砰击荷载下复合材料高速船结构设计与船体制造技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料高速船艇发展可以满足三个层面的需求:高速航运、私人海上运动的发展需求;海上能源开发、缉私、求助等工作需求;沿海和临海军事巡逻及海上应急突发事件的需求。尽管复合材料高速船艇应用前景广阔,但国内外现行规范只是对结构设计提供要求,无法保证结构设计最优性。国外几家快艇设计公司也不愿公布船艇结构设计核心技术。以上原因促使我国复合材料高速船艇发展必须依靠自有技术,因此本文开展了复合材料高速船艇结构设计与建造研究工作。考虑到30节以上船艇主要承受砰击荷载,论文结构设计主要设计荷载为砰击荷载。
     基于内聚力理论模型,采用有限元分析技术对复合材料层合板分层规律进行研究。在计算过程中,研究了层合板结构分层发生位置及先后顺序规律。而且,层合板铺层厚度、铺层角度以及树脂剥离强度对分层影响也进行了研究。
     提出了整船复合结构设计概念,并对局部砰击结构进行了研究。首先利用有限元计算,评价了三种船体结构形式,静态力学研究表明:泡沫夹层结构性能最优。按照结构设计,建造1米长实船试件,在重量一致前提下,应用跌落试验对结构抗砰击性能进行研究。结果表明:泡沫夹层结构抗砰击性能最优,与静态力学分析结果一致。同时,芳纶与玻纤编织的混编纤维可以增强结构抗砰击性能。通过结构分层研究表明,骨材与船板人工二次粘结使结构性能不连续,最终导致了横骨材附近大量分层破坏。
     研究了船体真空辅助成型工艺过程,对工艺中树脂流动形式、流动速度以及缺陷产生原因进行分析。根据树脂流道,合理设计进/出胶口位置,实现了泡沫夹层板与骨材一次性灌注。根据固化成型工艺力学--固化动力学模型和热-化学模型,利用有限元获得了船体截面在固化周期内温度场与固化度场分布。结合热-弹性力学模型,实现了船体在固化成型全过程的温度场、固化度场、应力场以及变形稳定性分析。
     根据水动力学理论,通过船模水池试验数据,最终获得优异船体水动力线型,完成了船体结构设计与制造。带有断级的实船截面跌落试验表明,断级设置不仅改善了船体水动力学性能,而且提高了船体抗砰击荷载能力。实船试航的速度测试验证了复合材料快艇具有70Kn航速,创造了中国最快的船艇记录。
The development of FRP fast boats can satisfy three demands: the developingdemand of fast shipping and the pleasure actions on the sea, the working requirements ofthe offshore energy exploitation, anti-smuggler and rescue missions, the military offshorepatrol and fast respond at emergency. Although the FRP fast boats can be widely used inmany fields, the present domestic and abroad classifications only emphasize therequirements on the construction design and cannot guarantee the optimum of the hulldesign. Some abroad companies don’t want to share the key design points with the othercompetitors. Therefore, the development of China FRP fast boats must depend on owntechnology. This article is focus on FRP fast boats construction design and manufacture.Considering the boats above30knots mainly bear the slammingload, the main designload of this article is the impact load.
     Based on the Cohesion model, finite element analysis is performed for the law ofdelamination. During the calculation process, the delamination location of the plate andthe delamination sequence of delamination in thickness direction are studied. Meanwhile,the thickness and ply angle of laminated plate are studied for the effect of delamination,peel strength of the matrix is also investigated in this section.
     Put forward the concept of the whole ship design of composite structures, and localanti-slamming design is studied in this section. The finite element method is to evaluatethree hull structures, and the calculated results show that foam sandwich structure has thebest performance. In accordance with the structural design, construction1meter longboat structure specimens, the drop test is to elevulate the performation of three structuredesign with the same weight. The results show that foam sandwich structure has the bestperformance of anti-slamming, which mechanical analysis results is confirmed.Meanwhile, mixed woven kevlar fiber and glass can enhance the performance of anti-slamming. The results also show that horizontal stiffeners with artificial secondarybonded aggregate structure lead to discontinuity properties of the structure, largedelamination field occure near horizontal stiffeners.
