草莓果实发育过程中糖及类黄酮对生长素的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖代谢和类黄酮代谢是草莓(Fragaria ananassa Duch.)果实发育过程中两个重要的生理代谢过程。草莓果实发育过程中,糖和类黄酮代谢途径都受到植物激素特别是生长素的调控。本研究以露地栽培的“全明星”草莓为试材,利用生长素极性运输抑制剂1-萘氨甲酰苯甲酸(NPA)和2,3,5—三碘苯甲酸(TIBA)处理发育着的草莓果实,从生长素自身代谢活动调节、生长素调控蔗糖代谢以及类黄酮响应生长素信号机制三个方面研究了生长素对草莓果实品质形成的调控机理。
     草莓果实发育过程中生长素主要作用时期在果实发育前期和转色期,细胞壁离子键结合的吲哚乙酸氧化酶(IAO)对吲哚乙酸(IAA)的降解起主要作用。草莓果实中,盛花期的瘦果和花托中都含有大量的吲哚乙酸,瘦果中的吲哚乙酸含量远高于花托中,分别为:2.34μg·g-1、0.065μg·g-1。吲哚乙酸及生长素结合蛋白(ABP1)均特异分布于维管束组织韧皮部。
     试材草莓果实中糖分的积累以已糖为主,生长素抑制剂处理使草莓果实含糖量增加。红熟期对照(CK)、NPA、TIBA含糖量分别为:0.39g·100g-1、0.40 g·100g-1、0.20g·100g-1(蔗糖);0.41g·100g-1、0.40g·100g-1、0.26g·100g-1(果糖);0.38g·100g-1、0.46g·100g-1、0.19g·100g-1(葡萄糖)。葡萄糖对生长素信号感应最明显,响应生长素信号的蔗糖代谢酶主要是蔗糖合成酶(SS)和酸性转化酶(AI)。其中,蔗糖合成酶分解活性和合成活性对生长素信号最敏感时期分别在果实发育前期和发育后期,而酸性转化酶在整个果实发育过程中对生长素信号的响应都较强。草莓果实中蔗糖合成酶和酸性转化酶分布的组织相同,均主要分布于维管束组织韧皮部。
     草莓果实发育过程中,花托内总类黄酮和总酚的含量先上升后下降,到转色期继续上升直至成熟。生长素极性运输抑制剂在发育前期可减缓果实中总类黄酮和总酚含量下降速度,发育后期增加花色苷的含量。类黄酮代谢关键酶查尔酮合成酶(CHS)和查尔酮异构酶(CHI)均主要分布于维管束细胞韧皮部。
     经蔗糖和吲哚乙酸渗透处理,草莓果实圆片中查尔酮合成酶和查尔酮异构酶的转录和翻译水平增强,蔗糖和吲哚乙酸诱导了CHS与CHI的表达,使得总类黄酮、总酚、花色苷的含量随之大量增加。吲哚乙酸和蔗糖互作试验结果表明,在对糖介导的类黄酮物质合成过程的调控上,吲哚乙酸的促进作用表现在转录水平和翻译水平。
Sugars and Flavonoids are important plant primary and secondary metabolites respectively.Their metabolisms are regulated by Auxin in Strawberry fruit. The strawberry (Fragaria ananassa Duch.)(All-Star) fruit was used as materials to investigate the regulation of sugar metabolism and flavonoid metabolism by Auxin so that the effects of polar auxin transport inhibitors on the sugar and flavonoid accumulations and metabolisms can be clearly elucidated. Study methods emphasized on exogenous inhibitors of polar auxin transport application (NPA, TIBA). Experimental results were obtained as f followed.
     The most important period of IAA on developing strawberry was in the preceeding period and the inception period. Activities of ionic-bond IAO in cytoderm had great effect on the decomposing of IAA. IAA content in achenes was higher than that in receptacles: 2.34μg·g-1、0.065μg·g-1. IAA and ABP1 signal mainly localized in the vascular tissues of the receptacles, and mainly localized in the phloem.
     Hexose was the dominant sugar in the strawberry fruit development. After treatment with NPA and TIBA, the sugar contents of fruit increased:0.39g·100g-1、0.40 g·100g-1、0.20g·100g-1 (Sucrose); 0.41g·100g-1、0.40g·100g-1、0.26g·100g-1 (Fructose); 0.38g·100g-1、0.46g·100g-1、0.19g·100g-1 (Glucose). The most sensitive sugar to the IAA regulation was Glucose. The decomposing activity of SS and the synthesis activies of SS were in the preceeding period and the later period respectively were sentive to IAA. And the activity of AI was sensitive to IAA in the fruit development. AI and SS signal mainly localized in the vascular tissues of the receptacles, and mainly localized in the phloem.
