温湿度逆境、棉铃大小和生长物质对Bt棉Bt蛋白表达量的影响及其生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以不同Bt基因来源不同基因型品种,即来源于我国的Bt基因常规棉品种泗抗1号(小铃型)和杂交种泗杂3号(大铃型);来源于美国的Bt基因常规棉品种DP410B(小铃型)和杂交种岱杂1号(大铃型)为试验材料,于2008-2009年在扬州大学农学院,采用盆栽和大田试验相结合,研究探明了温湿度逆境胁迫对叶片Bt蛋白表达量以及不同种质及人工调节的棉铃大小、生长物质GA3和缩节安(DPC)对棉铃虫首选取食的器官棉铃Bt蛋白表达量的影响及其相关生理机制。
     主要研究结果如下:
     1.温湿度互作胁迫对Bt棉3个生育期叶片Bt蛋白表达量及胁迫解除后Bt蛋白表达量恢复的影响。
     随着棉花生育进程,温湿度胁迫下Bt蛋白含量下降幅度呈逐渐加大的趋势,3个生育期在高温高湿、高温低湿、低温高湿和低温低湿4种逆境下,盛蕾期叶片Bt蛋白下降不大,盛花期有一定程度下降,盛铃期则显著下降。盛铃期低温低湿胁迫48h后,Bt蛋白含量比对照下降43.2%~51.3%。在高湿(95%RH)或低湿(50%RH)条件下,高温(37℃)胁迫24h内叶片Bt蛋白下降幅度较低温(17℃)小,24h后随着胁迫时间的延长,Bt蛋白含量降幅明显增大,而低温胁迫24h内Bt蛋白含量下降快,24h后Bt蛋白含量降幅变缓。胁迫至48h,高温处理的叶片Bt蛋白含量或低于低温处理,或与低温相差不大。总体表现为,3个生育期胁迫相同时间,低温比高温对Bt蛋白的表达量影响大。在高温或低温条件下,高湿度和低湿度胁迫叶片Bt蛋白含量下降幅度表现为低湿度>高湿度。不同类型品种间,盛蕾和盛花期温湿度逆境胁迫后Bt棉杂交种Bt蛋白含量下降幅度小于常规品种。盛铃期杂交种和常规品种相比,逆境胁迫后下降幅度差异较小。美棉品种在低温胁迫下受到的影响较小。
     不同生育期温湿度胁迫解除后,叶片Bt蛋白表达量的恢复程度不同,具体表现为盛蕾期>盛花期>盛铃期。盛蕾期温湿度胁迫24h或48h解除胁迫后,在96h内Bt蛋白表达量可以完全恢复甚至Bt蛋白恢复后含量超过未胁迫前水平,且胁迫时间越长,胁迫解除后Bt蛋白含量越高;高温高湿度和高温低湿度胁迫解除后叶片Bt蛋白含量恢复时间早,提高幅度分别大于相应的低温高湿度和低温低湿度处理,如高温高湿度胁迫48h解除胁迫96h后,叶片Bt蛋白含量比未胁迫前提高了18.4%~31.7%;低温高湿度胁迫48h解除胁迫96h后,叶片Bt蛋白含量比未胁迫前提高了6.8%~14.3%。盛花期温湿度胁迫24h解除胁迫后,不同品种叶片Bt蛋白恢复后含量同样超过了未胁迫前水平,但与盛蕾期相应处理相比,提高幅度较小,叶片Bt蛋白含量比未胁迫前仅提高了8.6%~16.2%,且在高湿或低湿条件下,高温和低温处理胁迫解除后叶片Bt蛋白恢复后含量差异较小;胁迫48h解除胁迫后,叶片Bt蛋白的表达量不能恢复到未胁迫前水平。盛铃期温湿度胁迫24h或48h解除胁迫后,不同品种叶片Bt蛋白表达量不但不能恢复,而且Bt蛋白含量随着恢复时间的延长而下降,其中胁迫24h解除胁迫后,高温高湿和高温低湿度处理的Bt蛋白降幅较小,但胁迫48h解除胁迫后Bt蛋白含量大幅度下降。随着解除胁迫时间的延长,Bt蛋白表达量的继续下降,下降程度高温处理明显大于低温处理,如高温高湿度和低温高湿度胁迫48h,解除胁迫后96h,泗杂3号Bt蛋白含量分别比对照下降了33.1%和19.2%。温湿度逆境胁迫解除后,不同品种Bt蛋白表达量的恢复水平不同。抗虫棉杂交种在盛蕾期和盛花期恢复能力强于常规品种,在盛铃期高温低湿度胁迫下Bt蛋白含量下降幅度大于常规品种。
     2.温湿度胁迫对Bt棉3个生育期叶片氮代谢的影响。
     盛蕾期在高湿或低湿条件下,高温胁迫对丙谷氨酸转氨酶(GPT)活性、可溶性蛋白含量和全氮含量影响较小,胁迫24h内处理与对照之间无明显差异,胁迫24h后稍有下降。高温处理下叶片游离氨基酸含量明显增加。与高温相比,低温胁迫显著降低GPT酶活性,游离氨基酸、可溶性蛋白和全氮含量也显著低于对照。高温和低温都提高了谷氨酰胺合成酶(GS)活性。在高温或低温条件下,高低湿度处理间氮代谢关键酶活性差异较小。
     盛花期在高湿或低湿条件下,高温胁迫24h内对GPT、GS酶活性,可溶性蛋白和全氮含量影响较小,24h后4个品种以上酶活性和可溶性蛋白和全氮含量都随着胁迫时间的延长逐渐下降,高温胁迫提高了叶片游离氨基酸含量,且提高幅度要大于盛蕾期。低温胁迫12h后GPT、GS酶活性都随胁迫时间延长呈不断下降的趋势,在胁迫12-36h内,高温和低温处理的叶片GPT、GS酶活性、可溶性蛋白和全氮含量差异较大,又以胁迫至24h时差异最大。在高温或低温条件下,低湿度胁迫的氮代谢强度低。
     盛铃期在高湿或低湿条件下,高温胁迫GPT、GS酶活性,可溶性蛋白和全氮含量在24h内呈缓慢下降的趋势,24h后快速下降;低温胁迫正好相反,24h前呈快速下降的特征,24h后降幅变缓。高、低温下均促进了叶片蛋白酶含量的提高,游离氨基酸含量大幅度提高,其中以高温处理更为明显。高温条件下,高湿度和低湿度胁迫处理在24h内对氮代谢影响差异较小,24h后差异逐渐变大,至48h低湿度处理叶片氮代谢强度显著低于高湿度处理。低温下一直以低湿度处理酶活性、可溶性蛋白和全N含量低。
     盛蕾和盛花期都以杂交种叶片氮代谢强度受到温湿度胁迫的影响明显小于常规品种。相关分析表明,盛蕾期温湿度胁迫下叶片Bt蛋白含量与GPT酶活性呈显著正相关。盛花和盛铃期叶片Bt蛋白含量与GS、GPT酶活性呈显著或极显著正相关关系。3个生育期叶片Bt蛋白含量与全氮含量、可溶性蛋白含量都呈极显著正相关关系。在温湿度胁迫条件下,叶片蛋白酶活性与可溶性蛋白均呈负相关,与游离氨基酸含量均呈正相关关系。
     3.温湿度胁迫对Bt棉3个生育期叶片氨基酸组分的影响。
     高温低湿和低温低湿对叶片中Bt蛋白分子的八种主要氨基酸成分的含量在3个生育期有不同的影响,其中对酸性氨基酸(天冬氨酸和谷氨酸)含量影响最大。盛蕾期胁迫酸性氨基酸含量在48h内虽有所波动,但增加的幅度较小,盛花期和盛铃期逆境胁迫后酸性氨基酸含量明显增加,且增加幅度以高温下较大,盛铃期更为明显。盛花和盛铃期叶片Bt蛋白主要氨基酸组分总量与Bt蛋白含量呈显著或极显著负相关关系,高温低湿度胁迫下叶片Bt蛋白主要氨基酸组分的总量与Bt蛋白含量的相关系数分别为r1=-7918**,r2=-8537**;低温低湿度胁迫下叶片Bt蛋白主要氨基酸组分的总量与Bt蛋白含量的相关系数分别为r3=-5703,r4=-7806**。
     4.温湿度胁迫对Bt棉3个生育期叶片糖代谢的影响。
     盛蕾期在高湿或低湿条件下,高温和低温胁迫都降低了蔗糖酶(Inv)活性,提高了蔗糖磷酸合成酶(SPS)活性,增加蔗糖和可溶性总糖含量,且低温比高温影响更大。无论在高温还是在低温条件下,湿度对糖代谢影响较小。盛花期在高湿或低湿条件下,高温胁迫提高了SPS活性,增加了蔗糖和可溶性总糖含量;低温胁迫提高了叶片Inv、SPS活性,增加了蔗糖和可溶性总糖含量,其中Inv酶活性和可溶性总糖含量明显大于高温处理;在高温或低温条件下,高湿度和低湿度处理间叶片糖代谢差异较小。盛铃期在高湿或低湿条件下,高温或低温都显著提高了叶片Inv和SPS酶活性,蔗糖和可溶性总糖含量大幅度上升,且以高温胁迫效果更为明显;在高温条件下,低湿度胁迫的叶片糖代谢强度明显大于高湿度处理;低温条件下,高、低湿度间无显著性差异。
     3个生育期温湿度逆境胁迫后叶片C/N比值增加,盛蕾期增加幅度小,盛铃期大;胁迫时间越长,C/N比值越高。在高湿或低湿条件下,盛蕾和盛花期低温胁迫对C/N比值影响较大;盛铃期以高温胁迫的C/N值更大。相关性分析表明在温湿度胁迫下,盛蕾期、盛花期和盛铃期叶片C/N值与Bt蛋白含量呈负相关关系,相关系数分别为r1=-0.5192,r2=-0.7601*,r3=-0.9158**。