     Vacuum assisted resin technology of the hull was studied. During the hull vacuumassisted molding process, resin flow, flow speed and defects are studied in the analysis.According to resin flow, and the design import/export location resin, foam sandwichpanels with vertical stiffeners is successful one-time infusion. Based on curing kineticsmodel and the heat-chemical model, the finite element is performed for temperaturefiled and the degree of cure field during the curing cycle. Based on thermal-elasticmodel, stress and strain field, deformation, are achieved with fininte element analysis.
     According to the hydrodynamic theory, excellent linear hydrodynamic hull areachieved by drag test pool. The structures are improved for slamming loads by thoughdynamic transient analysis of the hull. And the composite hull was prepared. Drop testshows that the hull with step-fault zone can improve the load capacity of slamming loadwhich is better than the hull. Speed testing is done for the validation of the compositesvessel having70Kn speed.
引文
1赵连恩,谢永和.高性能船舶原理与设计.北京.国防工业出版社.2009:6~7.
    2Odd M.Faltinsen著.崔维成,刘应中,葛春花,孙辉译.海上高速船水动力学.北京.国防工业出版社.2007:1~4.
    3Spaulding KB. A histroy of the construction of fibreglass boats for the navy. Journalof Bureau Ships.1996,15:2~11
    4Spaulding KB. Fibreglass boats in naval service. Journal of Naval Engineer.1966,78:333~340.
    5A.P.Moutritz, E.Gellert, P.Burchill, K.Challis. Review of advanced compositestructures for naval ships and submarines. Composite Structures2001,53:21~41.
    6Smith CS, Monks AH. Design of high performance hulls in fibre-reinforced plastics.In:Proceedings of the Symposium on Small Fast Warships and Security Vessels,London,1982, May:95~110.
    7Goubalt P, Mayes S. Comparative analysis of metal and composite materials for theprimary structure of a patrol boat. Naval Eng J1996,108(3):387~397.
    8Makinen K, Hellbratt S-E, Olsson K-A..The development of sandwich structures fornaval vessels during years. In: Vautrin A, editor. Mechanics of sandwich structures.Kluwer Academic Publishers:Netherlands;1988:13~28.
    9Nguyen LB, Critchfield MO, Feasibility study and fabrication demonstration of FRPhull structures for naval surface combatants. In:Proceedings of the InternationalConference on Advances in Marine Structures III, Dunfermline,1997may:20~23
    10Makinen K, Hellbratt S-E, Olsson K-A. The development of sandwich strucutre fornaval vessels during years. In:Vautrin A, editor, Mechanics of sandwich structures.Kluwer Academic Publishers:Netherlands;1988:13~28
    11Alm F. GRP versus steel in ship construction. Naval Forces1983,4(5):82~86.
    12Pfund B. Buliding big in advanced composites. Prof Boatbuilder1998,53:40~49.
    13Mayes S, Scott B. Advaced all-composite surface combatant. In:Proceedings of theAmerican Society of Naval Engineers (ASNE) Symposium, vol.1, Biloxi,Mississippi,1995:16~17
    14Mayes S, Scott B. Advaced all-composite surface combatant. In:Proceedings of theAmerican Society of Naval Engineers (ASNE) Symposium, vol.2, Biloxi,Mississippi,1995:73~112
    15Advanced hybrid composite mast installed on US navy destroyer. Composite Fabric1997,11(9):39~42.
    16Benson JL. The AEM/S system, a paradigm-breaking mast, goes to sea. Journal ofNaval Engineering.1998,110(4):99~103.
    17Benson JL. The future is taking shape. Naval Forces1999,20(1):58
    18Lin G-F. Three-dimensional stress analysis of a fiber-reinforced composite thrusterblade. In:Symposium on Propellers/Shafting, Virginia Beach, Virginia,1991September:17~18. Paper9.
    19Lin G-F. Comparative stress-deflection analysis of a thick-shell composite propellerblade. David Taylor Research Center, DTRC/SHD-1373-01, December1991.
    20Kane C, Dow R. Marine propulsors design in fibre reinforced plastics. J DenfenceSci1994,4:301~308.
