端面油膜密封缝隙变粘度流体流动特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
端面密封是一种轴向密封,又称机械端面密封,简称机械密封,是流体机械旋转轴密封最为主要的类型,是常用的旋转轴密封,与压盖软填料密封相比,具有泄漏量低,摩擦磨损小,使用寿命长、工作可靠、不需要日常维护等一系列优点,因此在现代工业生产中得到了广泛的应用。
     动力卡盘属于自动定心卡盘,配以不同的动力装置(气缸、油缸或电机),便可组成气动卡盘、液压卡盘或电动卡盘。气缸或油缸装在机床主轴后端,用穿在主轴孔内的拉杆或拉管,推拉主轴前端卡盘体内的楔形套,由楔形套的轴向进退使3个卡爪同时径向移动。这种卡盘动作迅速,卡爪移动量小,适于在大批量生产中使用。从目前国内对液压动力卡盘的需求看,最高转速超过6000rpm的液压动力卡盘都需要从国外进口。主要原因之一是国内还不具备生产与液压动力卡盘配套的中空旋转油缸的技术。旋转油缸中固定部件和旋转部件之间的密封是限制此技术发展的瓶颈,鉴于其密封处于高界面滑速、高边界压差及高环境温度的工况,普通的接触式端面密封因高的pV值而难于胜任,因而这些部位的密封,应采用非接触型的动密封形式。
     在西方发达国家动力卡盘占据了很大的市场,手动卡盘虽有一定市场,但需求不断下降,动力卡盘在国外特别在欧洲已被大量采用,主要应用在加工中高精度数控机床,普通机床采用数量也不断增加。我国在上世纪80年代中期,由于受当时生产条件限制,只能生产一种短圆柱型的具有普通转速、精度低的铸铁盘体的低档次产品。由于我国数控技术迅速发展要求将高速楔式动力卡盘和高速回转油缸配套使用在数控机床上。液压回转油缸是液压动力卡盘的动力源。当前,高速液压回转油缸的研究和产品在国内外未见报道,针对这一全新技术,作者进行了大量地理论分析和实验研究。
     首先,在查阅大量国内外资料的基础上,分析了国内外端面油膜密封、变粘度流体流动特性和液压动力卡盘的研究与应用情况,指出了研究液压回转油缸的重要意义,明确了研究液压回转油缸的主要技术难点,在此基础上,提出了解决液压回转油缸技术难点所需的关键技术,确定了本文的主要研究内容。
     在考虑粘度函数为常数和不为常数的两种情况下,给出了平面端面油膜密封缝隙流体的压力分布和摩擦转矩的计算公式,从而可以确定端面密封的开启力,并可以计算出功率损失。在不考虑粘度变化和考虑粘度变化两种情况下,对影响平面端面油膜缝隙流体的泄漏特性、粘性摩擦损失进行对比分析后,采用功率损失最小原则对平面端面油膜密封的端面间隙进行了优化,为液压回转油缸的结构设计及研制奠定坚实的理论基础。
     介绍了深槽端面密封的工作机理,给出了圆弧深槽端面油膜密封的结构形式,在不考虑粘度变化和考虑粘度变化两种情况下,对影响圆弧深槽端面油膜缝隙流体的压力分布进行对比分析后,得到了圆弧深槽端面油膜密封缝隙流体的流体动力特性,为液压回转油缸的结构设计及研制奠定坚实的理论基础。当槽的数量在6个及以上时,转速对泄漏量的影响变得不太明显,而且泄漏量随转速的增加而减小,从而符合了“上游泵送”的理论。在动力粘度η不为常数,槽的数量为6,未开槽区域油膜厚度不变,转速在1000~10000rpm的情况下,当槽深度达到1mm的时候对摩擦转矩的影响不再明显。
     在不考虑粘度变化和考虑粘度变化两种情况下,对影响圆弧浅槽端面油膜缝隙流体的压力分布进行对比分析后,得到了圆弧浅槽端面油膜密封缝隙流体的流体动力特性,为液压回转油缸的结构设计及研制奠定坚实的理论基础。当槽的数量在6个及以上时,转速对泄漏量的影响变得不太明显,而且泄漏量随转速的增加而减小,从而符合了“上游泵送”的理论。在动力粘度η不为常数,槽的数量为6,未开槽区域油膜厚度不变,转速在1000~10000rpm的情况下,当槽深度达到0.05mm的时候对摩擦转矩的影响不再明显。
     仿真分析研究是现代各行业运用较多的研究手段,特别是数值仿真技术,它具有节约成本、节省时间等优点而被广泛采用。本文运用ANSYS软件对回转部件进行了模态分析,为液压回转油缸样机的实验奠定了基础;运动ADINA软件分析了平面、圆弧深槽、圆弧浅槽端面油膜密封缝隙流体的流体特性,验证了理论分析的正确性。
     在端面油膜密封缝隙流体流动特性理论分析的基础上,对液压回转油缸样机进行了加工制造,并对样机进行了实验研究,结果表明:平面端面油膜密封、圆弧深槽端面油膜密封、圆弧浅槽端面油膜密封缝隙流体流动特性的理论分析是正确的,应用这些端面油膜密封技术的液压回转油缸可以满足高速动力卡盘的要求。
Face seal is a kind of radial face seal. It is also called mechanical face seal, mechanical seal for short. It is one of the main types of seal for sealing rotating axis in liquid machine. It is mainly used for axial seal. Compared to the soft wadding seal, the face seal has some advantages, such as low leakage, low friction, long longevity, stable running and simple maintenance. So this kind of face seal is widely used in modern industry.
     Power chuck belongs to self-centering chuck. Connected with different power equipment (gas cylinder, hydraulic cylinder or electromotor), gas power chuck, hydraulic power chuck or electricity power chuck can be made up. The gas cylinder or hydraulic cylinder is installed at the back-end of principal axis of computer numerical control (CNC) machine as power source. Pulling pole or pipe is connected with rod of cylinder through the hole of the principle axis to pull or push the cuneiform set, which is installed in the chuck at the front-end of principle axis. The axial forward and backward action of the cuneiform set drives the radial movement of the three claws synchronously. This kind of power chuck works quickly and the displacement of claws is small. So it is suitable for volume-production. According to the national requirement, the hydraulic power chuck with rotating speed exceeding 6000 rpm needs to be imported from overseas. One of the main reasons is that there is no technology to produce hollow rotating hydraulic cylinder to mate the hydraulic power chuck. The seal between the rotating component and the fixed component restricts the development of this technology. Whereas the seal working under the condition of high slipping speed, high boundary pressure difference and high temperature, commonly used contact mechanical face seal can not satisfy the high pV value. So none-contact fleet spiral groove and deep circular groove oil film face mechanical seals should be adopted at this position.