     5.不同棉铃大小的种质及其人工调节对棉铃Bt蛋白表达量及氮代谢的影响。
     杂交种泗杂3号和岱杂1号在整个棉铃发育时期铃重、铃体积、铃壳体积、铃壳干重和子指都显著高于常规品种泗抗1号和DP410B;与之相反,铃壳和棉籽中Bt蛋白含量表现为常规品种Bt蛋白最高;杂交种最低。相关分析表明铃体积、铃壳体积、铃重与铃壳干重与铃壳Bt蛋白含量呈显著正相关关系,相关系数分别为r1= -0.704*,r2=-0.739*,r3= -0.706*,r4= -0.675*,子指与棉籽Bt蛋白含量极显著负关系,相关系数为r=-0.869**。人工调节棉铃发育的结果进一步表明,当通过剪叶方法使棉铃变小时,铃壳和棉籽中Bt蛋白含量增加。反之,通过去蕾使棉铃变大时,铃壳和棉子中Bt蛋白含量下降。对大小不同的棉铃的氮代谢研究进一步表明,棉铃变小时氮代谢增强,棉铃变大时氮代谢减弱。以上结果说明了棉铃的大小影响Bt棉棉铃中Bt蛋白的表达。
     6. GA3及DPC对棉铃Bt蛋白的表达量和氮代谢的影响。
     生长延缓剂DPC能明显提高花后10d和30d(DPA)铃壳和棉籽中Bt蛋白的含量,其中又以10 DPA铃壳和棉籽中Bt蛋白含量增加更为显著;生长促进剂GA3降低10 DPA铃壳和棉籽中Bt含量,但显著提高了30 DPA棉铃Bt蛋白含量。对棉铃氮代谢研究进一步表明,DPC提高了铃壳和棉籽中GS、GPT和GOT酶活性并增加了游离氨基酸、可溶性蛋白和全氮的含量。GA3在10 DPA降低了铃壳、棉籽上述酶活性和物质含量,但30DPA棉铃氮代谢却与之正好相反,氮代谢明显加强。相关分析表明,棉铃中Bt蛋白含量与GS、GPT和GOT酶活性呈极显著正相关关系r1=0.7786**,r2=0.7325**,r3=0.7023**。表明GA3和DPC通过影响棉铃的氮代谢,从而影响Bt蛋白的表达。
The study was undertaken on four boll worm resistant transgenic cotton cultivars, which were Sikang 1 (small-boll, conventional cultivar) and Siza 3 (big-boll, hybrid cultivar) from China, DP410B (small-boll, conventional cultivar)and Daiza 1 (big-boll, hybrid cultivar) from USA,during the 2008 and 2009 growing seasons at the Jiangsu Provincial Key Laboratory of Crops Genetics and physiology, Yangzhou University. Pot and field experiments were conducted to investigate the effects of combination stress of temperature and humidity, boll size, growth substances GA3 and DPC on Bt protein expression and metabolism.
     The main results were as follows:
     1. Effect of combination stress of temperature and humidity on the leaf Bt protein content and the recovery of the leaf Bt protein content after combined stress stopped for different cultivars at three growth periods.
     The difference of leaf Bt protein content between the stress treatments and control became larger gradually following cotton growing periods. The reductive extent of the leaf Bt protein was low at peak square period, middle at peak flowing period, high at peak boll period under four combined stress, which was high temperature-humidity, low temperature-humidity, high temperature with low humidity and low temperature with high humidity. The leaf Bt protein reduced 43.2% to 51.3% at 48 hours under low temperature-humidity stress at peak boll period. Under high humidity(95%RH)or low humidity(50%RH), the Bt protein content was less affected in 24 hour stress and then decreased gradually from 24 to 48 hour under high temperature (37℃) . The leaf Bt protein content also decreased under low temperature (17℃), and the values were lower than that under high temperature after 48 hour stress. This result suggested that the reduction extent of the leaf Bt content was greater under low temperature stress than that under high temperature stress at the three growing periods, there was similar effect on the leaf Bt protein content between low humidity and high humidity stress when the temperature maintained at 37℃or 17℃. The leaf Bt protein content of the hybrid cultivars were less affected than those of conventional cultivars at peak square and peak flower periods under combined stress. The extent of Bt protein decrease was similar between hybrids and conventional varieties at peak boll period. The cultivars whose Bt gene from the United States were less affected under low temperature stress.
