根域限制对葡萄果实发育、源库器官及其输导组织结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过研究根域限制对葡萄植株树体生长和果实发育、源库器官组织结构、光合产物输导组织、源库端韧皮部超微结构、和果实糖分积累及其相关酶活性的影响,探讨了根域限制下葡萄果实生长机理和糖分积累机制,取得如下结果:
     1、从根域限制下葡萄源库器官生长和生物学产量的分配来看,根域限制下葡萄植株的总的生物量积累低于对照,但是根域限制下果实生物量积累占全株生物量积累的比例要高于对照,特别是在果实的第二次快速生长期,果实生物学产量占整株的比例达到最高,其中根域限制处理为39%,对照为31%。
     2、从根域限制下果实发育和主要营养物质积累来看,在果实整个发育期,根域限制下果皮硬度和果肉硬度均低于对照,在果实发育的第二个快速生长期,根域限制果实膨压峰值高于对照,根域限制还降低了葡萄果实果皮和果肉中的细胞壁含量,葡萄果皮中果胶含量和纤维素含量也低于对照。在果实发育的第二次快速生长期间,根域限制葡萄果实中可溶性固形物(TSS)含量高于对照,并在P≤0.05水平上达到显著性差异,果实花青素含量、总蛋白和游离氨基酸含量也是根域限制的高于对照。
     3、从根域限制对根、叶和果实组织结构影响来看,根域限制下葡萄植株根系吸收根表皮和皮层厚度分别为18.3μm和579.1μm,都高于对照,而中柱面积为0.004mm2,显著小比对照;根域限制下叶片厚度增加,其中根域限制为456.8μm,对照为415.4μm。叶片角质层、栅栏组织和海绵组织的厚度也是根域限制高于对照。根域限制下植株叶片主脉和侧脉的横切面直径分别为904.2μm和756.3μm,都高于对照;在果实发育的第二次快速生长期,周缘维管束和中央维管束的横切面面积为0.09mm2和0.21mm2,比对照大,根域限制果实周缘维管束数量也多于对照。
     4、从根域限制下染料在果实中运输与分布规律来看,在葡萄果实发育的第一次快速生长期,根域限制和对照处理的果实周缘维管束被染色数量最多,染色范围最广,染料溶液在葡萄果实中的运输速率也最高,分别为1.72cm/h和1.63cm/h。根域限制处理果实中周缘维管束和中央维管束中染料溶液的运输速度低于对照处理,但胚珠维管束中染料运输速度要高于对照,为1.32cm/h;进入生长停滞期后,根域限制和对照处理的葡萄果实中的周缘维管束被染色数目最低,染料溶液在周缘维管束和中央维管束运输速度也最低0.72cm/h和0.70cm/h;在果实的第二次快速生长期,根域限制和对照处理果实周缘维管束数目比生长滞后期增加,但低于果实发育的第一次快速生长期,根域限制果实周缘维管束染色范围、染料运输速率都高于对照处理。
     5、从根域限制对源(叶)和库(果实)韧皮部超微结构来看,根域限制增加了叶片细脉筛管伴胞复合体间的胞间连丝数量,说明根域限制能够促进中光合产物在叶端共质体途径的装载;在葡萄果实在第二次快速生长期,根域限制处理葡萄果实周缘维管束伴胞出现了质壁分离的现象,但是伴胞中仍在存在完整的线粒体,而且线粒体的数量高于对照,同时根域限制伴胞和周围薄壁细胞中液胞膜出现内陷和小囊胞进入,小囊胞运输是质外体卸载途径所采用的一种重要方式,根域限制处理促进果实中糖分积累与果实中伴胞和薄壁细胞的液胞中积聚了大量的小囊胞有一定的关系。
     6、从根域限制对葡萄果实糖分积累和相关代谢酶活性来看,葡萄果实中葡萄糖、果糖和总糖的含量都是在果实发育的第二次快速生长期迅速增加,对照果实中葡萄糖和果糖含量为56.2 mg﹒g-1FW和55.3mg﹒g-1FW,而根域限制下果实中达到了62.1 mg﹒g-1FW和65.2mg﹒g-1FW;果实进入第二次快速生长期后,果实中酸性转化酶和中性转化酶活性开始升高,根域限制果实中的酸性转化酶和中性转化酶活性都显著高于对照,但中性转化酶活性水平比酸性转化酶活性低很多。蔗糖合成酶和蔗糖磷酸合成酶活性在第二次快速生长期变化不大,根域限制和对照处理差异不显著。
     综上所述,根域限制抑制了葡萄树体源叶和新梢的生长,却促进库果实的生长。根域限制下,葡萄果实在第二次快速生长期(PhaseⅢ)膨大生长增加,果实主要营养物质含量提高,果实中糖含量积累增加,酸性转化酶活性增加,这些结果表明根域限制促进了果实生长,提高了果实品质。根域限制下葡萄植株根、叶和果实的组织结构,尤其是源叶和库果实输导组织结构及其韧皮部超微结构发生了相应的变化,说明了根域限制改变了葡萄源库器官的组织结构,影响了光合产物在源库两端装载和卸载。本研究结果,为根域限制栽培技术的应用和推广提供了科学依据,奠定了理论基础。
In this thesis, effects of root restriction on the growth of grape vine and berry, the anatomical structure of source and sink organs, conducting tissue of phloem ultrastructure, and sugar accumulation and its relative enzymes activity were studied. This study explored the mechanism of berry growth and development, and the sugar accumulation. The main results were indicated as follows:
     1 In terms of effects of root restriction on the biomass allocation of grape vine, the total biomass accumulation of grape vine under root restriction was less than control, but the biomass accumulation of grape berry under root restriction was more than control treatment. Root restriction inhibited the growth of leaf and shoot, decreased the aboveground biomass accumulation of grape vine, but increased the biomass accumulation of grape berry; the biomass accumulation of grape cluster took up 39% for root restriction, and 31% for control.
     2 In terms of the berry development and main nutriments accumulation in berry under root restriction, during all stages of berry growth, the firmness of berry and berry skin under root restriction were lower than control treatment. During phaseⅢ, the berry turgor pressure under root restriction had higher peak value compared with the control treatment, but the cell wall content of flesh and berry skin under root restriction was lower than control treatment. Root restriction also decreased the pectin and cellulose content. During phaseⅢ, the TSS content under root restriction was higher than control treatment, showed a significant difference at P≤0.05 level with control treatment; root restriction also increased the anthocyanin content, the total protein content and free amino acid content.
     3 In terms of anatomical structure of root leaf and berry, root restriction increased the thickness of epidermis and cortex, 18.3μm and 579.1μm respectively, but the cross sectional area of pericycle of absorbing root was 0.004mm2 for root restriction, which was significantly less than control; the thickness of leaf for root restriction and control treatment were 456.8μm and 319.4μm respectively, root restriction also increased the cutin layer thickness, stockade tissue thickness, and sponge tissue thickness. The diameter of leaf main vein and side vein under root restriction were 904.2μm and 756.3μm, which were longer than control treatment; the cross-sectional area of dorsal and central vascular bundle under root restriction were 0.09mm2 and 0.21mm2, the amount of central vascular bundles in grape berry under root restriction was also more than control.