     Power chuck take up prodigious market in west developed country. Although manual chuck occupies some certain market, but the demand for it declines ceaselessly. Power chuck is widely adopted in CNC machine by overseas country, especially in Europe. The installment of power chuck on common machine is continually increasing. At the middle stage of 80 years last century, duing to the restrict of manufacture condition, our country can only produce one kind of short column, low speed, low precision chuck. To meet the high development speed of national CNC technology, high speed wedge power chuck and high speed rotating hydraulic cylinder are required to mate together on the CNC machine. The rotating hydraulic cylinder is the power source of power chuck. Currently the detailed report and research on high speed rotating hydraulic cylinder can not be found nationally and internationally. Amount of research and experiment of high speed rotating hydraulic cylinder have been carried out.
     Firstly, after synthesizing a lot of relevant literatures and reference home and board, the author summarizes the research and applications of oil film face seal, flowing properies of fluid with variable viscosity and hydraulic power chuck, point out the great significance of the research and put forward the technology difficulties and the key technologies, above the question, main research matters have been confirmed.
     Under the two conditions of not taking account of the variety and taking account of the variety of viscosity, the formula of pressure distribution and frictional torque is got. Thereby the openning force can be achieved. And the power loss can be calculated. Also under the two conditions of not taking account of the variety and taking account of the variety of viscosity, the leakage properties and frictional loss in the plane oil film face seal gap is contrastively analyzed. So the sealing gap is optimized through the least power loss principle. This theory establishes strong foundation for the structure design and manufacture of rotating hydraulic cylinder. The working principle and the structure shape of deep circular groove oil film face seal is put forward. Under the two conditions of not taking account of the variety and taking account of the variety of viscosity, the pressure distribution of fluid in the deep circular groove oil film face seal gap is contrastively analyzed. So the dynamic flowing characteristics of fluid in this kind of seal gap are achieved. This theory establishes strong foundation for the structure design and manufacture of rotating hydraulic cylinder. When the number of grooves reaches 6 or more, the influence of rotating speed on leakage becomes unobvious. Further more, as the increasing of the rotating speed, the leakage of the seal decreases. This is accord with the upstream pumping theory. Supposing the viscosity is variable, the number of groove is 6, the thickness of the un-grooved zone is not changed, the rotating speed varies among 1000~10000rpm, when the thickness of the grooved zone reaches 1mm, the influence on frictional torque becomes unobvious.