     The recovery ability of the leaf Bt protein contents were different after the stress stopped at three growth stages. The restoation effect was highest at peak square period, and lowest at peak boll period. At peak square period, the leaf Bt protein content can recovered rapidly again and the value of that was even more than the levels before the stress after the stress stopped for 96 hours. The longer the stress lasted, the higher the leaf Bt protein content after the stress stopped for 96 hours. The Bt protein recovery content was higher under high temperature-humidity stress than that under low temperature with high humidity after the stress stopped, There were similar effects for the increase of the leaf Bt protein after the stress stopped between the high temperature with low humidity and the low temperature-humidity stress at peak square period. For example, the leaf Bt protein content increased 18.4% to31.7% and 6.8% to14.3% respectively than that without stress after high and low temperature stress with 95%RH stress stopped for 96 hours which lasted 48 hours. At peak flowering period, the Bt protein recovery content was also higher than that without stress after the combined stress stopped for 96 hours which lasted 24 hours, the values increased 8.6% to 16.2% than that without stress. Under high or low humidity, there was on different of the recovery Bt protein content between high temperature stress and low temperature stress. However, the leaf protein contents could not recovered to the level before stress after the stress stopped for 96 hours which lasted 48 hours, At peak boll period, the leaf Bt protein content continued to decrease after combined stress stopped during 96 hour. The leaf Bt protein content decreased slightly after the combination stress of the temperature and humidity stopped which lasted 24 hours, however, the content reduced significantly after the combined stress stopped which lasted for 48 hours. Under the same humidity stress, the reduction extent of Bt content of high temperature stress was more than than of low temperature after these stresses stopped for 96 hours which lasted 24 hours. For example, the leaf Bt content reduced by 33.1% and 19.2%, respectively after high temperature-humidity and low temperature with high humidity stress stopped for 96 hours for Sikang 1 when the stress treatments lasted 48 hours.There were different in the recovery ability of Bt proteins content for 4 varieties after the stress stopped. The leaf Bt protein content of the hybrid varieties enhanced more rapidly again than that of the conventional varieties at peak square period and peak flowering period, there was weakest recovery effect of the leaf Bt protein content after high temperature with low humidity stress at peak boll period.
     2. Effects of the combination stress of temperature and humidity on the leaf nitrogen metabolism for different Bt cultivars at three growth periods.
     The leaf GPT activities, soluble protein content was less affected within 24 hour stress and decreased slightly from 24 to 48 hour stress under high temperature associated with high humidity or low humidity stress at peak square period. Free amino acid content also increased gradually, and total N content decreased slightly in 48 hours under high temperature stress. In comparison to the high temperature stress, GPT and GS activities, soluble protein content decreased significantly under low temperature, and the content of free amino acid and total N decreased, the total N content was lower significantly than control after 36 hours stress. In contrast, GS activities increased for 48 hours stress under the combination stress of temperature and humidity, The GPT and GS activities difference was no significant between high and low humidity treatments with the same temperature.
     The leaf GPT and GS activities, soluble protein and total nitrogen content also less affected within 24 hours and then decreased gradually during 24 to 48 hours under high temperature associated with high humidity or low humidity stress at peak flowering period, and the rising rate of free amino acid content was higher than that at peak square period; The leaf GPT and GS activities decreased gradually during 24 to 48 hours under low temperature stress. The difference of the leaf nitrogen metabolism index was big between high temperature and low temperature stress during 12 to 36 hours, and the largest difference was observed at 24 hours. Nitrogen metabolism intensity was lower with low humidity stress than that with high humidity associated with high or low temperature.
     The enzyme of GPT and GS activities, the content of soluble protein and total nitrogen was slowly declined within 24 hours, and then reduced rapidly under high temperature with low or high humidity at peak boll period. In contrast to high temperature, GPT and GS activities, the content of soluble protein and total nitrogen was rapidly declined within 24 hours, and then slowly decreased under low temperature stress with low or high humidity. The Protease activity, free amino acid content increased and soluble protein content decreased at high or low temperature, especially at high temperature stress. The difference of leaf nitrogen metabolism index between high humidity and low humidity stress was small within 24 hours, and became bigger during 24 to 48 hours under high temperature stress. Nitrogen metabolism intensity was lower under low humidity stress, and was lowest under low temperature-humidity stress.The nitrogen metabolism intensity of the hybrids was higher than that of the conventional varieties under combined stress at peak square period and peak flowering period. The correlation between GPT activities, GS activities, total N, soluble protein content and leaf Bt protein content was positive at both peak flower period and peak boll period. There was a negative correlation between protease activity and soluble protein content, and positive correlation between protease activity and free amino acid at three periods.
     3. Effects of combination stress of the temperature and humidity on the leaf amino acids content.
     There was a variation of the content of eight major amino acids of Bt protein under both high temperature with low humidity stress and low temperature-humidity stress. Acidic amino acids showed most obvious changes under these stresses which was consisted of Glutamic Acid and Aspartic Acid. Acidic amino acids fluctuated within 48 hour, and increased slightly in peak square period, but significantly increased under high or low temperature with low humidity stress at both peak flower period and peak boll period, especially at high temperature with low humidity stress. There existed negative correlation between total content of eight major amino acids of Bt protein and Bt protein content, the correlation coefficients were -7918**,-8537** respectively under high temperature stress with low humidity stresses and -5703,-7806** under low temperature-humidity stress respectively at peak flower period andpeak boll period .
     4. Effects of combination stress of temperature and humidity on the leaf glucose metabolism for different Bt cultivars at three growth periods.
     The leaf Inv activities decreased, but the SPS activities, the contents of sucrose and soluble sugar increased combination stress of temperature and humidity, especially under low temperature associated with high or low humidity stress at peak square period. The leaf SPS activities and the content of sucrose and soluble sugar enhanced under high temperature stress, while the leaf Inv, SPS activities,the content of sucrose and soluble sugar increased under low temperature stress in the same humidity condition. The leaf Inv activities and soluble sugar content under low temperature was higher than that under high temperature stress at peak flowering period. There was no different of glucose metabolism between high humidity and low humidity associated with high or low temperature treatments at both peak square period and peak flower period. The Inv activities,SPS activities, sucrose and soluble sugar content increased significantly under high or low temperature stress,especially under high temperature stress at peak boll period. The leaf glucose metabolism intensity of low humidity was higher than that of high humidity under high temperature, however, the difference of leaf glucose metabolism was small between high humidity and low humidity treatments at 17℃.
     The ratio of C/N increased under combined stresses at three periods, which was smallest at peak square period and largest at peak boll period. The longer stress time lasted, the higher C/N ratio was. Under high or low humidity, the value of C/N ratio was higher under low temperature stress than under high temperature stress at both peak square period and peak flower period, but lower at peak boll period. The correlation between C/N ratio and leaf Bt protein content was negative, and the correlation coefficients were -0.5192,-0.7601* and -0.9158**, respectively at peak square period, peak flower period and peak boll period.
     5. Effects of the boll size on Bt protein expression and nitrogen metabolism.
     The hybrid cultivars were bigger in boll volume and boll shell volume, higher boll weight、boll shell weight and 100-seeds weight than that of the conventional cultivars. However, the insecticidal protein contents were lower in the boll shell and cotton seed. There were significant negative relationship between the boll volume, boll shell volume, boll weight, boll shell weight and the boll shell Bt protein contents, the correlation coefficient was -0.704*for boll volume, -0.739*for boll shell volume, -0.706* for boll weight and, -0.675* for boll shell weight. There were also very significant negative relationship between 100-seed weight and the cotton seed insecticidal protein content (r=-0.869**), Under artificial regulation, the boll and cotton seed insecticidal protein contents increased with the boll volume、boll shell volume、boll weight、boll shell dry weight and 100-seed weight decreased, the opposite results was observed with the boll volume、boll shell volume、boll weight、boll shell dry weight and 100-seed weight increased. The nitrogen metabolism showed that the content of total nitrogen, amino acid, soluble protein and the enzyme activities of GPT, GS were higher when the boll volume, boll shell volume, boll weight, boll shell dry weight, 100-seed weight were smaller, the opposite results was observed when the boll volume, boll shell volume, boll weight, boll shell dry weight, 100-seed weight were bigger.