    21Wilhelmi GF, Appleman WM, Loo FTC. Composite shafting for naval propulsionsystems. Navay Eng J1986,98(4):129~136
    22Kelly JJ, Rockwell RD. Naval applications of thick composites. In:Proceedings ofthe36th Sagamore Conference, Plymouth, MA,1989Octorber23(26):17~41.
    23Smith LE, McGowin-Smith MJ. Shipbuliding and ship design perspectives onapplicatioins of composite materials: capability drivers and technical issue. In:Proceedings of the37th International SAMPE Symposium,1992March,9(12),63~77.
    24Zimmerman S. Submarine technology for the21st century arlington, VA:PashaPublications Inc,1997.
    25Albert W. Horsmon, Jr.and Bryant Bernhard. Exploitiong technology to optimize thedesign of large composite vessels. Sname2003Annual Meeting San Francisco CA.ETATS-UNIS2003,111:309~330.
    26R.S.Dave, Alfred C.Loos著.方征平,神列译.高分子复合材料加工工程.北京化学工业出版社.2004年.
    27杨金水,肖加余,曾竟成,刘钧.真空导入模塑工艺树脂流动规律研究.宇航材料工艺,2007,5:22~26.
    28Xiudong Sun, Shoujie Li, L James Lee. Mold fitting analysis in vacuum-assistedresin transfer molding Part I: SCRIMP based on a high-permeable medium. PolymerComposites2004,19(6):807~817.
    29杨金水,肖加余,江大志等.真空导入模塑工艺树脂体系化学流变特性及流变模型.复合材料学报,2009,26(4):1~7.
    30Autoclave Curves Composite Aircraft. Reinforced Plastics, November,2000:19.
    31T.G.Gutowski. Advanced Composites Manufacturing. John Wiley&Sons Inc.,1997.
    32陈祥宝,包建文,娄奎阳.树脂基复合材料制造技术.化学工业出版社,2000:26~64.
    33D. Cohen. Influence of filament winding parameters on composite vessel quality andstrength. Composites Part A: Applied Science and Manufacturing.1997,28(12):1035~1047.
    34J.Scholliers, H.V. Brussel. Computer-integrated filament winding: computer-integrated design, robotic filament winding and robotic quality control. CompositesManufacturing.1994,5(1):15~23.
    35T.G.古托夫斯基.先进复合材料制造技术.化学工业出版社.2004:2~6.
    36T.E.Twardowski, S.E.Lin, P.H.Geil. Curing in thick composite laminates: Experimentand Simulation. Journal of Composite Materials.1993,27(3):216~250.
    37Soo-Yong lee, G.S.Springer. Filament winding cylinders:I. process model. Journal ofcomposite materials.1990,24(12):1297~1298.
    38Soo-Yong lee, G.S.Springer. Filament winding cylinders:II. Validation of the processmodel. Journal of composite materials.1990,24(12):1299~1343.
    39Soo-Yong lee, G.S.Springer. Filament winding cylinders:III. Selection of the processvariables. Journal of composite materials.1990,24(12):1345~1366.
    40J.T.Tzeng, A.C.Loos. A cure analysis for axisymmetric composites. CompositeManufacturing.1993,4(3):43~51.
    41Yan xiangqiao. Consolidation and cure simulations for laminated composites. Journalof Composite Materials.2006,40(20):1853~1869.
    42D.D.Shin. Intelligent processing for thick composites. Dissertation of University ofCalifornia.2000:63~65.
    43J.Mijovic, H.T.Wang. Modeling of processing of composites Part II: temperaturedistribution during cure. Sampe Journal.1988,24:42~55.
    44B.C.Chern, T. J.Moon, J. R.Howell, W.Tan. New experimental data for enthalpy ofreaction and temperature and degree of cure dependent specific heat and thermalconductivity of the Hercules3501-6epoxy system. Journal of composite Materials.2002,36(17):2061~2072/
    45J.Mijovic, H.T.Wang. Modeling of processing of composites part II: temperaturedistribution during curing. Sampe Journal.1988,24:42~55.
    46S.L.Simon, G.B. Mckenna, Olivier Sindt. Modeling the evolution of the dynamicmechanical properties of a commercial epoxy during cure after gelation. Joural ofApplied Polymer Science.2000,76:495~508.