     Under the two conditions of not taking account of the variety and taking account of the variety of viscosity, the pressure distribution of fluid in the fleet circular groove oil film face seal gap is contrastively analyzed. So the dynamic flowing characteristics of the fluid in this kind of seal gap are achieved. This theory establishes strong foundation for the structure design and manufacture of rotating hydraulic cylinder. When the number of grooves reaches 6 or more, the influence of rotating speed on leakage becomes unobvious. Further more, as the increasing of the rotating speed, the leakage of the seal decreases. This is accord with the upstream pumping theory. Supposing the viscosity is variable, the number of groove is 6, the thickness of the un-grooved zone is not changed, the rotating speed varies among 1000~10000rpm, when the thickness of the grooved zone reaches 0.05mm, the influence on frictional torque becomes unobvious.
     Simulation research, especially numerical simulation research is one of the mainly used methods in modern industry. It is widely adopted cling to its low cost and saving time. The modes of rotating component are simulated using the ANSYS software, which establishes strong foundation for the structure design and manufacture of rotating hydraulic cylinder. The flowing characteristics of the fluid in the plane, deep circular groove, and fleet circular groove oil film face seal gap are simulated using ADINA software to confirm the correct of theoretical analysis.
     After manufacturing the rotating hydraulic cylinder, experimental research on specimen have been done, results indicated that the theoretical analysis of the flowing properties of the fluid in the plane, deep circular groove, fleet circular groove oil film face seal gap are correct. Application of these three kinds of sealing technologies makes the rotating hydraulic cylinder satisfying the requirement of high speed power chuck.
引文
1顾永泉.机械端面密封. 1.北京:石油大学出版社, 1994.12: 85~162
    2顾永泉.发展密封学,提高密封技术水平.中国工程学会流体工程学会第二届年会大会报告, 1998
    3顾永泉.石油化工设备流动密封技术研究.化工机械. 1995, 1: 32~36
    4李辉. AG-2101型釜用机械密封国产化设计和密封环变形分析[硕士学位论文], 2002, 12,北京,北京化工大学: 1.
    5 Gordom S. Brck and Doug volden. Upstream Pumping: A New concept in Mechanical Sealing Technology. Lubrication Engineering, 1990, 3: 211~217
    6 Key W. E. Salant R. F. Payvar, P. Analysis of a Mechanical Seal with Deep Hydropads, Tribology Transactions, Vol.32, (1989), 4: 481~489
    7 Netzel J. P. Wear of Mechanical Seals in Light Hydrocarbon Service. W ear,Vol.102(1985), 1& 2: 141~151
    8沈纯厚.轻烃高速泵用机械密封的改进.水泵技术. 1997, 2: 44~47
    9齐文浩,于武.解决液态烃泵轴封泄漏的有效措施.机械. Vol.25(1998),2: 42~44
    10 Wang, Le-Qin; Meng, Xiang-Kai; Dai, Wei-Ping; Wu, Da-Zhuan. Analysis on sealing performance and fluid-solid coupling model of contacting mechanical seals. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, Vol. 29(November 2008) : 1864~1866
    11 Brunetière, No?l; Modolo, Benoit. Heat transfer in a mechanical face seal. A International Journal of Thermal Sciences, Vol.48( April 2009) : 781~794