     6. Effects of GA3and DPC on the boll Bt protein expression and nitrogen metabolism
     In order to study the plant growth regulators on the effect of boll Bt protein content and nitrogen metabolism, GA3 and DPC were used to spray the bolls of the two Bt cotton cultivars under field condition, the results showed that DPC inhibited the development of bolls, decreased boll size and fresh weight of boll shell at 10 DPA, and was no significant difference between control at 30 DPA; while GA3 promoted the development of bolls, increased boll size and fresh weight of boll shell at both 10 DPA and 30DPA. DPC increased Bt protein contents of the bolls at both 10 DPA and 30DPA; GA3 decreased the Bt protein contents of the boll shell and the seeds at 10 DPA, and enhanced the contents at 30 DPA significantly respectively.The boll with DPC treatment had higher total nitrogen, free amino acid and soluble content, greater for GS, GPT and GOT activity at both 10 DPA and 30DPA, while the boll with GA3 treatment at 30 DPA. There were similar results for two Bt cultivars with different genotype. There were significant positive correlation between the Bt toxin content and the activity of GS, GPT and GOT. The correlation coefficients were 0.7786**,0.7325**andr3=0.7023**.. The results suggested that spraying GA3 and DPC could change boll nitrogen metabolism intensity and the expression of the Bt protein.
引文
[1]马威.我国转基因抗虫棉研究与应用.作物杂志, 2007,3:24-26
    [2]夏敬源,邹奎,马志强,等.国产转基因抗虫棉技术集成创新与推广应用.中国棉花, 2006,33(10):2-5
    [3]周兆斓,朱祯.植物抗虫基因工程研究进展.生物工程进展, 1994, 14 (4) :18-24
    [4]朱新生,朱玉贤.植物抗虫基因工程研究进展.植物学报, 1997, 39 (3): 282-288
    [5]夏敬源,文绍贵.北方棉铃虫暴发成灾原因与治理对策.中国棉花, 1993,20 (2):9-12
    [6]齐亮.转基因抗虫棉农药使用的研究.安徽农业科学.2008,36(14):5942-5943
    [7]熊格生,唐海明,陈金湘.中国转基因抗虫棉的研究利用现状及发展对策.中国农学通报, 2006,5:193-197
    [8] Hofte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological review, 1989,53: 242-255
    [9] Adang M J. Application of a Bacillus thuringiensis crystal proteins for insect control. Molecular strategies for Crop protection. 1987:345-353
    [10] Adang M J,Staver M J,Rocheleau T.A characterized full-length and truncated plasmid clones of cryatal protein of Bacillus thringiensis subsp. Kurstaki HD-73 and their toxicity to Marduca. Sexta Gene, 1985,36:289-300
    [11] Vaeck M.Reynaerts A.Hofie H.et al. Transgenic plants protected from insect attack. Nature, 1987,328:33-37
    [12] Barton K A, Whiteley HR, Yang NS. Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to Lepidoptera insects. Plant Physidogy,1987,85:1109-1109
    [13] Pedak F J,Fuchs R L,Dean D A,eI al Modification of the coding sequence enhance plant expression of insect control protein genes. USA: Proc Natl Acad Sci.1991,88:3324—3328
    [14] Perlak F J, Deaton RW, Armstrong TA, et a1. Insect resistant cotton plants. Biotechnology. 1990,8:939-943
    [15] Lasota LR, et al. Evaluation by the united states environmental protection agency of pesticidal substances produced in plant DECD-MAICH workshop on multidisciplinary assessment of transgenic crop plants.technical, agronomic and ecological aspects,Chania,Crete,Greece. l5-19,September,1993,Field crops research,1996,45:1-3
    [16] Chair H,Kuhapitum R,Attathom T.,et aLGenetic transformation of a Thai cotton variety for insect resistant.Inaarkin PJ (ed.)Agricultural Biotechnology. Canberra,UTC publishing.1998.470
    [17]范云六,陈骐.杀虫芽孢杆菌的分子育种.微生物学研究与应用, 1989.1;26-28
    [18]崔洪志,郭三堆. Bt毒蛋白抗虫植物基因工程研究.农业生物技术学报, 1998 6(2): 166-171
    [19]谢道听,倪呸冲.苏云金芽抱杆菌杀虫基因导入中国栽培水稻品种中花11号获得转基因植株.中国科学B辑.1991, 8:830-834
    [20]谢道昕,范云六,倪万潮,等.苏云金杆菌杀虫晶体蛋白导入棉花获得转基因棉株.中国科学,1991(4):367-343
    [21]郭三堆. CryIA杀虫基因的人工合成.中国农业科学, 1997,26(2):85-86.
    [22]王仁祥.中国转基因抗虫棉的发展和应用.作物研究, 2001:6-9
    [23]何忠伟,周文新,陈艳芬,等.中国转基因抗虫棉发展的现状与对策.科技与产业, 2004,11:27-30
    [24]郭三堆等.携带编码杀虫蛋白质融合基因的表达载体及其转基因植物A 01N63/02 CN 95113498 I A,1996
    [25]郭三堆,崔洪志,夏兰芹,等.双价抗虫棉转基因棉花研究.中国农业科学,1999. 32(3): 1-7
    [26]张俊,郭香墨,马丽华.不同转基因棉的抗虫性与Bt毒蛋白含量关系的研究.棉花学报,2002, 14(3): 158-161
    [27]郭香墨,刘金生.中棉所育成系列转Bt基因抗虫棉.棉花学报,1998,10(5):279-280
    [28]孟庆华,刘继永,张群,等.鲁棉研系列转基因抗虫杂交棉种子加工新技术研究.山东农业科学,2009,5 :107-110
    [29]顾娟,吴克兰,吴军,等.科棉5号与科棉6号在通州市的栽培试验探讨.现代农业科技,2008,2:122-123
    [30]金珠群,曹光弟,骆寿山等.抗虫杂交棉的抗虫性及其产量表现.浙江农业学报,1999, (3):142-144
    [31]陈素彬,王朝生,柴友荣等.转Bt基因棉花抗红铃虫性的鉴定.中国棉花,1997, 15 (12):15-17
    [32]李汝忠,郭庆正,葛逢珠.转基因抗虫棉研究利用现状与前瞻.山东农业科学,1997,(2) : 4 7-50
    [33]崔学芬,夏敬源.对Bt毒蛋白不同抗性水平棉铃虫品系的生物学研究.棉花学报,2003,15(3):163-165
    [34] Sachs E S, Benedict J H, Stelly D M, et at. Expression and segregation of genes CryIA insecticidal proteins in cotton. Crop Sci,1998,38:1-11
    [35]邢朝柱,靖深蓉,崔学芬,等.转Bt基因棉杀虫蛋白含量的时空分布及对棉铃虫产生抗性的影响.棉花学报,2001, 13(1):11-15
    [36]束春娥,孙洪武,孙以文,等.转基因棉Bt毒性表达的时空动态对棉铃虫生存、繁殖的影响.棉花学报,1998. 10 (3 ): 131-135
    [37]孙伟,曹玉洪.转Bt基因抗虫棉Bt毒蛋白表达量的时空变化.安徽农业科学,2005,3(2):202-203
    [38]陈松,吴敬音,周宝良,等.转Bt基因棉Bt毒蛋白表达量的时空变化.棉花学报,2000 12(4): 189-193
    [39] Adamczy J J Jr, Adams L C, Hardee D D. Quantifica-tion of CryIA(c)δ-endotoxin in transgenic Bt cotton:correlating insect survival to different protein levels among plant parts and varieties. ProceedingsBelt-wide cotton conferences, San Antonio, TX. National Cotton Council of America,2000:929-932.