     4 In terms of the transport and distribution rule of dye stuff in grape berry under root restriction, during phaseⅠ, the dorsal and central vascular bundles were colored mostly under root restriction and control treatments, and the speeds of dye stuff transport in vascular bundles were the highest among three phases of berry development, the speeds for root restriction and control treatment were 1.72cm/h and 1.63cm/h respectively; after phaseⅡ, the distribution of dye stuff decreased under root restriction and control treatments, the amount of colored vascular bundles and speeds of dye stuff transport decreased under both two treatments the speeds in central vascular bundles were 0.72cm/h and 0.70cm/h respectively; during phaseⅢ, the distribution of dye stuff increased under root restriction and control treatments, but lower than phaseⅠ.
     5 In terms of the changes of unltrastructure of source organs and sink organs, The number of plasmodesmata between companion cell (CC) and sieve element (SE) in minor vein under root restriction is more than control treatment, this showed root restriction promoted the symplast transport in leaf; During the second rapid growth phase of the grape berry, CC under root restriction showed more serious plasmolysis. Cytoplasmic contents such as vesicles were fused into the vacuole of which the tonoplast nearly disappeared in the phloem parenchyma cells, and cytoplasmic contents in fruit cells produced under root restriction became denser than the control treatment.
     6 Total sugar content of berry under root restriction was higher than that of control berry. The peak concentration of glucose and fructose in grape berries from the control plants was 56.2 and 55.3mg﹒ g-1FW, while concentration in root restriction berries was 65.2 and 62.1 mg﹒g-1FW, which was higher than in control. Acid invertase (AI) activity, which increases with berry development, was significantly higher in root-restricted berries than in control berries. Neutral invertase (NI) activity showed a similar trend to AI, but the amount of NI activity was lower than AI in both treatments. Sucrose phosphate synthase (SPS) and sucrose synthase (SS) activity changed slightly with berry development, and there was no significant difference in SS and SPS activity between root restriction and control treatments. Therefore, AI appears to be the key enzyme induced by root restriction that explains the higher sugar content found in grape berry produced under root restriction.
     From all above,root restriction decreased leaf growth, but promoted the berry growth. During phaseⅢ, root restriction promoted the berry expanding growth, increased the main nutriment content and AI enzyme activity, these results explain why root restriction could improve berry quality. Root restriction led the change in anatomical structure of root leaf and berry, especially the ultrastructure of the phloem in leaf and berry, these results showed that root restriction changed the anatomical structure of source and sink organs, led to the pathway of photosynthate loading and unloading. Therefore, the findings of the present study may provide a scientific base for promotion of root restriction.
引文
[1]王世平,张才喜,罗菊花等.果树根域限制栽培研究进展.果树学报. 2002, 19(5): 298-231.
    [2]Ghani M.A., Malik T.. Effects of root restriction on growth and yield of mango Harumanis. Proceedings of Fruit Industry in Malaysia. 1993, 24:85-91.
    [3]Ismail M.R., Noor M.K.. Growth, water relations and physiological processes of starfruit (Averrhoa carambola L.) plants under root growth restriction. Sci. Hortic. 1996, 66: 51-58.
    [4]Imai S., Okamato G,and, Endo M. Effect of dense planting and root system control on attaining greater early production and fruit stability of tetraploid grapes.Bull. Hiroshima Fruit Tree Exp.Stn.. 1987, 12: 1-9.
    [5]Okamoto G, Imai S. Promotion of seeded berry set of’‘Pione’grape by restricting root zone.(in Japanese). Rep.Agri.Okayama Univ.. 1989, 74: 15-20.
    [6]Wang SP, Okamoto G,and, Hirano K. Vine growth and fruit development of‘Pione’grapes planted in root-restricted buried and raised beds. J.Japan.Soc.Hort.Sci. 1997, 66: 253-259.
    [7]Wang SP, Okamoto G, Hirano K. Effects of rooting-zone restriction on the change in carbohydrates and nitrogenous compounds in Kyoho grapevines during winter dormancy and early shoot growth. J.Japan.Soc.Hort.Sci.. 1998, 67: 577-582.
    [8]Wang SP, Okamato G, Hirano K et al. Effects of restricted rooting volume on vine growth and berry development of‘Kyoho’grapevines. Am.J.Enol.Vitic.. 2001, 52(3): 248-253.
    [9].Yoneda T., Oniwa G., Kuwahara M., et al. Effects of rooting-zone restriction on quality of fruit, yield, flower bud differentiation and water stress in Mandarin. J. Japan. Soc. Hort. Sci.. 1995, 63: 745-752.
    [10]Yakushiji H, Nonami H, Fukuyama T, et al. Sugar accumulation enhanced by osmo-regulation in satsuma mandarin fruit. J.Amer.Soc.Hort.Sci.. 1996, 121(3):466-472.
    [11]Bukovac M.J. Some consideration in flowering and fruiting in apple. Compact Fruit Tree. 1984, 17:64-69
    [12]Williamson JG, Coston DC. Planting method and irrigation rate influence vegetative and reproductive growth of peach planted at high density. J.Amer.Soc. Hort .Sci.. 1990, 115: 207-212.
    [13]Hommi Y, Sakakibara M, Kimura T. Capacity of root zone watering and fertilizer application for peach trees in container culture. Research Bulletin of the Aichiken Agriculture Research Center. 1995, 27: 251-258.
    [14]Mark R, Marra F. Responses of young peach trees to root confinement. J. Amer. Soc. Hort. Sci.. 1994, 119: 223-228
    [15]Boland A, Mitchell PD, Goodwin I, et al. The effect of soil volume on young peachtree growth and water use. J. Amer. Soc. Hort. Sci.. 1994, 119:1157-1162.
    [16]Webster AD, Atkinson JC, Vaughan JS. Controlling the shoot growth and cropping of sweet cherry trees using root pruning or root restriction techniques. Acta Hort.. 1997,451:643-649.
    [17]Matsuura K, Hamata K, Aragi S. Effects of rooting-zone restriction on growth and fruit quality in fig.(in Japanese) J.Japan.Soc.Hort.Sci.. 1992, 61(suppl.2):170-171.
    [18]Ogawa T, Matsumura H, Gotou K. Effects of rooting-zone restriction on‘Tomari’persimmon. (In Japanese). J. Japan.Soc.Horti.Sci.. 1997,66(suppl.2):8-9.
    [19]于克辉,韩凤珠,赵岩,王毅,许英武,李栋栋.限根技术在果树设施栽培中的应用.北方果树. 2004, 12: 61- 62.
    [20]Razi M.I., Adam P, Mohd Idris Z.A.. Root confinement and its effects on growth water relations and stomatal responses of starfruit plants. Malaysian Applied Biology. 1996, 25(2): 75-80.
    [21]Zainudin M. Root restriction for growth control and precocity in starfruit (Averrhoa carambola L.). Ph.D Thesis. 2000. Universiti Putra Malaysia.