     The treatments of NPA and TIBA slow down the drop of total flavonoids and total phenols contents in the preceeding period and increased anthocyanin content in the later period during the strawberry fruit development. CHS and CHI mainly localized in the vascular tissues of the receptacles, and mainly localized in the phloem. Sliced strawberry was used to assess the effect of sugars and IAA on flavonoids accumulation and CHS, CHI expression. The results showed that IAA and sucrose induced both the flavonoids accumulation and CHS and CHI expression by enhancing their amount in both transcription and translation levels. The Interaction between sucrose and IAA was studied in the expression of sucrose-induction of the flavonoids accumulation. The results indicated that IAA treatment inhance the transcription level and translation levels of flavonoids.
引文
[1]陈俊伟,谢鸣,蒋桂华等.不同时期采收的草莓果实糖含量差异的代谢机理[J].园艺学报,2007,34(5):1147-1150.
    [2]陈俊伟,谢鸣,秦巧平.植物糖信号与激素信号之间的联系.植物生理学通讯,2005,41(3):279-285.
    [3]陈俊伟,张上隆,张良诚.果实中的糖的运输、代谢与积累及其调控[J].植物生理与分子生物学学报,2004,30(1):1-10.
    [4]陈立松,刘星辉.水分胁迫下荔枝叶片过氧化物酶和IAA氧化酶活性的变化[J].武汉植物学研究,2002,20(2):131-136.
    [5]陈泽宪.徐辉碧.过氧化物酶催化吲哚-3-乙酸氧化的机理和影响因素[J].湖北农业科学,2000,(6):10-13.
    [6]崔克明,汪向彬,段俊华等.构树形成层活动中内源IAA的变化及其结合蛋白的研究[J].植物学报,1999,41(1):1082-1085.
    [7]崔艳涛,孟庆瑞,王文凤等.安哥诺李果皮花青普与内源激素、酶活性变化规律及其相关性[J].果树学报,2006,23(5):699-702.
    [8]董合忠,李维江,任桂杰.棉花花芽分化过程中IAA含量与过氧化物酶活性变化趋势的研究[J].棉花学报,1999,11(6):303-305.
    [9]冯晨静,关军锋等.草莓果实成熟期花青苷、酚类物质和类黄酮含量的变化[J].果树学报,2003,20(3):199-201.
    [10]高启祥,李颖章,刘淑兰.烟草薄层培养生长素结合蛋白ABP1的定位和ABP1在细胞分化中的变化[J].植物学报,2001,43(10):1018-1023.
    [11]何之常,徐乃瑜.吲哚乙酸氧化酶和过氧化物酶关系的同工酶研究[J].武汉大学学报(自然科学版),1994,1:91-95.
    [12]李合生.植物生理生化实验原理和技术—面向21世纪课程教材[M].北京:高等教育出版社,2000.
    [13]李青云,葛会波,张广华等.日光温室草莓果实生长发育过程中糖、酸和Vc变化动态的研究[J].河北农业大学学报,2002,25(2):46-48.
    [14]李永庚,于振文,姜东等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究[J].作物学报,2001,27(5):658-664.
    [15]李永梅,王晓婷,王永章等.套袋对‘黄金梨’果实糖代谢及相关酶活性的影响[J].北方园艺,2007,7:43-47.
    [16]蔺经,细见彰洋,常有宏.日本不同质地纸袋及套袋方式对葡萄果实品质的影响[J].天津农学 院学报,2004,11(3):37-40.
    [17]罗霄,郑国琦,王俊.果实糖代谢及其影响因素的研究进展[J].农业科学研究.2008,2:69-74.
    [18]倪迪安,许智宏.生长素的生物合成、代谢、受体和极性运输[J].植物生理学通讯,2001,37(4):346-352.
    [19]潘秋红.果实酸性转化酶研究[D].北京:中国农业大学.2003.
    [20]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004.
    [21]钱玉梅,高丽萍,张玉琼.采后草莓果实的生理生化特性[J].植物生理学通讯,2003,39(6):700-704.
    [22]徐胜利,陈青云,李绍华等.糖代谢相关酶和GA3、ABA在嫁接伽师瓜果实糖分积累中的作用[J].果树学报,2005,22(5):514-518.
    [23]王丽娟,张学英等.不同光质对草莓果实花青苷、酚类物质及类黄酮物质的影响[J].河北农业大学学报,2009,32(2):54-57.