    [40]赵奎军,赵建周,范贤林,等.我国转基因抗虫棉杀虫活性的时间和空间动态分析.农业生物技术学报,2000. 8 (1):49-52
    [41] Greenplate J T,Penn S R,Mullins J W, et al. SeasonalCryIAc levels in DP50B: The“Bollgard? basis”for BollgardⅡ. Beltwide Cotton Conference Proceedings,2000:1034-1040
    [42] Johnie et al. .containing a thuringiensis. Growth and survival heliothis virescens on transgenic cotton truncated form of the delta endotoxin gene from Bt. Journal of Economic Entomology,l 993.86(1):181-185
    [43]董双林,文绍贵,望月恒.棉铃虫幼虫对转Bt基因棉的存活、生长及危害的影响.棉花学报,1997 9(4):176-182
    [44]吴家和,陈志贤,李淑君,等.转Bt基因棉各组织器官对棉铃虫抗性的研究.棉花学报,1999. 9(4): 176-182
    [45]李汝忠,沈法富,王宗文,等.转Bt基因抗虫棉Bt基因表达的时空动态.山东农业科学,2002,2:7-9
    [46]崔金杰,夏敬源.转Bt基因棉对棉铃虫抗性的时空动态.棉花学报,1999,11(3):141-146
    [47]崔金志,夏敬源.转Bt基因棉花对棉铃虫生长发育及繁殖的影响.河南农业大学学报,1999, 33(1): 27-12
    [48] S.Linquist. The environmental stimuli influencing gene expression that have been investigated with transgenic plants include light, heat, anaerobic stress and wounding. Annu.Rev Biochem, 1986, 551-553
    [49] Inge Broer. Stress inactivation of foreign genes in transgenic plant. Field crop Research, 1996,45:19-25
    [50]夏兰芹,郭三堆.高温对转基因抗虫棉中Bt杀虫基因表达的影响.中国农业科学,2004,37(11):1733-1737.
    [51]孟凤霞,沈晋良,褚姝频. Bt棉叶对棉铃虫抗虫性的时空变化及气象因素的影响.昆虫学报, 2003,46 (3):299 - 304
    [52]陈德华,杨长琴,陈源,等.高温胁迫对Bt棉叶片杀虫蛋白表达量和氮代谢影响的研究.棉花学报,2003,15(5):288-292.
    [53] Fitt GP, Mares CL. Field evaluation and protectional ecological impact of transgenic cotton (Gosspium hirstum)in Australian. Biocontrol Scince and Technology, 1997,4(4):535-548
    [54]周冬生.转基因棉对棉铃虫的抗性及其生理机制研究. 2001,中国优秀硕士学位论文全文数据库
    [55] Rod Mahon, Jean Finnegan, Karen Olsen and Louise Lawrence. Environmental stress and the efficacy of Bt cotton. The Australian Cottongrower, 2002, Vol 23, No 2, page 18
    [56] Benedict J H, Altman D W. Sachs E S, et al. Field perfonmance of cotton genetically-modified to express insecticidal protein from Bacillus thuringiensis II:College station T X [C]. Proc. Beltwide Cotton Conf. 1991, 576
    [57] Benedict J H, Sachs E S, Altman D W. et al. Field performance of cottons expressing transgenic CryIA insecticidal proteins for resistance to Helicoverpazca. J Econ Entomol, 1996,89(1):2 30-238
    [58]吴敬音,何小兰,束春娥,等.土壤淹水对Bt棉抗棉铃虫能力的影响.江苏农业学报,1997,13(4):231-233
    [59]王家宝,沈法富.环境因素对转Bt基因棉Bt杀虫蛋白表达量的影响.山东农业科学.2000, 6: 4-6
    [60]周冬生,吴振廷,王学林,等.转Bt基因棉的抗棉铃虫性及其生理作用研究进展.安徽农业科学, 2000,28 (1):65-69
    [61] Martins C.M., Beyene G., Hofs J.L. etal, Effect of water-deficit stress on cotton plants expressing the Bacillus thuringiensis toxin. Annals of applied biology, 2008.152 (2) : 255-262.
    [62] Ian J. Rochester. Effect of Genotype, Edaphic, Environmental Conditions, and Agronomic Practices on Cry1Ac Protein Expression in Transgenic Cotton. The Journal of Cotton Science 2006. 10:252–262
    [63]吴迪,朱延命.转基因植物外源基因沉默及防止对策.生物技术通报2002,13(3):228-231
    [64] Qin XF, Holuigue L, Horvath DM, et a1. Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element. The Plant Cell, 1994,6:863-874
    [65]董志强,Bt棉氮素代谢特征与丰产性抗虫性协同表达的化学调控. 2000,中国优秀博士学位论文全文数据库
    [66]王保民,李召虎,李斌,等.转Bt抗虫棉各器官毒蛋白的含量及表达.农业生物技术学报,2002,10(3):215-219.
    [67]刘芳.抗虫棉花铃期Bt基因不同器官抗虫性表达差异及其调控. 2003,中国优秀硕士学位论文全文数据库
    [68]宋国琦. Bt抗虫棉不同叶位Bt基因时空表达差异及调控. 2003,中国优秀硕士学位论文全文数据库
    [69]石春林,朱祯,徐鸿林,等.转基因烟草中Bt毒蛋白基因的表达行为.植物学报,2000,42(3):269-273
    [70] Kumpatla S.P.,Timothy C.HaII. Recurrent onset of epigenetic silencing in rice harboring a muti-copy transgene. The Plant Journa1,1998,14(1):129-135
    [71] Mein S,Jr F., Kunz C. Silencing of chitinase expression in transgenic plants: An autoregulatory model in Homologous Recombination and gene Silencing in plant (Pasdzkowski, J., ed). Dordrecht: kluwer academy,1994,12:256-260
    [72]夏兰芹. Bt杀虫基因在转基因抗虫棉中的表达与遗传稳定性的研究. 2000,中国优秀博士学位论文全文数据库
    [73]吴刚,崔海瑞,舒庆尧,等. 5-氮胞苷介导的转基因cry1Ab的阶段复活及其对水稻的生物学效应.中国水稻科学,2001,1:63-66
    [74] A.D. Mandaokar, R.K. Goyal, A. Shukla,et al. Transgenic tomato plants resistant to fruit borer (Helicoverpa armigera Hubner). Crop Protection,2000,19(5):307-312
    [75] Hofgen, R, L. Wilmitzer,. Biochemical and genetic analysis of different patatin isoforms expressed in various organs of potato. Plant Science,1988,66: 221-230.