    [22]朱丽娜,鲁华东,张才喜,杨天仪,王世平.根域容积对藤稔葡萄幼树生长及营养元素吸收的影响.植物营养与肥料学报. 2004, 10(6): 674-676.
    [23]Richards D., Rowe, R.N.. Root-shoot interactions in peach:The function of the root. Annals of Botany. 1977a, 41:1211-1216.
    [24]Peterson T.A., Reinsel M.D., Krizek D.T., Tomato(Lycopersicum esculentum Mill cv. Better Bush) plant response to root restriction. Alteration to plant morphology. Journal of Experimental Botany. 1991a, 42:1233-1240.
    [25]Zainudin M. Effects of root restriction on growth, flowering and water uptake of starfruit(Averrhoa carambola L.). Journal Tropical of Agriculture and Food Science. 2006. 34(1):27-36.
    [26]Carmi A., Shalhevet J. Root effects on cotton growth and yield. Crop Science 1983, 23: 875-878.
    [27]Blake T.J.. Coppice systems for short rotation intensive forestry: The influence of cultural, seasonal and plant factors. Australian Forest Research. 1983, 13:279-291
    [28]Blake T.J., Tschaplinski T.J.L., Eastham, A. Stomatal control of water use efficiency inpopular clones and hybrids. Canadian Journal Botany. 1984, 62:1344-1351
    [29]Robbins N.S., Pharr D.M.. Effect of restricted root growth on carbohydrate metabolism and whole plant growth of Cucumis Sativus L. Plant Physiology. 1988, 87:409-413
    [30]Peterson T.A., Reinsel M.D., Krizek D.T.. Tomato(Lycopersicum esculentum Mill cv. Better Bush) plant response to root restriction.Ⅱ.Root respiration and ethylene generation. Journal of Experimental Botany. 1991a, 42: 1241-1249.
    [31]Ronchi C.P., DaMatta F.M., Batista K.D., Moraes GABK, Loureiro M.E., Ducatti C. Growth and photosynthetic down-regulation in Coffea arabica in response to restricted root volume. Functional plant biology. 2006, 33 (11) : 1013-1023.
    [32]Barrett D.J., Gifford R.M.. Photosynthetic acclimation to elevated CO2 in relation to biomass allocation in cotton. J.Biogeo. 1995, 22, 331-339
    [33]Kharkina T.G,Ottosen C.O., Rosenqvist E.. Effects of root restriction on the growth and physiology of cucumber plants. Physiol. Plant. 1999, 105, 434-441.
    [34]Yang TL., Zhu LN., Wang SP, et al. Nitrate uptake kinetics of grapevine under root restriction. Sci. Hortic. 2007, 111: 358–364.
    [35]Thomas R.B., Strain B.R.. Root restriction as a factor in Photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiol. 1991, 96, 627-634.
    [36]Will R.E., Teskey R.O.. Effect of elevated carbon dioxide concentration and root restriction on net photosynthesis,water relations and foliar carbohydrate status of loblolly pine seedlings. TreePhysiol. 1997, 17: 655-661.
    [37]Geigenberger P.. Response of Plant metabolism to too little oxygen.Curr.opin. Plant Biol. 2003, 6:247-256.
    [38]何军贤,韦振泉,梁厚果. Effect of water stress on occurrence, function and gene exp ression of alternative pathway of wheat seedling. Sci China (中国科学) (C辑), 1999, 29 (4): 407- 412.
    [39]Hilal M, Zenoff AM, Ponessa G. Saline stress alter the temporal patterns of xylem differentiation and alternative oxidase expression in developing soybean roots. Plant Phsiol. 1998, 117: 695-701.
    [40]Stewart CR, Martin BA, Redin GL. Respiration and alternative oxidase in cornsedding tissues during germination at differenttemperatures. Plant Physiol.. 1990, 93: 755- 760.
    [41] Vanl Erberghe GC, Mcin Toch L. Low growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco. Plant Physiol. 1992, 100: 115-119.
    [42]吴强,李红玉,张立新,梁厚果.环境胁迫与植物抗氰呼吸.西北植物学报. 2003, 23(1): 164-170
    [43]Ricard B., Couee I, Raymond P., Saglio P.H., Saint Ges V, Pradet, A.. Plant metabolism under hypoxia and anoxia. Plant Physiol. Biochem.. 1994, 32: l-10.
    [44]Hanson P.J., Dixon R.X., Dickson R.E. Effect of container size and shape on the growth of northern oak seedlings. Hortscience. 1987, 22(6):1293-1295.
    [45]Van Iersel M. Root restriction effects on growth and development of salvia (Salvia splendens). Hortscience. 1997, 32(7):1186-1190.
    [46]Tschaplinski T.J., Blake T.J. Effects of root restriction on growth correlation, water relations and senescence of alder seedlings. Physiology Plantarum. 1985, 64:167-176.
    [47]Hameed M.A., Reid J.B., Rowe R.N., Root confinement and its effects on the water relations,growth and assimilate partitioning of tomato (Lycopersicon esculentum). Ann. Bot. 1987, 59, 685-692.
    [48]Dubik S.P., Krizek D.T., Stimart D.P.. Influence of root zone restriction on mineral element concentration, water potential, chlorophyll concentration and partitioning of assimilate in spreading Euonymus (E. Kiautschovica Loe.‘Sieboldiana’). J. Plant. Nutr. 1990, 13:677-699.
    [49]Zhu L.N., S.P. Wang, T.Y. Yang, C.X. Zhang, W.P. Xu. Vine growth and nitrogen metabolism of‘Fujiminori’grapevines in response to root restriction. Sci. Hortic. 2006, 107:143-149.
    [50]Mark R, Marra F. Response of young peach trees to root confinement. J. Amer. Soc. Hort. Sci.. 1994, 119(2):223-228.
    [51]杨天仪.根域限制葡萄树氮素与碳素代谢机制研究, [博士学位论文].上海,上海交通大学, 2007.
    [52]杨洪强,接玉玲,李林光.园艺植物的根系限制及其应用.园艺学报, 2001,28(suppl):603-608.
    [53]王学臣,贾文琐.水分胁迫下蚕豆气孔关闭与叶细胞ABA区隔化与再分配的关系.植物生理学报, 1995, 21(4): 324-328.
    [54]王世平.根域制限がブドウ樹の体内栄養、ホルモン条件に及ぼす影響と中国寧夏での“巨峰”栽培への応用.[博士学位论文].日本冈山,日本冈山大学. 1998.
    [55]Ternesi M.A., Andrad A.P., Jorrin J., Benlloch M. Root-shoot signaling in sunflower plants with confined root system. Plant Soil. 1994, 166:31-36.
    [56]Hurley M.B., Rowarth J.S.. Resistance to root growth and changes in the coneentrations of ABA within the root and xylem sap during root- restrietion stress. J. Exp.Bot. 1999, 50, 799-804.
    [57]饶景萍,任小林,童斌.葡萄果实生长发育中形态组织结构及生理变化.西北农业大学学报, 1998, 26 (2): 98-103.