    47L.K.Jain, Y.W. Mai. Stress and deformations induced during manufacturing. Part I:Theoretical analysis of composite cylinders and shells. Jouranl of CompositeMaterials.1997,31(7):672~695.
    48L.K.Jain, Y.W.Mai. Stress and deformations induced during manufacturing. Part II:Astudy of the spring-in phenomenon. Journal of Composite Materials.1997,31(7):695~719.
    49T. A. Bogetti, J. W. Gillespie, R. L. McCullouqh. Influence of processing on thedevelopment of residual stresses in thick section thermoset composites. InternationalJournal of Materials&Product Technology.1994,9(1-3):170~182.
    50S.S. Lee, Y.S.Sohn. Viscoelastic analysis of residual stresses in a unidirectionallaminate. Structural Engineering and Mechanics.1994,2(4):383~393.
    51S.C.Liu, X.Niu, P.I.Fju. Residual stress characterization by moiré interferometry. In:Proceedings of the sem Spring Conference of Experimental and Applied Mechanicsand Experimental/Numerical Mechanics in Electronic Packaging III, Houston, Texas,1998:175~178.
    52A. Johnston, R.Vaziri, A. Poursartip. A plane strain model for process-induceddeformation of laminated composite structures. Jouranl of Composite Materials.2001,35(16):1435~1469.
    53郭兆璞,陈浩然,杨正林.复合材料层合板在固化加工后期降温速率对残余应力的影响.计算结构力学及其应用.1995,12(4):387~393.
    54郭兆璞,陈浩然,段滋华.复合材料层合板粘弹性固化残余应力分析.计算结构力学及其应用.1996,13(4):401~407.
    55胡照会,王荣国,赫晓东,杜善义.带有金属模板的复合材料层板残余应力数值模拟.航空材料学报.2008,28(2):55~59.
    56胡照会,王荣国,赫晓东,刘红军,马李,施军.带有金属内模的复合材料构件固化模拟研究.哈尔滨工业大学学报.2009,41(3):40~43.
    57戴仰山,沈进威,宋竞正.船舶波浪荷载.国防工业出版社.北京2007,114.
    58O.M.Faltinsen著,杨建民,肖龙飞,葛春花译.船舶与海洋工程环境荷载.上海交通大学出版社.2008:213~225.
    59中国船级社.海上高速船入级及建造规范(2005年版本),北京.
    60曹正林,吴卫国.影响高速三体船连接桥砰击压力峰值因素研究.武汉理工大学学报.2008,32(1):5~8.
    61Von-Karman T. The impact on seaplane floats during landing. NACATN321,Oct.1929.
    62Wagner H. Uber stoss-und gleitvorgange und der oberflache vonflussigkeiten.ZAMM,1932, band12, heft4:193~215.
    63Bisplinghoff RL, Doherty C S. Some studies of the impact of vee wedges on a watersurface. Journal of the Franklin Institute,1952,253:547~561.
    64Fabula A G. Ellipse-fitting approximation of two-dimensional normal symmetricimpact of rigid bodies in water. Fifth Midwestern Conference on Fluid Mechanics,University of Michigan Press, Ann Arbor, Mich,1957.
    65Dobrovolskaya ZN.On some problems of similarity flow of fluid with a free surface.Journal of Fluid Mechanics.1969.36(4):805~829.
    66Howison D S, Ockendon1R, Wilson S K. Incompressible Water-Entry Problem. atSmall Deadrise An-gles, journal of Fluid Mechanics, Vol.222,1991,p p.215~230.
    67ZhaoR,FaltinsenO.W aterE ntry ofT wo-DimensionalB odies,jo urnalo fF luidMechanics,1993,24(6):5,93~612.
    68Chuang S L. Theoretical investigation on slamming of cone-shaped bodies, JSR., Vol.13,1969:276~283.
    69GeersT L, Londen W A, Y eeH C. F initee lementb oundary integral analysis of fluid-solidi mpact. L MSC-D563591, Lockheed Palo Alto Research Laboratory, Pa lo AltoResearch Laboratory, Palo Alto, Califomia,1977.
    70GeersT L, Hydrodynamic impact analysis, EPRIN P-824, Research Project812-2.Califomia: Electric Power Research Institute,1978.