    [76]郭亮,文玉香,梁玉梅,等.苏云金芽胞杆菌毒蛋白基因在小麦基因组中的甲基化修饰,遗传学报,1997,24 (3):225-262
    [77] Nadine Carozzi, Michael Koziel. Advances in insect control: The role of transgenic plants,London: Taylor & Francis, 1997, 21
    [78]耿军义,张香云,王兆晓,等. Bt基因在不同陆地棉基因型的表达研究.棉花学报,2003,15(1) : 8-12
    [79]邢朝柱靖深蓉郭立平,等.转Bt基因棉杂种优势及性状配合力研究.棉花学报,2000,21(1) : 7-9
    [80]李汝忠,王景会,王宗文,等.转Bt基因抗虫棉杂交后代的抗性表现与抗虫育种策略.山东农业科学,2000(5): 7-9
    [81]刘海涛,郭香墨,夏敬源.抗虫杂交棉F1代与亲本Bt蛋白表达量及抗虫差异性研究.棉花学报,2000 12(5) : 261-263
    [82] Wilson F D, Flint H M, Deaton W R etal. Resistance of cotton lines containing a bacillusgensis toxin to pint: bollworm and other insects. J.Econ. Entomol,1992.85(4):1516-152 1
    [83] Dynan W S. Understanding the molecular mechisms by which methylation influences genes expression. Trends Genet,1989,5:35-36
    [84] Hart C M, Fisher B,Meins J R Regulated inactivation of homologous gene expression in transgenic Mcotinan sylvesfris plants containing a defense-related tabacco chitinase gene. Mol. Gen. Genet,1992,235:179-188
    [85] Sachs E S, Benedict J H, Taylor J F, et al.. Pyramiding Cry1A(b) insecticidal protein and terpenoids in cotton to resistant tobacco budworm(Lepidoptera: Noctuidae). Environ Entomol. 1996,25:1257-1266
    [86] Fitt G P, Mares C L, Llewellyn D J. Field evaluation and potential ecological impact of transgenic cottons(Gossypium hirsutum) in Australia. Biocontrol Sci Tech, 1994,4:535-548
    [87] Olsen K M, Daly J C, Tanner G J. The effect of cotton condensed tannin on the efficacy of the Cry1Acδ-endotoxin of Bacillus thuringiensis, In: Proceedings,9th Australian Cotton Conference,1998:337-342
    [88]张永军,杨舰,郭予元,等.外源Bt杀虫蛋白和棉花主要抗虫萜烯类物质互作关系研究.中国农业科学,2002,35:514-519
    [89]钟珍梅,黄勤楼,王建武,等.导人外源Bt基因与受体作物次生代谢物质的交互关系研究.中国生态农业学报,2007,15(6):200-203
    [90] Krischik V A, Barbosa P, Reichelderfer C. Three trophic level interaction:allelo chemicals, Manduca sexta(L.), and Bacillus thuringiensis var.kurstaki. Berliner, Environ Entomol, 1998,1 (7) :476-482
    [91]王琛柱.棉酚和单宁酸对棉铃虫幼虫生长和消化生理的影响.植物保护学报,1997,24(1):13-18
    [92]张永军,郭予元.棉花缩合单宁和Bt杀虫蛋白的交互关系.棉花学报,2000,12(6):294-297
    [93]周秋菊,张永军,米湘成,等.外源抗虫蛋白与内源抗虫因子的交互作用.植物学通报,2004, 21 (6): 733-742
    [94] Wang C Z, Zhang S F, Zhang J H . Effect of tannic acid on the effectiveness of Bacillus thuringiensis Var Kurstaki against Helicoverpa armigera Hübner. Environ Entomol,1997, 4(1):74-81
    [95] Arteel G E, Lindroth R L. Effects of aspen phenolic on gypsy moth (Lepidoptera: Lymantriidae) susceptibility to Bacillus thuringiensis Great. Lakes Entomol, 1992,25: 239-244
    [96]王润珍,刘爱珍,李如义等.抗虫棉R93-6需肥规律及氮肥料施用技术研究.中国棉花,1997,24(4):16-17
    [97] W. T. Pettigrew,J. J. Adamczyk, Jr. Nitrogen Fertility and Planting Date Effects on Lint Yield and Cry1Ac (Bt) Endotoxin Production. Agronomy Journal, 2006, 98(3): 691-697
    [98]杨长琴,徐立华,杨德银等.氮肥对抗虫棉Bt蛋白表达的影响及氮代谢机理的研究.棉花学报,2005,17(4):227-231
    [99] Breen-Pierce-J,Flynn-R,Ellers-Kirk-C et al., Effect of nitrogen and vegetative growth on plant resistance to bollworm, Helicoverpa zea, In selected Bt cotton varieties. 1999 Proceedings Beltwide Cotton Conferences, Orlando, Florida, USA, 3-7January, 1999:Volume 2.1999,1234-1236
    [100] Craig A. Abel and John Adamczyk J. J. Relative concentration of Cry1A in maize leaves and cotton Bolls with diverse chlorophyll content and corresponding Larval development of Fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) on Maize Whorl Leaf Profiles. J. Econ. Entornol,2004. 97(5):1737-1744
    [101] Chen FJ,Wu G,Ge F. et al. Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton boll-worm. Entomol Exp Appl,2005,115:341-346.
    [102] Jiang LinJian,Duan LiuSheng,Tian XiaoLi. NaCl salinity stress decreased Bacillus thuringiensis (Bt) protein content of transgenic Bt cotton (Gossypium hirsutum L.) seedlings. Environmental and Experimental Botany,2006,55(3):102-105
    [103]王忠.植物生理学.北京:中国农业出版社主编. 1999: 107-110
    [104]陆彬彬,周卫,张吉,等.温度对水稻谷氨酰胺合成酶和NADH-谷氨酸合酶表达的影响.武汉大学学报(理学版),2002, 48 (2 ):239-240
    [105] Lawlor DW, Boyle FA, Kendall AC, et al. Nitrate nutrition and temperature effects on wheat: enzyme composition, nitrate and total amino acid content of leaves. Journal of Experimental 1987, 38:378-392
    [106]宋子健,李良霞,李建龙,等.高温胁迫对高羊茅草坪草氮代谢的影响.贵州农业科学,2007,35(6):15-18
    [107]陈德华,杨长琴,陈源,等.高温胁迫对Bt棉叶片杀虫蛋白表达量和氮代谢影响的研究.棉花学报,2003,15(3):288-292
    [108]刘萍,郭文善,浦汉春,等.花后短暂高温对小麦籽粒蛋白质含量的影响及其生理机制.作物学报,2007,33 (9) :1516-1522
    [109]赵辉,荆奇,戴廷波.花后高温和水分逆境对小麦籽粒蛋白质形成及其关键酶活性的影响.作物学报,2007,33(12):2021-2027
    [110]范雪梅,姜东,戴廷波,等.花后干早和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响.中国农业科学,2005,38(6):1132-1134
    [111]曾乃燕,何军贤,赵文,等.低温胁迫期间水稻光合膜色素与蛋白水平的变化.西北植物学报,2000,20(1):8-14
    [112]王代军,温洋.温度胁迫下几种冷季型草坪草抗性机制的研究.草业学报,1998,7(1):75-80
    [113] R. S. Dhindsa,R. E. Cleland. .Water Stress and Protein Synthesis. Plant Physiol,1975,55(4): 782–785.