    12彭旭东,谢友柏等.热流体动力楔机械密封性能参数的近似计算.流体机械, 1997, 6: 24~28
    13杨惠霞,顾永泉.圆弧深槽热流体机械密封理论研究.流体机械. 1997, 9:12~18
    14杨惠霞,顾永泉.高参数深槽热流体动压机械密封特性计算.流体机械. 1998, 8: 22~27
    15 Shapiro Wilbur Walowit Jed Jones Henry F. Analysis of Spiral-Groove Face Seals for Liquid Oxygen. ASLE Transactions, Vol.27, 3: 177~188
    16 Salant R. F. Homiller S. J. The effect of Sallow Groove Patterns on Mechanical Seal Leakage. Tribilogy Transactions, 1992, 35(1): 142~148
    17 Lai Tom. Development of Non-Contacting, Non-Leaking Spiral Groove Liquid Face Seals. Lubrication Engineering, Vol.50, 1994,8: 625~631
    18张俊玲,沈乐年.一种新型非接触式机械密封.清华大学学报. 1994, 34(2): 34~39
    19彭建等.上游泵送密封研究.流体机械. Vol.26(1998), 2: 3~8
    20宋鹏云.螺旋槽流体动压型机械密封端面间液膜特性研究[博士学位论文], 1999, 5,成都,四川大学: 1~140
    21周剑锋.机械密封中的热流体动力效应研究[博士学位论文], 2006, 5,南京,南京工业大学: 1~133
    22 Mayer E. Leakage and Friction of Mechanical Seals with Special Consideration on Hydrodynamic Mechanical Seals. Proc. Of 1st International Conf. on Fluid Sealing, Paper E3. 1981
    23 Mayer E. Thermohydrodynamic in Mechanical Seals. Proc.4th International Conf. on Fluid Sealing, BHRA Fluid Eng, Cranfield, U.K. 1969
    24 Denny D. F. Some Measurements of Fluid Pressures Between Plane Parallel Thrust Surfaces with Special Reference to Radial Face Seals. Wear, 1961,4: 64~83
    25 Findlay J. A. Cavitation in Mechanical Face Seals Transactions of the ASME, Journal of Lubrication Technology, April, 1968: 357~364
    26 Nau B. S. Hydrodynamic of Face Seal Films. In: Proceeding of 2nd International Conference on Fluid Sealing, Paper F5, 1964
    27 Nau B. S. Hydrodynamic Lubrication in Face Seals. In: Proceeding of 3rd International Conference on Fluid Sealing, Paper E5, 1967
    28 Sneck H. J. The Misaligned, Eccentric Face Seal. Transactions of the ASME, Journal of Lubrication Technology, Vol.90, 4: 695~703, (1969)
    29 Nau B. S. Observations and Analysis of Mechanical Seal Film Characteristics. Transactions of the ASME, Journal of Lubrication Technology, Vol.102, July1980: 341~349
    30 Metcafe R. Dynamic Tracking of Angular Misalignment in Liquid-Lubricated End-Face Seals. ASLE TRANSACTIONS, Vo l.24 (1981), 4: 509~516
    31 Metcalfe R. Dynamic Whirl in Well-Aligned, Liquid-Lubricated End-Face Seals with HydrostaticTilt Instability. Vo1.25 (1982), 1: 1~6
    32 Lebeck A. O. Mechanical Loading- A Primary Source of Waviness in Face Seals. ALSE Transact ions. Vol.20, 3: 195~208
    33 Lebeck A. O. Teale J.L. Pierce R. E. Hydrodynamic Lubrication and Wear in Wavy Contacting Face Seals. Transactions of the ASME, Journal of Lubrication Technology, Vol.100, January 1978: 81~91
    34 Fisher M. J. An Analysis of the Deformation of the Balanced Ringin High Pressure Radial-Face Seals. In: Proceeding of 1st International Conference o n Fluid Sealing, Paper D4,1961
    35 Nau B. S. Turnbull D. E. Some Efects of Elastic Deformation on the Characteristics of Balanced Radial-Face Seals. In: Proceeding of 1st International Conference on Fluid Sealing. Paper, D3, 1961