    71DemntzJ A,G eerT L.Added mass computation by the boundary integral methodInternational Journal for Numerical Methodsin Engineering,1978,12(3):531~549.
    72Geers T L.A boundary-element method for slamming analysis. Journal of ShipResearch,1982,26(2):117~124.
    73Komatsu K.Fluid structure interaction. In: Brebbia C A, ed.Progressin BoundaryElement Methods, v2, London: Pentech press,1983:182~199.
    74MarealP V.H ydrodynamici mpacta nalysis.E PRIN P-824,Research Project812-3.Califomia: Electric Power Research Insitute,1978.
    75Zhao, R. Faltinsen,0. M,1993Water entry of two-dimensional bodies. Journal ofFluid Mechanics,246,593~612.
    76卢炽华,何友声,王刚.船体砰击问题的非线性边界元分析.水动力学进展与研究.1999,14(2):169~176.
    77陈震,肖熙.二维楔形体入水砰击仿真研究.上海交通大学学报,上海交通大学学报.2007,41(9):1425-1428.
    78莫立新,王辉,蒋彩霞,徐春.变刚度楔形体板架落体砰击试验研究.船舶力学,2011,15(4):394-401.
    79陈国龙,聂武,温保华舰艇减纵摇附体的抗砰击强度分析哈尔滨工程大学学报.2003,24(1):17-22.
    80骆寒冰,邱强,万正权,杨大明规则波和不规则波中船舶艉砰击及其振动响应的试验研究.船舶力学,2006,10(3):150-162.
    81陆鑫森,叶伟,俞国新登.现代高速船结构设计问题.上海交通大学学报,1996.30(10):129~135.
    82王刚.高速船舶结构设计中流体冲击载荷的数值计算.船舶,1998(5):26~31.
    83Kamlesh S. Varyani, Rama M, et al. Motions and slamming impact on catamaran.Ocean Engineering2000,27:729~747.
    84张志民.船首底部砰击强度的可靠性分析.博士学位论文.哈尔滨:哈尔滨工程大学.2001.
    85张志民,戴仰山.底部砰击压力的长期极值分布.哈尔滨工程大学学报.2002,23(1):37~42.
    86胡嘉骏,蔡新钢.船舶表面点砰击压力的预报方法.船舶力学.2005,9(1):63~71.
    87Worthington A M. Impact with a liquid surface studied with aid of instantaneousphotography. Philosophical Transactions of the Royal Society of London-1900.194A:175~199.
    88Chuang S-L. Experiments on flat-bottom slamming. Journal of ship Research.1996,10(2):11~17.
    89ChuangS-L.Experiments on slamming of wedge-shapes bodies, Journal of ShipResearch.1967,11(3):190~198.
    90ChuangS-L. Investigation of impact of rigid and elastic bodies with water NSRDCRep ort3248,1970.
    91ChuangS-L, Miles D T. Drop test of cones to investigate the three dimensionaleffects of slamming. NSRDC Report3453,1971.
    92Greenhow M, Lin W-M. Nonlinear free surface efeace, theory and experiment. M IT,Department of Ocean Engineering, Report3543,1971.
    93李世其,张清杰,郑际嘉.矩阵薄板流一固冲击屈曲和塑性失效的实验研究.力学学报.1993,25(2):249~256.
    94张清杰.船体结构单元的流一固冲击屈曲和塑性失效的实验与理论研究.武汉:华中理工大学博士学位论文.1990.
    95李世其.流一固冲击载荷下矩阵板动力屈曲和后屈曲的实验与理论研究.武汉:华中理工大学博士学位论文.1993.
    96VerhagenJ H G.The impact of a flat plate on a water surface. Journal of ShipResearch,1967,11(4):211~223.
    97孙辉等,二维楔形体冲击入水时的流固祸合响应的实验研究,水动力学研究与进展. S er.A,2003,18(1).
    98Takagi Ken,1997,“Three-dimensional slamming of a distorted plate” Proceedingof the International Offshore and Polar Engineering Conference.1997vol.1. May,25(30):237~244.
    99Ochi M K,Motter L E. Prediction of slamming characteristics and hull responses forship design. SNAME,1973.