    [24]韦素玲.白花泡桐根分化过程中过氧化物酶、IAA氧化酶和过氧化氢酶的变化[J].广西科学,2001,8(2):135-137.
    [25]王秀芹.弱光环境下油桃光合同化物转运分配机制的研究[D].北京:中国农业大学,2003.
    [26]王永章,张大鹏等.红富士苹果果实蔗糖代谢与酸性转化酶和蔗糖合酶的关系的研究[J].园艺学报,2001,28(3):259-261.
    [27]夏国海,张大鹏.葡萄果肉同化物卸载区细胞间的共质体联系与隔离[J].植物学报,2000,42(9):898-904.
    [28]于海涛,霍俊伟,吕其涛,李兴国.植物激素对果实花青昔合成的影响[J].北方园艺,2003,4:56-57.
    [29]张凌云.苹果果实韧皮部质外体卸载的证据[D].北京:中国农业大学,2003.
    [30]张明方,李志凌.高等植物中与蔗糖代谢相关的酶[J].植物生理学通讯,2002,38(3):289-295.
    [31]赵可夫.不同日照长度下菊芋块茎形成过程中植物激素和同工酶的变化[J].植物生理学报,1984,10(1):11-17.
    [32]赵智中,张上隆,徐昌杰等.蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用[J].园艺学报,2001,28(2):112-118.
    [33]钟晓红,马定渭,黄远飞.草莓果实发育过程中内源激素水平的变化[J].江西农业大学学报,2004,26(1):107-111.
    [34]周兴本,郭修武.套袋对红地球葡萄果实色素形成及PPO和PAL活性的影响[J].中外葡萄与葡萄酒,2006,6:8-12.
    [35]Abdelilah, Chaoui, Brahim Jarrar, and Ezzedine EL Ferjani. Effects of cadmium and copper on peroxidase, NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pea roots[J]. Journal of Plant Physiology,2004,161:1225-1234.
    [36]Abe I, Takahashi Y, Morita H, et al.. Benzalacetone synthase A novel polyketide synthase that plays a crucial role in the biosynthesis of phenylbutanones in Rheum palmatum[J]. Eur. J.Biochem.,2001, 268:3354-3359.
    [37]Aharoni A, Keizer L C, Van Den Broeck H C, et al. Novel insight into vascular, stress, and auxin-dependent and independent gene expression programs in strawberry, a non-climacteric fruit[J]. Plant Physiol,2002,129:1019-1031.
    [38]Amor, Y, Haigler C H, Johnson S, Wainscott M, and Delmer D P. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants[J]. Proc Natl Acad Sci USA,1995,92:9353-9357.
    [39]Ballare C. Stress under the sun:spotlight on ultrabiolet-B responses[J]. Plant Physiol.,2003,170: 372-383.
    [40]Beffa, R, Martin H V, and Pilet P E. Invitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots[J]. Plant Physiol,1990,94:485-491.
    [41]Bertelli, A A, Giovannini L, Gianness D, Migliori M, Bernini W, and Fregoni M. Antiplatelet activity of synthetic and natural resveratrol in red wine[J]. International Journal of Tissue Reactions, 1995,17:1-3.
    [42]Beruter, J, and Studer Feusi M E. The effects of girdling on carbon hydrate partitioning in the growing apple fruit[J]. Plant Physiol,1997,151:227-285.
    [43]Besseau, S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, and Legrand M. Flavonoid Accumulation in Arabidopsis Repressed in Lignin Synthesis Affects Auxin Transport and Plant Growth[J]. The Plant Cell,2007,19:148-162.
    [44]Bieleski R.L. Fructan hydrolysis drives petal expansion in the ephemeral daylily flower[J]. Plant Physiology,1993,103:213-219.
    [45]Bonilla, E P, Akoh C C, Sellappan S, and et al. Phenolic content and antioxidant capacity of Muscadine grapes[J]. Journal of Agricutural of Food Chemistry,2003.
    [46]Bracho, G E, and Whitaker J R. Purification and partial characterization of potato invertase and its endogenous proteinaceous inhibitor[J]. Plant Physiology,1990,92:386-394.
    [47]Brandon, R, Hockema, and E D Etxeberria. Metabolic contributors to drought-enhanced cumulation of sugars and acids in oranges[J]. Mer Soc Hort Sci,2001,126(5):599-605.
    [48]Brenner ML. Hormonal control of assimilate partitioning:regulation in the sink[J]. Acta Hort.,1989, 239:141-146.
    [49]Broun P. Transcription factors as tools for metabolic engineering in plants[J]. Plant Biol.,2004,7: 202-209.