    36 Strom T.N. Ludwig L. P. Allen G. P. Johnson R. L. Spiral Groove Face Seal Concepts: Comparison to Conventional Face Contact Seals in Sealing Liquid Sodium (400 to 1000 Deg F ), Transactions of the ASME, Journal of Lubrication Technology, April, 1968: 450~462
    37 Gardner James F. Combined Hydrostatic and Hydrdynamic Principles Applied to Non-Contacting Face Seals. In: Proceeding of 4th International Conference on Fluid Sealing, Paper H2 ,1969: 351~360
    38 Zuk John Renkel H E. Numerical Solutions for the Flow and Pressure Fields in an Idealized Spiral Grooved Pumping Seal. In: Proceeding of 4th International Conference on Fluid Sealing, Paper G1, 1969, 290~301
    39 Cross W. A. etc. Fluid Film Lubrication. John Wiley & Sons, Inc., 1980, 288~297
    40 Whipple R. T. P. Theory of the the Spiral Grooved Thrust Bearing with Liquid or Gas Lubricant, Atomic Energy Research Establishment, Report T/R6 22, Harwell, Berkshire
    41 Whipple R. T. P. Herringbone Patern Thrust Bearing. Atomic Energy Research Establishment, Report T/M 29, Harwell, Berkshire
    42 Muijderman E. A. Spiral Groove Bearings. Philips Technical Library, 1966, The Netherlands
    43 Gardner James F. Recent Developments on Non-Contacting Face Seals. Lubrication Engineering, Vol.29 (1973), SEPT.: 406~412
    44 Zobens Arthur. A Noncontacting Face Seal Application for Sealing Gas at 105 psig, 7000 rpm. Lubrication Engineering, Vol.31 (1975), l: 16~19
    45 Gabriel Ralph P. Fundamentals of Spiral Groove Noncontacting Face Seals. Lubrication Enginee ing, Vol.35(1979), 7: 367~375
    46 Gabriel Ralph P. Fundamentals of Spiral Groove Noncontacting Face Seals. Lubrication Enginee ing, Vol.50(1994), 3: 215~224
    47 Sedy Josef. Improved Performance of Film-Riding Gas Seals Through Enhancement of Hydrodynamic Effects. ASLE Transactions, Vo1.23(1979), 1: 35~44
    48 Sedy Josef. A New Self-Aligning Mechanism for the Spiral-Groove Gas Seal Stability. Lubrication Engineering, Vol.36, 10: 592~598
    49 Netzel James P. High Performance Gas Compressor Seals. In: Proc. of the 1st Conf. on Fluid Sealing, Nau, B. S. Ed., BHRA, Cranfield, U. K, 1987: 532~547
    50 Wasser James R. Dry Seal Technology for Rotating Equipment. Lubrication Engineering, Vol.50 ( 1994), 3: 247~252
    51 Evenson Robert Peterson Robert and Hanson Rick. Preliminary Investigation and Application of Alternate Dry Gas Seal Face Materials. Lubrication Engineering, Vo1.50(1994), 1: 37~44
    52 Kowalski Christopher A. Basu Prithwish. Reverse Rotation Capability of Spiral-Groove Gas Face Seals. Tribology Transactions, Vo1.38(1995), 3: 549~556
    53赵亚萍.双向干气密封的研制情况及技术分析.流体机械. Vol.24(1996), 4: 46~48
    54 Pecht Glenn G. and Carter Don. System Design and Performance of a Spiral Groove Gas Seal for Hydrogen Service. Lubrication Engineering, Vol.46(1990), 9: 607~612
    55 Munson John and Pecht Glenn. Development of Film Riding Face Seals for a Gas Turbine Engine. Tribology Transactions, Vol.35(1992), 1: 65~70
    56王玉明等.告诉透平压缩机用螺旋端面密封及其系统的研制.流体工程. 1992, 20(4): 1~6
    57王玉明等.螺旋槽端面密封在酯交换釜上的应用.流体工程. Vol.26, 1998, 11: 28~31
    58王玉明等.机械密封的实验技术(一).流体工程. 1992, 5
    59王玉明等.机械密封的实验技术(二).流体工程. 1992, 6