    [58]Zhang XY, Wang XL, Wang XF, Xia GH, Pan QH, Fan RC, Wu FQ, Yu XC, Zhang DP. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol. 2006, 142: 220-232.
    [59]潘照明,罗国光.玫瑰香葡萄浆果的解剖学研究.见:园艺学会编.中国园艺学会成立六十周年纪念暨六届年会论文集.I.果树.北京:万国学术出版社, 1990, 114-116.
    [60]Fillion L, Ageorges A, Picaud S, Coutos-Thévenot P, Lemoine R, Romieu C, Delrot S. Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Plant Physiol. 1999, 120:1083-1093.
    [61]Coombe BG. Research on development and ripening of the grape berry. Am J Enol Vitic. 1992, 43: 101-110.
    [62]Findlay N, Oliver KJ, Nil N, Coombe BG. Solute accumulation by grape pericarp cells. IV. Perfusion of pericarp apoplast via the pedicel and evidence for xylem malfunction in ripening berries. J. Exp. Bot., 1987, 38: 668-679
    [63]张大鹏,李珉,王毅.葡萄果实发育过程中果肉细胞超微结构的观察.植物学报. 1997, 39 (5): 389-396.
    [64]Lalonde S, Tegeder M, Throne-Holst M, Frommer WB, Patrick JW. Phloem loadingand unloading of sugars and amino acids. Plant Cell Environ. 2003, 26: 37-56.
    [65]Oparka KJ, Cruz SS. The great escape: phloem transport and unloading of macromolecules. Ann Rev Plant Physiol Plant Mol Biol. 2000, 51: 323-347.
    [66]Patrick JW. Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 191-222
    [67]Murphy R. Water flow across the sieve-tube boundary: estimating turgor and some implications for phloem loading and unloading. IV. Root tips and seed coats. Ann Bot. 1989, 63: 571-579.
    [68]Tucker EB, Tucker JE. Cell-to-cell diffusion selectivity in staminal hairs of Setcreasea purpurea. Protoplasma. 1993, 174:36-44.
    [69]Pritchard J, Winch SK, Gould N. Phloem water relations and root growth. Aust J Plant Physiol. 2000, 27: 539-548.
    [70]Murphy R. Phloem transport plant biology. New York, Berlin: Springervelag. 1986. 25-262.
    [71]Cleland RE. The role of hormones in wall loosening and plant growth. Austr J Plant Physiol, 1986, 13: 93-103
    [72]Cleland RE, Fujiwara T, Lucas WJ. Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma. 1994, 178: 81-85.
    [73]张凌云,张大鹏.光合同化物韧皮部卸载途径和机制.植物生理学通讯, 2003, 39 (4): 399-403.
    [74]Terry BR, Robards AW. Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta. 1987, 171:145-157.
    [75]Van Bel AJE, Van Kesteren WJP, Papenhuijzen C. Ultrastructural indications for coexistence of symplastic and apoplastic phloem loading in Commelina benghalensis leaves. Planta. 1988, 176: 159-172.
    [76]夏国海.葡萄果实糖分卸载与代谢机制研究.[博士学位论文].北京,中国农业大学. 1999.
    [77]Davis C, Robinson SP. Sugar accumulation in grape berries. Cloning of two putative vacuolar invertase cDNA and their expression in grapevine tissue. Plant Physiol. 1996, 111: 275-283.
    [78]Viola R, Roberts AG, Haupt S, Gazzani S, Hancock RD, Marmiroli N, Machray GC, Oparka KJ. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell. 2001, 13: 385-398.
    [79]During H, Lang A, Oggionni F. Patterns of water flow in riesling berries in relation to developmental changes in their xylem morphology. Vitis. 1987, 26: 123-131.
    [80]Lucas WJ, Ding B, Van der Schoot C. Plasmodesmata and the supracellular nature of plants. New Phytol. 1993, 125: 435-476.
    [81]Shepherd VA, Goodwin PB. Seasonal patterns of cell-tocell communication in Chara corallina Klein ex will. II. Cell to cell communication during the development of antheridia. Plant Cell Environ. 1992, 15: 151-162.
    [82]夏国海,张大鹏.葡萄果肉同化物卸载区细胞间的共质体联系与隔离.植物学报. 2000, 42 (9): 898-904.
    [83]夏国海,张大鹏,贾文锁. IAA、GA和ABA对葡萄果实14C蔗糖输入与代谢的调控.园艺学报. 2000, 27 (1): 6-10.
    [84]Pan QH, Li MJ, Peng CC, Zhang N, Zou X, Zou KQ, Wang XL, YuXC, Wang XF, Zhang DP. Abscisic acid activates acidinvertases in developing grape berry. Plant Physiol. 2005, 125: 157-170.
    [85]Carrari F, Fernie AR, Iusem ND. Heard it through the grapevine? ABA and sugar cross-talk: the ASR story. Trends Plant Sci. 2004, 9 (2): 57-59.
    [86]Blouin J, Guimberteau G.. Maturation et maturitédes raisins. Bordeaux: Féret, 2000:29-31.
    [87]吕德国.限根对果树生长发育的影响.沈阳农业大学学报. 2000, 31 (4): 361-364.
    [88]Dry P.R., B.R. Loveys. Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Aust. J. Grape and Wine Research. 1998, 4:140-148.
    [89]Shi K, Ding XT, Dong DK, Zhou YH, Yu JQ. Root restriction-induced limitation to photosynthesis in tomato (Lycopersicon esculentum Mill.) leaves. Sci. Hortic. 2008, 117: 197-202.
    [90]王立如,郑金土,徐永江,等.箱式根域限制对美人指葡萄根系生长的影响.中外葡萄与葡萄酒. 2008(2):17-19.
    [1]于克辉,韩凤珠,赵岩,王毅,许英武,李栋栋.限根技术在果树设施栽培中的应用。北方果树. 2004, 12:61-62.
    [2]王世平,张才喜,罗菊花等.果树根域限制栽培研究进展.果树学报. 2002, 19(5):298-231.
    [3]Bar-Yosef, B., Scheartz, S., Markovich, T., Lucas, B., Assaf, R.. Effect of root volume and nitrate solution concentration on growth, fruit yield, and temporal N and water uptake rates by apple trees. Plant Soil. 1988, 107, 49-56.
    [4]Bar-Tal, A., Feigin, S., Sheinfel, D.. Root restriction and N-NO3 solution concentration effects on nutrient uptake, transpiration and dry matter production of tomato. Sci. Hortic. 1995, 63: 195-208.
    [5]Boland A.M., Jerie P.H., Mitchell P.D., Goodwin I., Connor D.J.. Long-term effects of restricted root volume and regulated deficit irrigation on peach. 1. Growth and mineral nutrition. J. Am. Soc. Hortic. Sci. 2000, 125:135–142.
    [6]Liu, A., Latimer, J.G..Water relations and abscisic acid levels of water melon as affected by rooting volume restriction. J. Exp. Bot. 1995, 46, 1011-1015.
    [7]Myers S.C.. Root restriction of apple and peach with in-ground fabric containers. Acta Hortic. 1992, 322: 215-219.