    [50]Buer, C S, and Muday G K. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light[J]. Plant Cell,2004,16: 1191-1205.
    [51]Buer C S.and Djordjevic M A. Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana[J]. Journal of Experimental Botany,2009,60(3):751-763.
    [52]Burbulis IE, Shirley BW. Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway[J]. Proc Natl Acad Sci USA,1999,96:12929-12934.
    [53]Cain, C C, Saslowsky D E, and Walker R A. Expression of chalcone synthase and chalcone isomerase proteins in Arabidopsis seedlings[J]. Plant Mol Biol,1997,35:377-381.
    [54]Chengappa S, Loader N, Shields R. Cloning, expression and mapping of a second tomato sucrose synthase gene, Sus3. Plant PhysioL,1998,118:1533.
    [55]Chourey, P S, and Nelson O E. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize[J]. Biochem Genet,1976,14:1041-1055.
    [56]Christensen, A B, Gregersen P L, Schroder J, and et al. A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack[J]. Plant Mol Biol,1998,37:849-857.
    [57]Curir P, Van Sumere C F, Termini A, et al. Flavonoid accumulation is correlated with adventitious roots formation in Eucalyptus gunnii Hook micropropagated through axillary bud stimulation[J]. Plant Physiol,1990,92:1148-1153.
    [58]D'Aoust, A M, Yelle S, and Nguyen-Quoc B. Antisense inhibition of tomato fruit sucrose in heterotrophic cell-suspension cultures of Chenopodium rubrum L[J]. Planta,1999,182:223-231.
    [59]Davies, C, and Robinson S P. Sugar accumulation in grape berries Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues[J]. Plant Physiol,1996,111:275-283.
    [60]Dewald D B, SAdka A, Mullet J E. Sucrose modulation of sovbean Vsp gene expression is inhibited by auxin[J]. Plant physiol.,1994,104:439-444.
    [61]Do CB, Cormier F. Accumulation of anthocyanins enhanced by a high osmotic potential in grape (vitis vinifera L) cell suspensions[J]. Plant Cell Rep.,1990,9:143-146.
    [62]Dreher T W, Poovaiah B W. Changes in auxin content during during development in strawberry fruits[J]. J Plant Growth Regul.,1982,1:267-276.
    [63]Euch C. E, Jay-Allemand C, Pastuglia M, et al. Expression of antisense chalcone synthase RNA in transgenic hybrid walnut microcuttings:effect on flavonoid content and rooting ability[J]. Plant Mol. Biol.,1998,38:467-479.
    [64]Famiani, F, Walker R P, Tecsi L, et al. An immunohistochemical study of the comparmentation of metabolism during the development of grape berries[J]. Journal of Expermental Botany,2000.
    [65]Farrar JF. Sink strength:What is it and how do we measure it[J]. Plant Cell and Environ,1993,16: 1014-1046.
    [66]Faye, L, Berjonneau C, and Rollin P. Studies on β-fructosidase from radish seedlings Ⅰ:Purification and partial characterization[J]. Plant Science Letters,1981,22:77-87.
    [67]Ferrer, J L, Jez J M, Bowman M E, and et al. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis[J]. Narure Struct Biol,1999,6:775-784.
    [68]Fischer I C, Sundberg B, Neuhaus G. and et al.. Auxin distribution and transport during embryonic pattern formation in wheat[J]. Plant J,2001,26(2):115-129.
    [69]Given N K, Venish M A, Grierson D. Hormonal-regulation of ripening in the strawberry, a non-climacteric fruit[J]. Planta,1988,174:402-406.
    [70]Gloria K, Muday, DeLong A. Polar auxin transport:controlling where and how much[J]. Trends in Plant Science,2001,6(11):535-543. []Gomez L, Carrasco P. The molecular mechanism of ethylene signal transduction[J]. Plan Mol Biol., 1996,30:821-832.
    [71]Gray W M, Kepinski S, Rouse D et al. Auxin regulates SCFTIR1-dependent degradation of Aux/IAA proteins[J]. Nature,2001,414:271-276.
    [72]Grotewold, E, and Peterson T. Isolation and characterization of a maize gene encoding chalcone flavonone isomerase[J]. Mol Gen Genet,1994,242:1-8.
    [73]Hara M,Oki K,Hoshino K, Kuboi T. Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus)hypocotyl[J]. Plant Science,2003,164:259-265.
    [74]Hardin S C, Huber S C. Proteasome activity and the post-translational control of sucrrose synthase stability in maize leaves[J]. Plant Physiol and Biochemistry,2004,42:197-208.