    60杨惠霞.深槽热弹流机械密封理论研究[博士学位论文].北京,石油大学,1996
    61杨惠霞,顾永泉.圆弧深槽热流体机械密封理论研究.流体机械. 1997, 9: 12~18
    62邹文辉,徐华.深槽端面机械密封热流体动压特性的近似计算.宁夏工程技术. 2005, 3, vol(4): 18~21
    63 K.N.Mehta, S.Shobha. Effect of Temperature Dependent Viscosity on Free Convection Flow across an Impermeable Partition. International Journal of Engineering Science. 1993, 31(7):1093-1103
    64 P.Ioan, G.R.S.Reddy. Effect of Variable Viscosity on Flow and Heat Transfer to a Continuous Moving Flat Plate. International Journal of Engineering Science. 1992, 30(1):1-6
    65 K.L.Wasson, J.H.Lienhard. Thermal Performance of Hydrostatic Radial Bearings for Precision Machine Tool Application. ASME, Heat Transfer Division. 1993,259:101-111
    66 P.Sighn, B.D.Gupta. Optimization of Corrugated Thrust Bearing Characteristics. Wear. 1993, 167(2):109-120
    67闻苏平.旋转圆盘系统的流动研究现状与进展.流体机械. 1997, (7): 35-37
    68 Wakuri, Yutaro. Studies on the Characteristics of Piston Ring Friction. Memories of the Faculty of Engineering. 1990, 50(3):251-275
    69 G.Vogelpohl. Betriebssichere Gleitlager. Heidelberg, Berlin, G ottingen, Springer-Verlag. 1980:50-72
    70 S.L.Chang, S.A.Lottes. Hybrid Technique for Coupling Chemical Kinetics and Hydrodynamics Computations in Multi-Phase Reacting Flow System. ASME, Heat Transfer Division. 1997,352:149-157
    71 .E.Nakoryakov, O.N.Kashinskii. Hydrodynamics and Heat Transfer in a Gas-Liquid. Heat Transfer Research. 1996,27(1):232-238
    72 D.R.Sawyer. S.M.Chang. Heat Transfer Enhancement in Three-Dimension Corrugated Channel Flow. International Journal of Heat and Mass Transfer. 1998,41(2):3559-3573
    73 Z.Bernard, J.Arnaud. Theromoacoustic Heating and Coooling in Near Critical Fluids in Pressure of a Thermal Plume. Journal of Fluid Mechanics. 1999,388:389-409
    74 S.Jayanti.G.F.Hewitt. Hydrodynamics and Heat Transfer of Wavy Thin Film Flow. International Journal of Heat and Mass Transfer. 1997,1:179-190
    75 S.N.Alaverdov, A.B.Vatazhin. Heat Transfer in Subsonic High-Temperature Gas Flow through three-dimensional Curved Channels. Fluid Dynamics. 1989,24(3):403-409
    76 H.H.Ott, R.Odermatt. Zylindrisches Radialgleitlager mit Schmiermittel von temperatur-und druckabha ngiger Mitt. Inst. Grdlg. Masch. konstr. 1979, (5):35-60
    77李世雄.轴向柱塞泵配油盘的计算.工程机械. 1979, (10):43-48
    78闻新荣,孔建益.短径向轴承的脂润滑控制方程式.润滑与密封. 2006年第11期, 111-113
    79曲庆文.薄膜润滑条件下考虑剪切稀化时温度分布的研究.润滑与密封. 2006年第1期, 26-28
    80杨启真.液压传动中流体瞬变的有限元分析.机械工程学报. 1993, (5) :110-115
    81陆廷海.温度对液压泵主要性能参数的影响.机械工程学报. 1994, (6):60-65
    82张冬泉.旋转对称密封缝隙的变粘度流体流动特性及可视化研究[博士学位论文].哈尔滨工业大学. 1997:35
    83马文琦.旋转对称环形密封缝隙流体流动特性及其应用基础研究[博士学位论文].哈尔滨工业大学. 2000:25
    84刘莹,任宝平.高速流体动压径向滑动轴承的润滑计算.润滑与密封. 1998, (6):36-38
    85徐贤忠.可倾瓦径向滑动轴承的性能计算.润滑与密封. 1995, (4):25-28
    86周城,杨华勇.微米级圆环缝隙液固热耦合流动研究.第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议论文集. 2008: 870-873
    87卜基桥.振兴装备机床为先.现代制造. 2006年第25期, 1
    88沈健.液压动力卡盘的结构与性能分析.组合机床与自动化加工技术. 2004, 12: 103~104
    89卢学玉.新型动力卡盘的设计与研究[硕士学位论文].青岛科技大学. 2005, 4: 43
    90 Phillip D. Clark. Rotating Cylinder. US, 11030447[P], 2005-01-06
    91 http://www.itwworkholoding.com
    92 http://www.buckchuckusa.com