    100Ochi M D,Bonilla-Norat J. Pressure-velocity relationship in impact of a ship modeldropped onto the water surface and in slamming in waves. AD-709071, June1970.
    101Zhao R, Falinsen O, Aarsnes J. Water entry of arbitrary two-dimensional sectionswith and without flow separation. Proc. On Naval Hydrodynamics,1996.
    102102Michael R, Davis,James R. Computation of wet deck bow slam loads forcatamaran arched cross sections. Ocean Engineering2007.34:2265~C2276.
    103曹正林.高速三体船砰击强度研究.武汉理工大学博士论文.2008:145~149.
    104Anders Rosen, Karl Garme, Jakob Kuttenkeuler. Full-Scale Design Evaluation of theVisby Class Corvette. Ninth International Conference on Fast Sea Transportation,2007, shanghai:583~588.
    105谢宗簇.飞行器复合材料夹心结构低速冲击损伤问题研究.全国复合材料力学研讨会.中国,海南三亚.2007,12:21~25.
    106沈真.含缺陷复合材料层压板的压缩破坏机理,航空学报,1991,12(3):106~113.
    107徐颖,温卫东,崔海坡.低速冲击下的层合板逐渐损伤扩展模拟.玻璃钢学会第十六届全国玻璃钢/复合材料学术年会论文集.2006,A(6):65~69.
    108徐颖,温卫东,崔海坡.复合材料层合板丢冲击逐渐累积损伤预测方法.航空动力学报.2007,22(4):602~607.
    109王丹勇,温卫东.复合材料单钉接头疲劳累积损伤破坏分析.复合材料学报.2008,25(1):173~179.
    110王晓宏,张博明,刘长喜,杜善义.纤维缠绕复合材料压力容器渐进损伤分析.计算力学学报,2009,26(3):446~452.
    111J.N.Baucom, M.A.Zikry. Low-velocity impact damage progression in woven E-glasscomposite systems. Composites:Part A2005,36:658~664.
    112G.P.Zhao, C.D.Cho. Damage initation and propagation in compoite shells subjectedto impact. Composite Structure.2007,78(1):91~100.
    113Chang F, Chang K, A progressive damage model for laminated compositescontaining stress concentrations. Journal of Composite Materials,1987,21:834~55.
    114Hou J P, Petrinic N, Ruiz C, Hallett S R. Prediction of impact damage in compositeplates. Composite Science and Technology,2000,60:273~281.
    115P.Maimi, P.P.Camanho, J.A.Mayugo, C.G.Davila. A continuum damage model forcomposite laminates: Part I-Constitutive model. Mechanics of Materials2007,39(10):897~908.
    116P.Maimi, P.P.Camanho, J.A.Mayugo, C.G.Davila. A continuum damage model forcomposite laminates:Part II-Computational implementation and validation.Mechanics of Materials2007,39(10):909~919.
    117Moura M.F.S.F, Marques A.T. Prediction of low velocity impact damage in carbon–epoxy laminates. Composites Part A: Applied Science and Manufacturing,2002,33(3):361~368.
    118Lee JD, Du S, Liebowitz H. Three-dimensional finite element and dynamic analysiscomposite laminate subjected to impact. Computers&Structures,1984,19(5/6):807~813.
    119R.Tiberkak, M.Bachene, S.echak,B.Necib. Damage prediction in composite platessubjected to low velocity impact. Composite Structures,2008,83(1):73~82.
    120李微,叶天麒,章怡宁,杨旭.复合材料层状结构低速冲击的接触-冲击分析.机械科学与技术,1996,15(1):6~10.
    121Z. Qin, R.C. Batra. Local slamming impact of sandwich composite hulls.International Journal of Solids and Structures,2009,46(10):2011~2035.
    122Hayman. B, Haug.T, Valsgard. S. Slamming drop tests on a GRP sandwich hullmodel. Sandwich Constructions2. Vol. II; Gainesville, Florida; United States;9-12Mar.1992:583~604.
    123S. Charca, B. Shafiq, F. Just. Repeated slamming of sandwich composite panels onwater,Journal of Sandwich Structures and Materials,2009,11(5):409~424.
    124S. Charca, B. Shafiq. Damage assessment due to repeated slamming of foam CoreSandwich Composites. Journal of Sandwich Structures and Materials,2009:1~13(doi:1177/1099636209344131).