    [75]Harnden, D, and Jones A M. Organ distribution of auxin-binding protein 1 in the etiolated maize seeding[J]. Plant Growth Reg,1995,14:109-113.
    [76]Harpster M H, Brumell D A, Sunsmuir P E. Expression analysis of a ripening-specific, auxin-repressed endo-1,4-beta-glucanase gene in strawberry [J]. Plant Physiol,1998,118:1307-1316.
    [77]Herles, C, Braune A, and Blaut M. First bacterial chalcone somerase isolated from Eubacterium ramulus[J]. Arch Microbiol,2004,181:428-434.
    [78]Heim KE, Tagliaferro AR, Boliya DJ. Flavonoid antixidants:chemistry, metabolism and structure activity relationships[J]. J Nutr. Bioch.,2002,13:572-584.
    [79]Honda, C, Kotoda N, Wada M, and et al. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin[J]. Plant Physiology Biochemistry,2002.
    [80]Hong-Wei Hou, Yu-Ting Zhou, Kalima-N'Koma Mwange et al.. ABP1 expression regulated by IAA and ABA is associated with the cambium periodicity in Eucommia ulmoides Oliv[J]. Journal of Experimental Botany,2006,57(14):3857-3867.
    [81]Hou, Z X, and Huang W D. Immunohistochemical localization of IAA and ABP1 in strawberry shoot apexes during floral induction[J]. Planta,2005.
    [82]Hou, Z X, and Huang W D. Immunohistochemical localization of IAA in developing strawberry fruit [J]. J Horticultural Science and Biotechnology,2004,79(5):693-698.
    [83]Hosokawa K, Fukuna Y, Fukushi E et al.. Production of acylated anthocyanins by blue flowers of Hyacinthus orientalis regenerated in vitro[J]. Phtytochem,1996,41:1531-1533.
    [84]Hrubcova M, Cvikrova M, Eder J. et al.. Effect of inhibition of phenylpropanoid biosynthesis onperoxidase and IAA-oxidase activities and auxin content in alfalfa suspension culturesPlant Physiol[J]. Biochem,2000,38:949-956.
    [85]Huber, S C, and Akazawa T. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells[J]. Plant Physiol,1986,81:1008-1013.
    [86]Huber, S C, and Huber J L. Role and regulation sucrose phosphate synthase in higher plants[J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:431-445.
    [87]Hubbard N L, Pharr D M, Huber S C. Role of sucrose-phosphate synthase in sucrosc Biosynthesis in ripening bananas and its relationship to the respiratory climacteric[J]. Plant Physiol,1990,94: 201-208.
    [88]Hubbard N L, Pharr D M,Huber S C. Sucrose-phosphate synthase and other sucrose metabolizing enzymes in fruits of various species[J]. Physiol Plant,1991,82:191-196.
    [89]Isla, M I, Vattuone M A, and Sampietro A R. Essential group at the active site of Frapaeolum invertase[J]. Phytochemistry,1998.
    [90]Ito, H, Kimizuko F, Ohbayashi A, and et al. Molecular cloning and characterization of two comp lementary DNA sencoding putative peroxidases from rice (Oryza sativa L.) shoots[J]. Plant Cell Reports, 1994,13:361-366.
    [91]Jaakola L, Maatta K, Pirttila AM, et al.. Expressin of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development[J]. Plant Physiol.,2002,30:729-739.
    [92]Jang, J C, Leon P, Zhou L, and Sheen J. Hexokinase as a sugar sensor in higher plants[J]. Plant Cell, 1997,9:5-19.
    [93]Jeandet P, Bessis R, Sbaghi M, et al..Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions[J]. J Phytopathol.,1995,143:135-139.
    [94]Jez, J M, and Noel J P. Reaction mechanism of chalcone isomerase pH dependence, diffusion contro, and product binding differences[J]. Journal of Biological Chemistry,2002,277(2):1361-1369.
    [95]Kim, A R, Cho J Y, Zou Y, and et al. Flavonoids Differentially Modulate Nitric Oxide Production Pathways in Lipopolysaccharide-Activated RAW264.7 Cells[J]. Arch Pharm Res,2005,28:297-304.
    [96]Kim, J Y, Mahe A, and Guy S. Characterization of two members of the maize gene family, Incw3 and Incw4,encoding cell-wall invertase[J]. Gene,2000,245:89-102.
    [97]Kim, S, Jones R, Yoo K S, and Pike L M. Gold color in onions (Allium cepa), a natural mutation of the chalcone isomerase gene resulting in a premature stop codon[J]. Mol Gen Genomics,2004,272: 411-419.