    [8]Wang SP, Okamoto G, Ken H. Effect of restricted rooting volume on vine growth and berry development of Ky-oho grapevines. Am J Enol Viticult. 2001, 52 (3): 248-253.
    [9]朱丽娜,鲁华东,张才喜.根域容积对藤稔葡萄幼树生长及营养元素吸收的影响.植物营养与肥料学报. 2004, 10 (6): 674-676
    [10]王世平,岗本五朗,平野健.根域限制栽培对‘巨峰’葡萄自根幼树的氮素吸收、同化和体内运转的影响.中国园艺学会成立70周年纪念——优秀论文选编.北京:中国科学技术出版社.1999, 143-149
    [11]Bukovac, M.J. Some consideration in flowering and fruiting in apple. Compact FruitTree. 1984, 17:64-69
    [12]Sakimin, Siti Zaharah. Effects Of Root Restriction And Water Stress On Growth Performance, And Physiological And Biochemical Responses Of Mango (Mangifera Indica Cv. Chokanan). Masters thesis. 2006.Universitiy Putra Malaysia.
    [13]Imai S, Okamoto G, Endo M. Effect of dense plantingand root system control on attaining greater early production and fruit stability of tetraploid grapes. Bull. Hiroshima Fruit Tree Expt.Sta..1978, 12:1-9
    [14]Webster, A.D., Atkison, J.C., Vaughan, J.S.. Controlling the shoot growth and cropping of sweet cherry trees using root pruning or root restriction techniques. Acta Hortic. 1997, 451, 643-649.
    [15]张大鹏,邓文生,贾文锁.葡萄果实生长与水势及其分量和细胞壁展延性之间的关系.中国农业大学学报.1997, 2(5):100-108.
    [16]刘崇怀,孔庆山.不同葡萄品种的水容量和渗透调节的比较研究.植物抗性生理研究. 1992.济南:山东科学技术出版社.
    [17]邓文生,张大鹏.葡萄浆果不同生长期对干旱胁迫敏感性变化的水分生理机制.园艺学报.1998, 25(2):123-128.
    [18]张大鹏,罗国光.不同时期水分胁迫对葡萄果实生长发育的影响.园艺学报. 1992, 19 (4): 296-300.
    [19]中川昌一.果树园芸原论.东京:养贤堂, 1978.223-224.
    [20]高木伸友,井上襄吉.ブドウ‘マスカツト。オブ·アレキサンドリア’の果粒の生长と叶における光合成速度の季节の变化.园芸学会杂志.1982, 51:286-292.
    [21]黄旭明.葡萄浆果转熟生理变化的机理研究.[博士学位论文].广州,华南农业大学.1998.
    [22] Zhou HW, Sonegoi L, Khalchitski A, et al. cell wall enzymes and cell wall changes in‘Flacortop’Nectarines: MRNA Abuundance, Enzyme Activity, and Changes in Pectic and Neutral Polymers during Ripening and in Woolly Fruit, J.Amer. Soc.Hort.Sci.. 2000, 125(5):630-637.
    [23]Fishman ML, Levaj B, Gillespie D. Changes in the physico-chemical properties of peach fruit pectin during on-tree ripening and strorage. J.Amer. Soc.Hort.Sci.. 1993,118(3):343-349.
    [24]屈红霞.低温贮藏对菠萝细胞壁降解的影响.园艺学报. 2000, (1):3-26.
    [25]食品分析,大连轻工业学院主编.1994.北京:中国轻工业出版社. 205-206.
    [26]韩雅珊.食品化学实验指导.1996.北京:中国农业大学出版社39-41.
    [27]小西茂毅,葛西善三郎.烟草叶片中衰老过程中钙的代谢变化(1)-叶片早期和花期吸收的Ca的代谢作用.日本土壤肥科学杂志. 1963, 34(3):67-70.
    [28]沙广利,郭长城,李光玉.梨果实糖酸含量及比值对其综合品质的影响.植物生理学通讯, 1997, 33 (4): 264-266
    [29]王学奎主编.植物生理生化实验原理和技术. 2005.北京:高等教育出版社.
    [30]成钰厚,刘国杰,孟昭清.苹果成熟期间果皮花青素含量与果实品质的关系.果树科学. 1999, 16 (2): 98-103
    [31]Costa MG, Vizzotto G, Maroe A. Root restriction and growth manipulation in peach. Acta Hort. 1992, 322:221-230.
    [32]Mark R and Marra F.Response of young peach trees to root confinement.J.Amer. Soc. Hort. Sci. 1994, 119(2):223-228.
    [33]Hameed M.A., Reid J.B., Rowe R.N.. Root confinement and its effects on water relations, growth and assimilate partitioning of tomato (Lycopersicon esculentum Mill). Ann. Bot. 1987, 59, 685-692.
    [34]Ternesi MA, Andrade AP, Jorrin J, et al. Root-shoot signaling in sunflower plants with confined root systems.Plant soil. 1994, 166:31-36.
    [35]Zhu, L.N., S.P. Wang, T.Y. Yang, C.X. Zhang, and W.P. Xu. Vine growth and nitrogen metabolism of‘Fujiminori’grapevines in response to root restriction.Sci. Hortic. 2006, 107:143-149.
    [36]陈晓远,高志红,刘晓英等.水分胁迫对冬小麦根冠生长关系及产量的影响.作物学报. 2004, 30(7): 723-728.
    [37]李鲁华,陈树宾,秦莉等.不同土壤水分条件下春小麦品种根系功能效率的研究.中国农业科学. 2002, 35(7):867-871.
    [38]管秀娟,赵世伟,王俊振等.不同生育期干旱对冬小麦根冠生长发育的影响.华北农学报. 2001, 16(4):71-76.
    [39]亓桂梅,杨立英.植物生长调节剂对假单性结实葡萄种子发育和萌发的影响.山东农业科学. 2001, 5:21-22.
    [40]耿玉韬.种子与果实发育的关系.生物学通报, 1988, (12) : 4
    [41]Clifford PE, Offler CE, Patrick JW. Growth regulators have rapid effects on photosynthetic unloading from seed coats of Phaseolus vulgaris L. Plant Physiol. 1986, 80: 635- 637.
    [42]罗安才,杨晓红,邓英毅,李纯凡,向可术,李道高.柑橘果实发育过程中有机酸含量及相关代谢酶活性的变化.中国农业科学. 2003, 36 (8): 941-944.
    [43]Francesco C, Leonardo S, Michele DC, Angelo C. Effect of esca on the quality of berries musts and wines. Phytopathol Mediterr. 2004, 43: 125-135.
    [44]Sadka A, Dahan E, Cohen L, Marsh KB. Aconitase activity and expression during the development of lemon fruit. Physi Plant. 2000, 108: 255-262.
    [45]刘闯萍,王军.葡萄花色苷的生物合成.植物生理学通讯. 2008, 44 (2): 363-377.
    [46]Cleland, R.E.. Cell wall extension. Ann. Rev. Plant Physiol. 1971, 22, 197-222.
    [47]Coombe B.G., Bishop G.R.. Development of the grape berry. II. Changes in diameter and deformability during veraison. Aust. J. Agric. Res. 1980, 31:125-135.