    [114]张桂莲,陈立云,张顺堂,等.高温胁迫对水稻剑叶氮代谢的影响.杂交水稻,2007,22(4):57—61
    [115] Dehua Chen, Guoyou Ye, Changqin Yang, et al. The Effect of high temperature on the insecticidal properties of Bt cotton,Environmental and Experimental Botany,2005,53(3)333-342
    [116] Bharmbe P R, Varade S B. Effects of plant stress on some biochemical changes in cotton. J.Maharashtra. Agr. Univ,1984, 9 (1):47-50
    [117] Keiron P. P. Fraser, Andrew Clarke ,Lloyd S. PeckLow-temperature protein metabolism: seasonal changes in protein synthesis and RNA dynamics in the Antarctic limpet Nacella concinna Strebel 1908. The Journal of Experimental Biology,2002: 205, 3077–3086
    [118]江福英,李延,翁伯琦.植物低温胁迫及其抗性生理.福建农业学报,2002,17(3):190-195
    [119]郭子武,李宪利,高东升.植物低温胁迫响应的生化与分子生物学机制研究进展.中国生态农业学报,2004,12(2):54-57
    [120]张明方,李志凌.高等植物中与蔗糖代谢相关的酶.植物生理学通讯. 2002,38(3):289-294
    [121]司丽珍,储成才.植物中蔗糖酶的研究进展.高技术通讯,2002,8:101-104
    [122]刘慧英,朱祝军.转化酶在高等植物蔗糖代谢中的作用研究进展.植物生理学通讯. 2002,19(6):666-674
    [123]郝敬虹,李天来,孟思达,等.夜间低温对薄皮甜瓜果实糖积累及代谢相关酶活性的影响.中国农业科学2009,42(10):3592-3599
    [124]孟焕文,程智慧,吴洋,等.温度胁迫对番茄转化酶表达和光合特性的影响.西北农林科技大学学报,2006,34(12):41-46
    [125]王有年,杜方,于同泉,等.水分胁迫对桃叶片碳水化合物及其相关酶活性的影响.北京农学院学报,2001,16(4):11-16
    [126]陈贵、康宗利,张立军.低温胁迫对小麦生理生化特性的影响.麦类作物1998(5):42-45
    [127]刘媛媛,滕中华,王三根.高温胁迫对水稻可溶性糖及膜保护酶的影响研究.西南大学学报(自然科学版),2008, 30(2) : 41-44
    [128]李敏,马均,王贺正.水稻开花期高温胁迫条件下生理生化特性的变化及其与品种耐热性的关系.杂交水稻,2004,12(2):54-57
    [129]李天,刘奇华,大杉立,等.灌浆结实期高温对水稻籽粒蔗糖及降解酶活性的影响.中国水稻科学,2006 , 20 (6) :626-630
    [130]Jenner CF. The physiology of stareh and protein deposition in the endosperm of wheat. Australian Journal of Plant Physiology, 1991, 18:211-226
    [131]范月仙,李生泉,冯文新.棉苗抗冷性与其可溶性糖含量变化关系的研究棉花学报1995,7(2):126-127
    [132]刘灵娣,李存东,孙红春,干旱对棉花叶片碳水化合物代谢的影响.棉花学报,2007,19 (2) :129-133
    [133]许振柱,周广胜.植物氮代谢及其环境调节研究进展.应用生态学报,2004,15(3):511-516
    [134] Scheible W R,Fontes A G, Lauerer M,et al. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco.Plant Cell,1997,9:783-798
    [135] Champigny M L . Integration of photosynthetic carbon and nitrogen metabolism in higher plants.Photosynth Res,1995,46:117-l27
    [136]田纪春,王学臣,刘广田,等.植物的光合作用与光合氮、碳代谢的耦联及调节.生命科学, 2001,13(4):145-147
    [137]郭世伟,冉炜,周毅,等.试论大气C02浓度升高条件下水稻碳氮代谢变化及其调控途径.中国水稻科学,2006,20(5):560-566
    [138]王亮,朱建国,朱春梧,等.高浓度CO2条件下水稻叶片氮含量下降与氮代谢关键酶活性的关系中国水稻科学,2008,22(5):499-506
    [139]张敏.高温和外源碳氮供应对小麦籽粒蛋白质和淀粉形成的生理影响. 2006中国优秀硕士学位论文全文数据库
    [140]董志强,何钟佩,翟学军.转Bt基因棉新棉33B叶片氮素代谢特征及其化学调控潜力.棉花学报,2000,12 (3):113-117
    [141]段留生,何钟佩DPC对棉花叶片发育及活性氧代谢的影响.棉花学报,1996,8 (6):312-315
    [142]张明才,李召虎,田晓莉等.植物生长调节剂SHK-6对大豆叶片氮素代谢的调控效应.大豆科学,2004(2):15-20
    [143]于方明,刘可慧,荣湘民等.生长调节剂对春玉米氮素代谢关键酶活性的影响.生态环境,2007,l6(4):1253-1256
    [144]荣湘民,刘强,朱红梅等.植物生长调节剂对水稻氮代谢关键酶活性的影响.湖南农业大学学报(自然科学版),2003,29(5):372-375
    [145]李科,卢向阳,彭丽莎,等.羧甲基壳聚糖对水稻氮代谢关键酶活性及籽粒蛋白质含量的影响.湖南农业大学学报(自然科学版),2001,27(6):421-424.
    [146]高廷东,王宪泽.羧甲基壳聚糖对小麦幼苗碳氮代谢相关酶活性的影响作物研究2002,4:173-175
    [147]齐志广,赵俊霞.油菜素内酯对大豆苗期生长及硝酸还原酶活性的影响.河北师范大学学报(自然科学版),1999,6:271-273
    [148]高夕全,刘爱荣,叶梅荣,等.水杨酸对水稻幼苗硝酸还原酶活性和根系生长的影响.安徽农业技术师范学院学报, 2000 ,14 (1) :13-15
    [149]曾富华,罗泽民.赤霉素对杂交水稻生育后期氮代谢的调控作用.湘潭师范学院学报,1993,14(3):61-63.
    [150]王镜岩,朱圣庚,徐长法.生物化学(第三版).北京:高等教育出版社,2002
    [151] Ballantyne J S,Chamberlin M E. Regulation of cellular amino acid levels. Cellular and Molecular Physiology of Cell Volume Regulation(K.Strange,ed.),CRC Press,Boca Raton,FL,1994,111-122.