    [98]Klann E M, Hall B, Bennet A B. Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit[J]. Plant Physiology,1996,112:1321-1330.
    [99]Koch K E, Nolte K D, Duke E R, McCarty D R, Avigne W T. Sugar levels modulate differential expression of maize sucrose synthase genes[J]. The Plant Cell,1992,4:59-69.
    [100]Kovaleva, L V, Zakharova E V, Minkina Y V, and et al. Auxin and Flavonoids in the Progame Phase of Fertilization in Petunia[J]. Russian Journal of Plant Physiology,2007,54(3):396-401.
    [101]Krylov, S N, Krylova S M, and Rubin L B. Threshold effect of caffeic acid on peroxidase-catalysed oxidation of indole-3-acetic acid[J]. Phytochemistry,1993,33:9-12.
    [102]Laemmli, U K. Cleavage of structural propein during the assembly of the head of bacteriophage T4[J]. Nature,1970.
    [103]Lafuente, M. T., Sala, J. M., Zacarias, L. Active oxygen detoxifying enzymes and phenylalanine ammonia-lyase in the ethylene-induced chilling tolerance in citrus fruit[J]. Journal of Agricultural and Food Chemistry,2004,52:3606-3611.
    [104]Lalonde, S, et al. The dual function of sugar carriers, transport and sugar sensing[J]. Plant cell, 1999,11:702-726.
    [105]Lee T T. Effects of phenolic substances on metabolism of exogenous indole-3-acetic acid in maize stems[J]. Physiol.Plant,1980,50:107-112.
    [106]Lee T T, Starrat A N, Jevinkar J J. Regulation of enzymic oxidation of indole-3-acetic acid by phenols:structure-activity relationships[J]. Phytochemistry,1982,21:517-523.
    [107]Lloyd JC, Zakhleniuk OV. Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of Arabidopsis mutant, pho3[J]. J Exp Bot.,2004,55: 1221-1230.
    [108]Loreti, E, Poverol G, Novi G, Solfanelli C, Alpi A, and Peratal P. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis[J]. New Phytologist,2008,179:1004-1016.
    [109]Manulis S, Haviv-Chesner A, Brand M, Lindow S, Barash I. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Envinia herbicola pv. gypsophialae[J]. Molecular plant-Microbe Int,1998,11:634-642.
    [110]Marco, A, Guzzardi P, and Jamet E. Isolation of tobacco isoperoxidasesaccumulated in cell-suspension culture mediun and characterization of activities related to cellwall metabolism[J]. Plant Physiol,1999,120:371-381.
    [111]Martens S, Knott J, Seitz CA, et al.. Impact of biochemical pre-studies on specific metabolic engineering strategies of flavonoid biosynthesis in plant tissues[J]. Biochem. Engin. J.,2003,14: 227-235.
    [112]Martin C, Prescott A, Mackay S. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus[J]. Plant J,1991,1:37-49.
    [113]Mattsson J, Sung Z R, Berleth T. Responses of plant vascular systems to auxin[J]. Development,1999,126:2979-2991.
    [114]Middleton, E, Kandaswami C, and Theoharides C T. The effects of plant flavonoids on mammalian cells, implications for inflammation, heart disease and cancer[J]. Pharmacol.Rev,2000,52:673-751.
    [115]Moalem-Beno D., Tamari G., and Leitner-Dagan Y., et al. Sugar-dependent gibberellin-induced chalcone synthase gene expression in petunia corollas[J]. Plant Physiology,1997,113:419-424.
    [116]Mohan, R, Vijayan P, and Kolattukudy P F. Developmental and tissue-specific expression of a tomato anionic peroxidase(tapl)gene by a minimal promoter,with wound and pathogen induction by an additional5'-flanking region[J]. Plant Mol Biol,1993,22:475-490.
    [117]Moriguchi T, Kita M, Tomono Y, Endo-Inagaki T, Omura M. Gene expression in flavonoid biosynthesis:Correlation with flavonoid accumulation in developing citrus fruit[J]. Physiologia Plantarum,2001,111:66-74.
    [118]Moriguchi, T, Sakurai M, and Sakuta M. Effects of conditioned medium on activies of PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa[J]. Plant Science,2001,160:355-360.
    [119]Moriguchi, T, Abe K, Sanada T, and Yamaki S. Levels and role of sucrose synthase, sucrose-phosphate synthase and acid invertase in sucrose accumulation in fruit of Asian pear[J]. J Amer Soc Hort Sci,1992,117:274-278.