    [48]Considine J.A., Knox R.B.. Development and histochemistry of the cells, cell walls, and cuticle of the dermal system of fruit of the grape, Vitis vinifera L. Protoplasma. 1979, 99 (4), 347-365.
    [49]Huber, D.J.. The role of cell wall hydrolase in fruit softening. Hort. Rev. 1983, 5:189-219.
    [50]Silacci M.C., Morrison J.C.. Changes in pectin content of Cabernet Saubignon grape berries duringmaturation. Am. J. Enol. Viticulutre. 1990, 41:111-115.
    [51]白昌华,田华平.苹果钙素营养研究进展综述.西南农业学报. 1989, 2 (3):22-25.
    [1]Choi JH, Chung GC, Suh SR, Yu JA, Sung JH, Choi KJ. Suppression of calcium transport to shoots by root restriction in tomato p lants. Plant and Cell Physiology. 1997, 38(4):495-498.
    [2]Carmi A, Heuer B. The role of roots in control of bean shoot growth. Annals of Botany. 1981, 48: 519-527.
    [3]王世平.根域制限がブドウ樹の体内栄養、ホルモン条件に及ぼす影響と中国寧夏での“巨峰”栽培への応用.[博士学位论文].日本冈山,日本冈山大学. 1998.
    [4]Pezeshki SR, Santos MI. Relationship s among rhizosphere oxygen deficiency, root restriction, photosynthesis, and growth in baldcyp ress( Taxodium distichum L. ) seedlings. Photosynthetica. 1998, 35(3):381-390.
    [5]Lina Zhu, Shiping Wang, Tianyi Yang,,etal. Vine growth and nitrogen metabolism of‘Fujiminori’grapevines in response to root restriction. ScientiaHorticultrae. 2006, 107:143-149.
    [6]张福庆,田卫东.葡萄根系.中外葡萄与葡萄酒. 1997, 1:40-43.
    [7]Wang SP, Okamato G, Hirano K, et al. Effects of restricted rooting volume on vine growth and berry development of 'Kyoho'grapevines. Am.J.Enol.Vitic.. 2001, 52(3): 248-253.
    [8]朱丽娜,唐晓兰,陆春燕,沈爱,王世平.根域限制对藤稔葡萄生长、果实品质及营养元素含量的影响.中国南方果树. 2004, 33(5):80-82.
    [9]杨国虎,李建生,罗湘宁等.干旱条件下玉米叶面积变化及地上干物质积累与分配的研究.西北农林科技大学学报. 2005, 33(5):27 -32.
    [10]韩希英,宋凤斌.干旱胁迫对玉米根系生长及根际养分的影响.水土保持学报. 2006, 20 (3):170-172.
    [11]齐健,宋凤斌,刘胜群.苗期玉米根叶对干旱胁迫的生理响应.生态环境. 2006, 15 (6):1264 -1268.
    [12]Hameed M.A., Reid J.B., Rowe R.N.. Root confinement and its effects on the water relations,growth and assimilate partitioning of tomato (Lycopersicon esculentum). Ann.Bot.1987, 59: 685-692.
    [13]Goto T., Matsuno T., Yoshida Y., Kageyama Y.. Photosynthetic, evapotranspiratory and leaf morphologieal properties of ehrysanthemurn grow nunder root restrietion as affected by fertigation frequency. J.Jap.Soc.Hort.Sci. 2002, 7:277-283.
    [14]Jackson MB, Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology. 1999, 1, 274-287.
    [15]Comis D, Aerenchyma, Lifeline for living under water. Agric.Res. 1997, 45:4-81.
    [16]曹宛虹,董亿,张劲松,陈受宜.水稻乙烯受体类似物基因的克隆及其表达特性.中国科学(C辑). 2003, 33(2):125-132.
    [17]师恺,胡文海,董德坤, Ogweno Joshua Otieno,宋兴舜,夏晓剑,周艳虹,喻景权.根系限制对番茄幼苗生长、根系呼吸、ATPase和PPase活性的影响.园艺学报.2006, 33: 853-855.
    [18]Shi K, Fu LJ, Dong DK, Zhou YH, Yu JQ. Decreased root energy synthesis is partially compensated by a switch to sucrose synthase pathway of sucrose degradation in restricted root of tomato plants. Plant Physiology and Biochemistry. 2008, 46:1040-1044.
    [1]李正理.旱生植物的形态和结构.生物学通报, 1981, 4: 9-12.
    [2]Wang S., Okamoto G., Ken H., Lu J., Zhang C. Effect of restricted rooting volume on vine growth and berry development of Kyoho grapevines. Am. J. Enol. Viticult. 2001, 52, 248-253.
    [3]Bukovac M.J. Some consideration in flowering and fruiting in apple. Compact Fruit Tree.1984, 17:64-69.
    [4] Hommi Y, Sakakibara M, Kimura T. Capacity of root zone watering and fertilizer application for peach trees in container culture. Research Bulletin of the Aichiken Agriculture Research Center. 1995, 27:251-258.
    [5]Peterson T.A., Reinsel,M.D, Krizek D.T. Tomato(Lycopersicum esculentum Mill cv. Better Bush) plant response to root restriction 1. Alteration to plant morphology. Journal of Experimental Botany. 1991a, 42:1233-1240.
    [6]Carmi A. Effects of root zone volume and plant density on the vegetative and reproductive development of cotton. Field Crops Res. 1986, 13, 25-32.
    [7]Kharkina T.G., Ottosen, C.O., Rosenqvist E. Effects of root restriction on the growth and Physiology of cucumber Plants.Physiol.Plant. 1999,105:434-441.
    [8] Kai Shi, Xiao-Tao Ding, De-Kun Dong, Yan-Hong Zhou, Jing-Quan Yu. Root restriction-induced limitation to photosynthesis in tomato (Lycopersicon esculentum Mill.) leaves Sci. Hortic. 2008, 117:197-202.
    [9] Chen LQ, Li CS, Chaloner WG, Beerling DJ, Sun QG, Collinson ME, Mitchell PL. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. American Journal of Botany. 2001, 88 (7):1309-1315.
    [10] Kempers R, Ammerlaan A., A.J.E. van Bel. Symplasmic constriction and ultrastructural features of sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmically phloem loading species. Plant Physiol. 1998, 116:271-278.
    [11]史晓霞,张国芳,孟林,毛培春,刘自学.马蔺叶片解剖结构特征与其抗旱性关系研究.植物研究.2008, 28(5):584-588.
    [12]陈立松,刘星辉.果树对水分胁迫的反应与适应性.干旱地区农业研究. 1999,17(1): 89-94.
    [13]朱桂才,杨中艺.水分胁迫下李氏禾营养器官的解剖结构研究.长江大学学报. 2008, 5(3):17-20
    [14]孟庆杰,王光全,董绍锋,张丽,龚正道.桃叶片组织解剖结构特征与其抗旱性关系的研究.干旱地区农业研究, 2004, 22(3): 123-126.
    [15]赵可夫,李军.盐浓度对3种单子叶盐生植物渗透调节剂及其在渗透调节中贡献的影响.植物学报. 1999, 41(12):1287-1292.
