-61.
    [158]贾春玉.纵筋板轧制能量法解析三维模型的研究与开发[J].钢铁研究,2001(3):35-37.
    [159]胡宏勋,崔振山.热轧中厚板变形解析模型的研究[J].轧钢,2007,24(2):13-17.
    [160]束学道,李传民.板带轧制压力多极边界元法解析[J].塑性工程学报,2008,15(1):123-126.
    [161]姚林龙.大型工业轧机的三维板带轧制解析[J].北京科技大学学报,2003,25(1):57-61.
    [162]Jiang Z Y, T.A.K, Lu C. A three-dimensional thermo-mechanical finite element model of complex strip rolling considering sticking and slipping friction[J]. Journal of Materials Processing Technology,2002:125-126.
    [163]Jiang Z Y, T.A.K, Zhang X. M. Finite element modelling of mixed film lubrication in cold strip rolling[J]. Journal of Materials Processing Technology, 2004,151(1-3):242-247.
    [164]Tieu A K, JZY, Lu C. A 3D finite element analysis of the hot rolling of strip with lubrication [J]. Journal of Materials Processing Technology,2002:638-644.
    [165]王英睿,刘宏民.基于流面条元法的热带钢连轧仿真分析[J].塑性工程学报,2003,10(3):53-57.
    [166]邓华,段建辉.非稳态轧制过程的热力耦合刚塑性有限元模拟[J].中国机械工程,2008,19(15):1875-1878.
    [167]赵旭亮,王淑君,徐建忠.四辊轧机轧辊弹性变形的研究[J].东北大学学报:自然科学版,2008,29(6):834-837.
    [168]孙蓟泉,周欣科,张慧霞.关于轧辊弹性变形的影响函数法研究[J].山东冶金,2009,31(4):1-4.
    [169]白金兰,王军生,王国栋.六辊轧机辊间压力分布解析[J].东北大学学报:自然科学版,2005,26(2):133-136.
    [170]杜凤山,于辉,郭振宇.板带热轧工作辊温度场的研究[J].塑性工程学报,2005,12(2):78-81.
    [171]郭文涛,何安瑞,杨荃.基于二维交替方向差分法热轧工作辊热辊形模型的研究[J].冶金设备,2009,(1):20-23.
    [172]Zhang X.M, JZY, Tieu A.K. Numerical modelling of the thermal deformation of CVC roll in hot strip rolling[J]. Journal of Materials Processing Technology, 2002,(130-131):219-223.
    [173]王粉花,孙一康,陈占英.基于模糊神经网络的板形板厚综合控制系统[J].北京科技大学学报,2003,25(2):182-184.
    [174]Shahani A R.SS, Nodamaie S.A. Prediction of influence parameters on the hot rolling process using finite element method and neural network[J]. Journal of Materials Processing Technology,2009,209 (4):1920-1935.
    [175]Sonjsldm, Kimis. A study on genetic algorithm to select architecture of a optimal neural network in the hot rolling process[J]. Journal of Materials Processing Technology,2004:153-156.
    [176]Hakan I.Tarman,Halil Berbero-glu. Efficient Numerical Algorithm for Cascaded Raman Fiber Lasers Using a Spectral Method[J]. Journal of Lightwave Technology,2009,27(13):2289-2298.
    [177]铁摩辛柯,古第尔.弹性理论(徐芝纶译)[M].北京:高等教育出版社,1990:50-60.
    [178]钱伟长,叶开沅.弹性力学[M].北京:科学出版社,1956:117-133.
    [179]宋明明.轻敲模式原子力显微镜微悬臂-探针动力学研究:[D]。南京:南京理工大学,2007.
    [180]于辉,郭振宇,杜凤山.板带热轧工作辊温度场的研究[J].河北冶金2004(3):16-18.
    [181]刘家信,李慧剑.理论力学[M].北京:机械工业出版社,1996:45-75.