    [120]Moriguchi, T, and Yamaki S. Purification and characterization of sucrose synthase from peach (Prunus persica) fruit[J]. Plant cell physiol,1988,29(8):1361-1366.
    [121]Mumford F E, Smith D H, Castle J E. An inhibitor of indoleacetic acid oxidase from pea tips[J].Plant physiol,1961,36:752-756.
    [122]Napier, R M. Towards an understanding of ABP1[J]. J Exp Bot,1995,46:1787-1795.
    [123]Napier, R M. Models of auxin binding[J]. Plant Growth Regul,2001,20:244-254.
    [124]Napier, R M. Trafficking of the auxin-binding protein[J]. Trends in Plant Science,1997,2: 251-254.
    [125]Napier, R M, DAVID K M, and Perrot Rechenmann C. A short history of auxin-binding proteins[J]. Plant Molecular Biology,2002,49:339-348.
    [126]Neta-Sharir I, Shoseyov O, Weiss D. SuGAsrs enhance the expression of gibberellin-induced genes in developing petunia flowers[J]. PhysiolPlant,2000,109:196-202.
    [127]Nitsch. J P. Growth and morphogenesis of strawberry as related to auxin[J]. Amer J Bot,1950,37: 211-215.
    [128]Nolte, K D, and Koch K E. Companion-cell specific localization of sucrose synthase in zones of phloem loading and unloading[J]. Plant Physiol,1993,101:899-905.
    [129]Obenland, D M, Simmenv Boller T, and Wiemken A. Purification and characterization of three soluble invertases from barley (Hordeum vulgare L.) leaves[J]. Plant Physiology,1993,101: 1331-1339.
    [130]Ogiwara I, Miyamoto R, Habutsu S, et al..Variation in sugar content in fruit of four strawberry cultivars grown in field and under forced culture, harvest years, and maturation stages[J]. J Japan Soc Hort Sci,1998,67:400-405.
    [131]Ohyama A,ItoH,Sato T. Suppression of acid invertase activity by antisense RNA modifies the sugar composition of tomato fruit[J]. Plant Cell Physiol,1995,36:369-376.
    [132]Park, J S, Choung M G, Kim J B, and et al. Genes up-regulated during red coloration in UV-B irradiated lettuce leaves[J]. Plant Cell Rep,2007,26:507-516.
    [133]Parmar, Nayna G, and Sumitra V Chanda. Effects of Mercury and Chromium on Peroxidase and IAA-Oxidase Enzymes in the Seedlings of Phaseolus vulgaris[J]. Turk J Biol,2005,29:15-21.
    [134]Peer, W A, Brown D E, Tague B W, and et al. Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis[J]. Plant Physiol,2001,126:536-548.
    [135]Peer WA, Murphy AS. Flavonoids and auxin transport:modulators or regulators?[J]. Trends in Plant Science,2007,12,556-563.
    [136]Peng RH, Yao QH, Xiong AS, et al.. Ubiquitin-Conjugating Enzyme (E2) Confers Rice UV Protection Through Phenylalanine Ammonia-Lyase Gene Promoter Unit[J]. Acta Botanica Scinica,2003, 45:1351-1358.
    [137]Perata P, Matsukura C, Vernieri P, Yamaguchi J. Sugar repression of agibberellin-dependent signaling pathway in barley embryos[J]. Plant Cell,1997,9:2197-2208.
    [138]Peters, A, Schneider-Poetsch HAW, Schwarz H, and et al. Biochemical and immunological characterization of chalcone synthase from rye leaves[J]. J Plant Physiol,1988,133:178-182.
    [139]Pirie A J G, Mullins M G. Concentration of phenolics in the skin of grape berries during fruit development and ripening[J]. American Journal of Enology and Vitiulture,1980,31:34-36.
    [140]Pollak, P E, Vogt T, Mo Y, and et al. Chalcone synthase and flavonol accumulation in stigmas and anthers of petunia hybrida[J]. Plant Physiol,1993,102:925-932.
    [141]Rapport L, Lockwood B. Proanthocyanidins and grape seed extract[J]. Phara. J.,2001,266: 581-584.
    [142]Reuber S, Bornmann JF, Weissenbock G. A flavonoid mutant of barley (Hordeum vulgare L.) exhibits encreased sensitity tu UV-B radiation in the primary leaf[J]. Plant Cell Envir.,1996,19: 593-601.
    [143]Ruan, Y L, Chourey P S, and Delmer D P. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed[J]. Plant Physiol,1997,115: 375-385.
    [144]Sachs T. The control of the patterned differentiation of vascular tissues[J]. Adv But Res.,1981,9: 151-262.