    [16]李霞,阎秀峰,于涛.水分胁迫对黄檗幼苗保护酶活性及脂质过氧化作用的影响.应用生态学报. 2005, 12(16): 2353-2355.
    [17]刘遵春,陈荣江,包东娥.干旱胁迫对金光杏梅幼苗生长及其生理生化指标的影响.沈阳农业大学学报. 2008, 39(1):100-103.
    [18]MARUR CJ, MAZZAFERA P, MAGALHAES AC. Carbon assimilation and export in leaves of cotton plants under water deficit. Revista Brasileira de Fisidogia Vegetal. 1996, 8(3):181-186.
    [19]Dubik S.P., Krizek D.T., Stimart D.P.. Influence of root zonerestriction on mineral element concentration, water potential, chlorophyll concentration and partitioning of assimilate in spreading Euonymus (E. Kiautschovica Loe.‘Sieboldiana’). J. Plant Nutr. 1990, 13, 677-699.
    [20]Tschaplinski T.J., Blake T.J.. Effects of root restriction on growth correlations, water relations and senescence of alder seedlings. Physiol. Plant, 1985, 64, 167-176.
    [21]van Bel AJE. The phloem, a miracle of ingenuity. Plant Cell Environ. 2003, 26:125-149
    [22]Gamalei Y.V. Phloem loading andits developmenrte lated to plant evolutionfrom trees to herbs. Trees. 1991, 5:50-64.
    [23]van Bel AJ E, Gamalei YV. Ecophysiology of phloem loading in source leaves.Plant Cell Environ. 1992, 15:265-270.
    [1]Carmi, A. Effects of root zone volume and plant density on the vegetative and reproductive development of cotton. Field Crops Res. 1986, 13:25-32.
    [2]Wang, S., G. Okamoto, H. Ken, J. Lu, and C. Zhang. Effect of restricted rooting volume on vine growth and berry development of Kyoho grapevines. Amer. J. Enol. Viticult. 2001, 52:248-253.
    [3]Myers, S.C. Root restriction of apple and peach with in-ground fabric containers. Acta Hort. 1992, 322:215-219.
    [4]Yakushiji H, H. Nonami, T. Fukuyama, S. Ono, N. Takagi, and Y. Hashimoto. Sugar accumulation enhanced by osmoregulation in Satsuma Mandarin fruit. J. Amer. Soc. Hort. Sci. 1996, 121:466-472.
    [5]Boland AM, Mitchell PD, Goodwin I, Jerie PH. The effect of soil volume on276 young peach tree growth and water use. J. Amer. Soc. Hort. Sci. 1994, 119:1157-1162.
    [6]Costa, M.G., G. Vizzotto, and A. Maroe. Root restriction and growth manipulation in peach. Acta Hort. 1992, 322:221-230.
    [7]Webster A.D., J.C. Atkison, and J.S. Vaughan. Controlling the shoot growth and cropping of sweet cherry trees using root pruning or root restriction techniques. Acta Hort. 1997, 451:643-649.
    [8]Ogawa T, Matsumura H, Gotou K. Effects of rooting-zone restriction on‘Tomari’persimmon. J. Jpn. Soc. Hort. Sci.1997, 66:8-9.
    [9]Goto, T., T. Matsuno, Y. Yoshida, and Y. Kageyama. Photosynthetic, evapotranspiratory and leaf morphological properties of chrysanthemum grown under root restriction as affected by fertigation frequency, J. Jpn. Soc. Hort. Sci. 2002, 71:277-283.
    [10]张大鹏,罗国光.不同时期水分胁迫对葡萄果实生长发育的影响.园艺学报.1992, 19 (4) : 296-300
    [11]Wang, S., Okamoto, G., Ken, H.. Effects of rooting-zone restriction on the changes in carbohydrates and nitrogenous compounds in‘Kyoho’grapevines during winter dormancy and early shoot growth. J. Jpn. Soc. Sci. 1998, 67:577-582.
    [12]杨天仪.根域限制葡萄树氮素与碳素代谢机制研究. [博士学位论文].上海,上海交通大学. 2007.
    [13]Fisher, D.G. Distribution of plasmodesmata in leaves: a comparison of Cananga odoorata with other species using different measures of plasmodesmata frequency. In: A.W. Robards, W.J. Lucas, J.D. Pitts, H.J. Jong Sma, and D.C. Spray (eds.). Parallels in Cell to Cell Junctions in Plants and Animals. Berlin: Springer_Verlag. 1990, 199-221.
    [14]Patrick, J.W. Phloem unloading: sieve element unloading and postsieve element transport. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1997, 48:191-222.
    [15]van Bel, A.J.E. The phloem, a miracle of ingenuity. Plant Cell Environ. 2003, 26:125-149.
    [16]Kempers R, A. Ammerlaan, A.J.E. van Bel. Symplasmic constriction and ultrastructural features of sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmically phloem loading species. Plant Physiol . 1998, 116:271-278.
    [17]Roberts, A.G., S. Santa Cruz, I.M. Roberts, D.A.M. Prior, R. Turgeon, and K.J. Oparka. Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a fluorescent virus. Plant Cell. 1997, 9:1381-1396.
    [18]Zhang, X.Y., X.L. Wang, X.F. Wang, G.H. Xia, Q.H. Pan, R.C. Fan, F.Q. Wu, X.C. Yu, D.P. Zhang. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol. 2006, 142:220-232.
    [19]李正理.《植物制片技术》. 1982.科学出版社,北京.
    [20]Cruzcastillo JG, Woolley DJ. Lawes GS. Kiwifruit size and CPPU response are influenced by the time of anthesis. Sci. Hortic. 2002, 95:225-230.
    [21]Takeo Harada, Wakako Kurahashi, Masumi Yanai, et al. Involvement of cell proliferation and cell enlargement in increasing the fruit size of Malus species. Sci. Hortic. 2005, 105: 447-456.
    [22]饶景萍,任小林,童斌.葡萄果实生长发育中形态组织结构及生理变化.西北农业大学学报. 1998, 26 (2): 98-103.
    [23]潘照明,罗国光.玫瑰香葡萄浆果的解剖学研究.见:中国园艺学会编.中国园艺学会成立六十周年纪念暨六届年会论文集.Ⅰ.果树.北京:万国学术出版社.1990, 114-116.
    [24] Harris, J., Kriedemann, P.E. and Possingham, J.V. Anatomical aspects of grape berry development. Vitis Ber Rebenforsch. 1968, 7, 106-119.
    [25]Kumazawa, M.Studies on the vascular course in the maize plant. Phytomorphology. 1961, 11: 128-139.
    [26]赵珍美,王璞.水分从玉米根端输往体内途径的探讨.作物学报. 1989, 15(4): 289-296.
    [27]夏国海.葡萄果实糖分卸载与代谢机制研究.[博士学位论文].北京,中国农业大学. 1999.
    [28]Bhaskar Bondada, Mark Matthews, and Kenneth Shackel .Functional xylem in the post-veraison grape berry.Journal of Experimental Botany. 2005, 56(421):2949-2957.