    125孙海虹,陈念众,张圣坤.复合材料高速船极限承载能力计算与可靠性分析.工程力学.2002.19(2):124~128.
    126Wang wei-bo, R.A.Shenoi. Investigating high strain rate behaviour of unidirectionalcomposites by a visco-elastic model.船舶力学,2009,15(5):406~415.
    127ABS publication. Guide for building and classing high-speed naval craft(2007), USA.
    128任春雨,朱锡,梅志远.复合材料层合板冲击模型研究现状.兵器材料科学与工程,2005,28(4):59~67.
    129Whitney J. M. and Nuismer R.J. Stress fracture criteria for laminated compositescontaining stress concentrations.Journal of Composite Materials.1974,8:253~265.
    130Chengye Fan, P.Y.Ben Jar, J.J.Roger Cheng. Cohesive zone with continuum damageproperties for simulation of delamination development in fiber composites andfailure of adhesive joints. Engineering Fracture Mechanics,2008,75:3666~3880.
    131Alix O, Ladeveze P, Corigliano A. Damage analysis of interlaminar fracturespecimens. Composite Structures.1995,31:61~74.
    132Corigliano A, Ricci M. Rate-dependent interface models: formulation and numericalapplications. International Journal of Solids and Structures.2001,38:547~576.
    133张凤鹏,黄宝宗.损伤对层合复合材料分层的影响.东北大学学报(自然科学版).1999,20(4):444~446.
    134Barenblatt GL. The mathematical theory of equilibrium cracks in brittlefracture.Advances in Applied Mechanics.1962:55~129.
    135Goyal VK, Johnson ER, Davila CG. Irreversible constitutive law for modeling thedelamination process using interfacial surface discontinuities. Composite Structure.2004,65(3–4):289~305.
    136Needleman, A. A continuum model for void nucleation by inclusion debonding.Journal of Applied Mechanics.1987,54:525~531.
    137C.Balzani, W.Wagner. An interface element for the simulation of delamination inunidirectional fiber-reinforced composite laminates. Engineering Fracture Mechanics.2008,75:2597~2615.
    138R.M琼斯著,朱颐龄译校.上海科学技术出版社,1981.18-94.
    139张彦.纤维增强复合材料层合结构冲击损伤预测研究.上海交通大学博士论文,2007.17-54.
    140中国船级社.沿海小船建造规范.人民交通出版社,2005.
    141马家法,孙广.船舶结构与设备.大连海事大学出版社,2003:16-18.
    142Abdul Rahim Ahamed Arafath, Reza Vaziria, Anoush Poursartipa. Closed-formsolution for process-induced stresses and deformation of a composite part cured on asolid tool: Part I–Flat geometries. Composites Part A: Applied Science andManufacturing,2008,39(7):1106~1117.
    143胡照会,王荣国,赫晓东,杜善义.带有金属模板的复合材料层板残余应力数值模拟.航空材料学报.2008,28(2):55-59.
    144Pusatcioglu, S.Y.,Fricke, A.L., Hassler Heats of Reaction and Kinetics of aThermoset Polymer”, Journal of Applied Polymer Science,1979,24:937~946.
    145R C Wetherhold,J Jan. Difficult in the theories for predicting transverse thermalconductivity of continuous fiber composite. Journal of Composite Materials,1994,28(15):1419~1498.
    146Nguyen O,Repetto EA, Ortiz M, Radovitzky R (2001) A cohesive model offatigue crack growth.Int J Fract,110:351-369
    147Nittur PG, Maitit S, Geubelle PH (2008) Granin-level analysis of dynamicfragmentation of ceram-ics under multi-axial compression, J Mech Phys Solids,56:993—1017
    148Ortiz M, Leroy Y, Needleman, A(1987) A finite element method for localized failureanalysis.Comput Meth Appl M61(2):189-214
    149Pandolfi A, Guduru PR,Ortiz M, Rosakis AJ (2000) Three dimensional cohesive-element analysis And experiments of dynamic fracture in c300steel. Int J SolidsStruct37:3733-3760
    150王勖成.有限单元法.北京:清华大学出版社,2003:240-241.