    [145]Schwalm, K, Aloni R, Langhans M, and et al. Flavonoid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors[J]. Planta,2003,218:163-178.
    [146]Schwuchow J, Michalke W, Hertel R. An auxin transport inhibitor interferes with unicellular gravitropism in protonemata of the moss Ceratodon purpureus[J]. Plant Biol,2001,3(4):357-363.
    [147]Shimada, N, Aoki T, Sat S, Nakamura Y, Tabata S, and Ayabe S. A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general falavonoids and legume-specific5-deoxy(iso) Flavonoids in Lotus japonicas[J]. Plant Physiology,2003,131(3): 941-951.
    [148]Shimomura, S, and Watanabe S. Auxin receptors in plasmalemma[J]. Membrane,1993,18:34-42.
    [149]Shirley, B W. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology[J]. Plant Physiology,2001,126:485-493.
    [150]Singh, M B, and Knox R B. Invertase of Lilium pollen characterization and activity during in vivo germination[J]. Plant Physiology,1984,74:510-515.
    [151]Smulders M J, Croes A F, Wullems G J. Polar transport of 1-naphthaleneace acid determines the distribution of flower buds on explants of tobacco[J]. Plant Physiol,1988,88:752-756.
    [152]Solfanelli C, Poggi A, Loreti E, et al. Sucrose-specific induction of the anthocyanin biosynthetic pathway in arabidopsis[J]. Plant Physiol.,2006,140:637-646.
    [153]Sparvoli F, Martin C, Scienza A, et al.. Clone and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in prape (Vitis vinifer L.)[J]. Plant Mol. Biol.,1994,24:743-755.
    [154]Srinivasan, C, and Mullins M G. Physiology of flowering in the grape vinea review[J]. Amer jenol vatic,1981,32:47-63.
    [155]Stenlid, G. The effects of flavonoid compounds on oxidative phosphorylation and on the enzymatic destruction of indole-acetic-acid[J]. Physiol Plant,1963,16:110-120.
    [156]Sturm, A. Invertase, primary structures, functions and roles in plant development and sucrose partitioning[J]. Plant Physiology,1999,121:1-7.
    [157]Swati B, Sun H G, Brian L. Early embryo development in Fucus distichus is auxin sensitive [J]. Plant Physiology,2002,130:292-302.
    [158]Tang, G Q, Luscher M, and Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning[J]. Plant Cell,1999,11: 177-189.
    [159]Tang, Y W, and Bonner J. The enzymatic inactivation of indoleacetic acid. Some characteristics of the enzyme contained in pea seedlings[J]. Arch Biochem Biophys,1947,13:11-25.
    [160]Taylor, L P, and Jorgensen R. Conditional male fertility in chalcone synthase-deficient petunia[J]. J Hered,1992,83:11-17.
    [161]Teale WD, Paponov IA, Palme K. Auxin in action:signalling, transport and the control of plant growth and development[J]. Nature revi,2006,7:847-859.
    [162]Van Huyster, R B. Some molecular aspects of plant peroxidase, biosynthetic studies[J]. Ann Rev Plant Physiol,1987,38:205-219.
    [163]Vieten A, Sauer M, Brewer P B. Molecular and cellular aspects of auxin transport mediated development[J]. Trends in Plant Science,2007,12(4):160-169.
    [164]Volpert, R, Osswald W, and Elstner E F. Effects of cinnamic acid derivatives on indole acetic acid oxidation by peroxidase[J]. Phytochemistry,1995,38:19-22.
    [165]Waffo TP, Decendit A, Deffieux G, et al.. Trans-resveratrol-3-O-b-glucoside (piceid) in cell suspension cultures of Vitis vinifera[J]. Phytochem.,1996,42:1591-1593.
    [166]Walker, R P, and Pollock C J. The purification and characterization of soluble acid invertase from coleptile of wheat (Triticum aestevum L.cv. Avalon)[J]. Journal of Experimental Botany,1993,44: 1029-1037.
    [167]Winkel-Shirley, B. Evidnce for enzyme complexes in the phenylpropanoid and flavonoid[J]. Physiol Planta,1999,107:142-149.
    [168]Wolfe, K, Wu X, and Liu R H. Antioxidant activity of apple peels[J]. Journal of Agricultural and Food Chemistry,2003.
    [169]Yamaki S, Asakura T. Stimulation of the uptake of sorbitol into vacuoles from apple fruit flesh by abscisic acid and into protoplasts by indoleacetic acid[J]. Plant Cell Physiol.,1991,32(2):315-318.