    [29]张大鹏,罗国光.葡萄成熟期果实水分出入运动的研究.植物学报. 1993, 35 (1):1-11.
    [30]张大鹏,邓文生,贾文锁.葡萄果实生长与水势及其分量和细胞壁展延性之间的关系.中国农业大学学报.1997, 2(5):100-108
    [31]李绍华果树生长发育、产量和果实品质对水分胁迫反应的敏感期及节水灌溉.植物生理学通讯.1993, 29(1):10-16
    [32]Carbonneau A, A. Deloire. Plant organization based on source-sink relationship: new findings on developmental, biochemical and molecular responses to environment, p.2001, 263-280. In: K.A. Roubelakis-Angelakis (ed.). Molecular Biology & Biotechnology of
    [1]Carmi, A. Effects of root zone volume and plant density on the vegetative and reproductive development of cotton. Field Crops Res. 1986, 13, 25-32.
    [2]Wang, S., Okamoto, G., Ken, H., Lu, J., Zhang, C.,. Effect of restricted rooting volume on vine growth and berry development of Kyoho grapevines. Am. J. Enol. Vitic. 2001, 52, 248-253.
    [3]Bukovac, M.J. Some consideration in flowering and fruiting in apple. Compact Fruit Tree. 1984, 17:64-69。
    [4]Myers, S.C. Root restriction of apple and peach with in-ground fabric containers. Acta. Hortic. 1992, 322:215-219.
    [5]Yakushiji, H., Nonami, H., Fukuyama, T., Ono, S., Takagi, N., Hashimoto, Y.. Sugar accumulation enhanced by osmoregulation in Satsuma Mandarin fruit. J. Am. Soc. Hortic.Sci. 1996, 121:466-472.
    [6]Boland, A.M., Mitchell, P.D., Goodwin, I., Jerie, P.H.,. The effect of soil volume on young peach tree growth and water use. J. Am. Soc. Hortic. Sci. 1994, 119:1157-1162.
    [7]Costa, M.G., Vizzotto, G., Maroe, A.. Root restriction and growth manipulation in peach. Acta Hortic. 1992, 322:221-230.
    [8]Swanson, C.A., Elshishiny, E.D.H.. Translocation of sugars in the Concord grape. Plant Physiol. 1958, 33:33-37.
    [9]Ogawa, T., Matsumura, H., Gotou, K.. Effects of rooting-zone restriction on‘Tomari’persimmon. J. Jpn. Soc. Hortic. Sci. 1997, 66: 8-9.
    [10]Coombe, B.G.. Relationship of growth and development to changes in sugars, auxins and gibberellins in fruits of seeded and seedless varieties of Vitis vinfera. Plant Physiol. 1960, 25:241-250.
    [11]Kliewer, W.M.. Changes in the concentration of malates, tartrates, and total free acids in flowers and berries of Vitis vinifera. Am. J. Enol. Vitic. 1965, 16: 92.
    [12]Carroll, D.E., Marcy, J.E.. Chemical and physical changes during maturation of muscadine grapes (Vitis rotundifolia). Am. J. Enol. Vitic. 1982, 33:168-172.
    [13]Davies, C., Robinson, S.P.. Sugar accumulation in grape berries: Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiol. 1996, 111:275-283.
    [14]Copeland, L.. Enzymes of sucrose metabolism. In: Lea, P.J. (Eds.). Methods in Plant Biochemistry, vol. 3. Enzymes of Primary Metabolism. Academic Press, London, pp. 1990, 73-85.
    [15]Avigad G.. Sucrose and other disaccharides. In: Loewus, F.A., Tanner, W. (Eds.), Encyclopedia of Plant Physiology, New Series. Springer-Verlag, New York, pp. 1982, 216-347.
    [16]Krishnan, H.B., Blanchette, J.T., Okita, T.W.. Wheat invertases: characterization of cell wall-bound and soluble forms. Plant Physiol. 1984, 78:241-245.
    [17]Salzer, P., Hager, A.. Characterization of wallbound invertase isoforms of Pices abies and regulation by ectomycorrhizal fungi. Physiol. Plantarium. 1993, 88:52-59.
    [18]Sturn, A.. Invertases. Primary structures, functions, and roles in plant developmentand sucrose partitioning. Plant Physiol. 1999, 121, 1-7.
    [19]Hawker, J.S.. Changes in the activities of enzymes concerned with sugar metabolism during the development of grape berries. Phytochemistry.1969, 8:9-17.
    [20]Hawker, J.S.. Sucrose. In: Dey, P.M., Dixon, R.A. (Eds.), Biochemistry of Storage Carbohydrates in Green Plants. Academic Press, New York, 1985, 1-51.
    [21]Hameed, M.A., Reid, J.B., Rowe, R.N.. Root confinement and its effects on the water relations, growth and assimilate partitioning of tomato (Lycopersicon esculentum Mill.). Ann. Bot. 1987, 59:685–692.
    [22]Kobashi, K., Gemma, H., Iwahori, S.. Abscisic acid content and sugar metabolism of peaches grown under water stress. J. Am. Soc. Hortic. Sci. 2000, 125:425-428.
    [23]Bar-Yosef, B., Scheartz., S., Markovich, T, Lucas, B., Assaf, R.. Effect of root volume and nitrate solution concentration on growth, fruit, and temporal N and water uptake rates by apples. Plant Soil. 1988, 107:49-56.
    [24]Shi K., Ding X.T., Dong D.K., Zhou Y.H., Yu J.Q.. Putrescine enhancement of tolerance to root-zone hypoxia in Cucumis sativus: a role for increased nitrate reduction. Funct. Plant Biol. 2008, 35:337-345.
    [25]Kharkina, T.G., Ottosen, C.O., Rosenqvist, E.. Effects of root restriction on the growth and physiology of cucumber plants. Plant Physiol. 1999, 105:434-441.
    [26]Lobit, P., Genard, M., Wu, B.H., Soing, P., Habib, R.. Modeling citrate metabolism in fruits: responses to growth and temperature. J. Exp. Bot. 2003, 54:2489-2501.
    [27]Parson, S., Paull., R.E.. Pineapple organic acid metabolism and accumulation during fruit development, Sci. Hortic. 2007, 112:297-303.
    [28]Marchal, J., Pinon, A., Teisson, C.. Effects of the form of potassium fertilizer on pineapple quality in the Ivory Coast. Fruits .1981, 36:737-743.
    [29]Py, C., Lacoeuilhe, J.J., Teisson, C.. The Pineapple, Cultivation and Uses. G.P. Maisonneuve and Larose, Paris. 1987
    [30]Shiraishi, M.. Three descriptors for sugars to evaluate grape germplasm. Euphytica. 1993, 71:99-106.
    [31]Dubik, S.P., Krizek, D.T., Stimart, D.P.. Influence of root zone restriction on mineral element concentration, water potential, chlorophyll concentration and partitioning ofassimilate in spreading Euonymus (E. Kiautschovica Loe.‘Sieboldiana’). J. Plant. Nutr. 1990, 13:677-699.