    [152] H. R. Knull and E. J. Kinbacher. Effects of a Suboptimal Temperature on the Free Amino Acid Composition of Bean Seedlings. Crop Sci,1968,8:39-41
    [153] Delauney A J,Verma D P S. Proline biosynthesis and osmo regulation in plants. Plant Journal, 1993,4:215-223
    [154] Fougere F,Le Rudulier D,Streeter J G.Effects of salt stress on amino acid,organic acid,and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa(Medicago sativa L.). Plant Physiology,1991,96:1228-1236
    [155] Lea PJ,Miflin BJ. Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol Biochemistry,2003,41:555-564
    [156]陈亚娟,李付广,刘传亮,等.植物渗透调节研究进展及与棉花耐旱遗传改良.分子植物育种,2009,7,(1):149-154
    [157] Rathinasabapathi B. Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Annals of Botany,2000,86: 709-716
    [158] Yancey P H,Clark M E,Hand S C,et al. Living with water stress: Evolution of oxmolyte systems. Science,1982,217:1214-1222
    [159] Carillo P,Mastrolonardo G. Nacca F,Fuggi A. Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Plant Biology,2005,32:209-219
    [160] Lea P J,Miflin B J. Alternative route for nitrogen in higher plants. Nature,1974,251:614-616
    [161]何钟佩主编.农作物化学控制实验指导.北京农业大学出版社,1992,60-68
    [162] K. M. Olsen, J. C. Daly, E. J. Finnegan, et al. Changes in Cry1Ac Bt transgenic cotton in response to twoenvironmental factors: temperature and insect damage. J. Econ. Entomol,2005:98(4): 1382-1390
    [163]张宪政主编.作物生理研究法.农业出版社
    [164] Pedro Carrasco, Juan Carbonell. Changes in the level of peptidase activities in pea ovaries during senescence and fruit set induced by Gibberellic Acid. Plant Physiol.,1990, 92, 1070-1074
    [165]柴新荣,汪诗新,汪礼斌,等.抗虫棉在生产上的应用的缺陷与栽培对策.江西棉花,2000,2(1):33-34
    [166]顾万荣,李玉侠,张进,等.国产转基因抗虫棉研究进展.安徽农业科学,2005,33(2):324-325
    [167]田晓莉,何钟佩.转Bt基因抗虫棉中棉所30的碳,氮代谢特征.棉花学报,2001,33(2):172-175
    [168]邵承斌.小麦穗分化期间叶片和幼穗含糖量及转化酶活力的变化.植物生理学通讯,1993,29(1):30-32
    [169]赵越,魏自民,马凤鸣.铵态氮对甜菜蔗糖合成酶和蔗糖磷酸合成酶的影响.中国糖料,2003,3:1-5
    [170] Uhart S A, Andrade F H.grain filling in maize under different Nitrogen and carbon accumulation and remobilization during source sink ratios. Crop Sci,1995.35: 183-190
    [171]高聚林.春玉米碳氮代谢规律的研究.第一届全国青年作物栽培、作物生理学术会文集.北京:中国科学技术出版社,1993:230-235
    [172]朱新开,严六零,郭文善,等.淮北稻茬超高产小麦碳氮代谢特征研究.麦类作物学报. 2002,22(1):51-55
    [173]郑王尧,曹嘉喜.夏大豆植株碳氮化合物消长及产量形成的影响.中国油料,1987,(3):10-14
    [174]李永庚,蒋高明,杨景成.温度对小麦碳氮代谢、产量及品质影响.植物生态学报,2003,27 (2) :164-169
    [175]李建敏王振林高荣岐,等.强、弱筋小麦籽粒形成期蔗糖、淀粉合成相关酶活性及其与氮代谢的关系.作物学报,2008,34(6):1019-1026
    [176]周冬生,吴振廷,王学林,等.施肥量和环境温度对转Bt基因棉抗虫性的影响.安徽农业大学学报,2000, 27 (4): 352-357
    [177]王留明,王家宝,沈法富等.渍涝与干旱对不同转Bt基因抗虫棉的影响.棉花学报,2001,13(2):87-90
    [178]林毅,郑后今,高用民,等.抗虫棉抗虫特性及产量性状的研究.安徽农业大学学报,1998,25(2):174-177
    [179]狄佳春,肖松华,刘剑光,等.不同铃型的陆地棉棉铃性状研究.中国棉花,2002,29(5):9-10
    [180]郭香墨,丰嵘,刘海涛,等.抗虫棉示范种植技术探讨.中国棉花,1996,23(1):26-27
    [181]陈旭升,郭志刚,许乃银.转Bt基因抗虫棉的抗虫性与主要经济性状的相关分析[J]江西农业学报. 2002 ,14(3) :23-28
    [182] Campbell .BC. Host plant resistance of sorghum: differential hydrolysis of sorghum pectic substances by polysaccharides of greenbug biotype. [J]Arth Insect Biochem. Physiol. 1985,2:203-215.
    [183]张永军,郭予元.吴孔明.化学调节剂诱导转Bt基因棉花杀虫蛋白和主要抗虫次生物的变化. [J]棉花学报2002,14(2):131-133
    [184]董志强. Bt棉氮素代谢特征与丰产性抗虫性协同表达的化学调控. 2000,中国优秀博士论文全文数据库
    [185]陈德华,聂安全,杨长琴. B t棉毒蛋白表达特征与氮代谢关系及其化学调节的研究. [J]棉花学报2003,10(7):10-12
    [186] Zhen Luo, Hezhong Dong, Weijiang Li. Individual and combined effects of salinity and waterlogging on Cry1Ac expression and insecticidal efficacy of Bt cotton. Crop Protection,(2008),27: 1485–1490
    [187] Radin JW, Sell CR. Some factors limiting nitrate reduction in developing ovules of cotton. Crop Sci, 1975,15:713-715
    [188] Gouia.H, Ghorbal.MH, Touraine.B. Effects of NaCl on flows of N and mineral ions and on NO3 reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiology,1994,105: 1409-1418
    [189] Srivali B,Renu KC. Drought-induced enhancement of protease activity during monocarpic senescence in wheat. Current Sci, 1998,75 (11):1174-1176
    [190] Powell, R.D, Amin, J.V. effect of chilling temperature on the growth and development of cotton. Cotton Growing Rev, 1969,46:21-28
    [191] Dehua Chena, Guoyou Yeb, Changqin Yang. Effect of introducing Bacillus thuringiensis gene on nitrogen metabolism in cotton. Field Crops Research,2005,92:1–9
    [192] H. R. Knull and E. J. Kinbacher. Effects of a Suboptimal temperature on the free amino acid composition of Bean Seedlings . Crop Sci 1968,8:39-41
    [193] S Sagisaka Effect of Low Temperature on amino acid metabolism in 'wintering poplar. Plant Physiol. 1974, 53:319-322
    [194] Nobuaki Sato, Armando T. Quitain, Kilyoon Kang,etal. Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water. Eng. Chem. Res. 2004, 43, 3217-3222
    [195] Glena A. Gilbert, Michelle V. Gadush1, Clyde Wilson et al. Amino acid accumulation in sink and source tissues of Coleus blumei Benth. during salinity stress. J. Experimental Botany, 1998,49:107–114
    [196]王英,吕德国,秦嗣军,等.低温对山定子和平邑甜茶幼苗根系氮代谢酶活性及游离氨基酸含量的影响.园艺学报,2010,37(2):179-184
    [197] Bruns HA, Abel CA. Nitrogen fertility affects on Bt endo-toxin and nitrogen concentrations of maize during early growth. Agronomy Journal. 2003, (95):207-210
    [198]陈德华,陈源,杨长琴.氮肥与缩节胺配合对Bt棉源库特征和铃重的影响.棉花学报,2002,14(3):147-150
    [199] Satvir Kaur, Anil K. Gupta, Narinder Kaur. Effect of GA3, kinetin and indole acetic acid on carbohydrate metabolism in chickpea seedlings germinating under water stress. Plant Growth Regulation,2000. 30: 61–70
    [200]毛景英主编.植物生长调节剂调控原理与实用技术.中国农业出版社