    93 http://www.gmn.de
    94杨华勇,周城.自定心液压动力卡盘的研究综述.中国机械工程. 2007, 2: 244-251
    95 http://www.dbiso.com/Lindex/machinepartindex/kapanindex/DLkapansyt.jpg
    96机械电子工业部著.机床附件产品样本.北京:机械工业出版社. 1990: 392~398
    97 Kalajdzic M J, Solaja V B. Rotational Speed Limits for Basic Types of Chucks[J], Annals of CIRP, 1979, 28(1): 297~301
    98 Rahman M, Tsutsumi M. Effect of Spindle Speed on Clamping Force in Turning [J]. Journal of Materials Processing Technology, 1993, 38: 407~415
    99 Feng P.F,Yu D.W, Wu, Z.J, Uhlmann E. Jaw-chuck stiffness and its influence on dynamic clamping force during high-speed turning. International Journal of Machine Tools and Manufacture. Vol. 48(September 2008) : 1268~1275
    100关贺杨建国窦小龙邓卫国.数控机床空间定位精度的测量与补偿.世界制造技术与装备市场. 2004年4月第2期, 80~85
    101王清明.零件端面切削误差在线补偿技术研究.山东教育学院学报. 2005年第4期, 61~62
    102王凯.复杂型面数控加工的神经网络控制[硕士学位论文].兰州理工大学. 2007, 5~7
    103邵传伟.如何提高国内机床主轴的精度.现代制造. 2002年第19期, 42~43
    104宋树潘.关于提高卡盘速度.世界制造技术与装备市场. 2006年4月第2期, 71~72
    105 T?nshoff H K, Noske H, Machine Tool Monitoring Applied to Lathe Chucks[J]. Annals of the CIRP, 1990, 39(1): 429~432
    106 Sveshnikov V. K. A Rotating Hydraulic Cylinderfor Powering Lathe Chucks. Soviet Engineering Research, 1989, 60(3): 31~33
    107姜继海,胡志栋.静压滑环及其应用研究.工程设计学报, 2002, 3,第1卷第9期, 119~123
    108张冬泉.旋转对称密封缝隙的变粘度流体流动特性及可视化研究.哈尔滨工业大学博士论文. 1997:55
    109 A. Wegener. Genaeherte Berechnung der Verlustleistung einer hydraulischen Spaltdichtung. Studienarbeite der TU Clausthal. 1982:20~24
    110常近时.环形油垫静压推力轴承考虑油流惯性的承载能力计算公式.机械工程学报. 1982, 18(1):62~68
    111孙恭寿.液体动静压混合轴承设计.世界图书出版公司, 1993:79~85
    112 R?hm G H. Power-actuated Chuck with Means for Counter-acting Centrifugal Force on the ChuCk Jaws: US, 4078814[P], 1978-03-14
    113赵学瑞,廖其奠.粘性流体力学.机械工业出版社. 1983
    114 O. Reynolds. On the theory of lubircation and its application to Mr. Beauchamp Tower’s experiments, including an experiment determination of the viscosity of olive oil. Phl. Trans. Roy. Soc. A. V. 177, 1866
    115顾永泉.流体动密封(第一版).山东:石油大学出版社. 1996.4
    116彭旭东,谢友柏,顾永泉,陈逊.热流体动力楔机械密封性能参数的近似计算.流体机械. 1997.6(5): 24~27
    117 Muijderman E. A. Spiral Groove Bearings. Philips Technical Library, 1966, The Netherland
    118 Gardner James F. Combined Hydrostatic and Hydrdynamic Principles Applied to Non-Contacting Face Seals. In: Proceeding of 4th International Conference on Fluid Sealing, Paper H2 ,1969: 351~360
    119 Gabriel Ralph P. Fundamentals of Spiral Groove Noncontacting Face Seals. Lubrication Engineering, Vol.35(1979), 7: 367~375
    120 Shapiro Wilbur Walowit Jed Jones Henry F. Analysis of Spiral-Groove F ace Seals for Liquid Oxygen. ASLE Transactions, Vol.27, 3: 177~188
    121 Buck Gordon S. and Volden Doug. Upstream Pumping: A New Concept in Mechanical Sealing Technology. Lubrication Engineering, April 1990: 213~217
    122 Sneck H. J. McGovern J. F. Analytical Investigation of the Spiral Groove Face Seal Transactions of the ASME, Journal of Tribology, October 1973: 499~510
    123 Gupta P. K. Coleman R.L. Pan C. H. T. Ambient Edge Correction for the Locally Incompressible Narrow-Groove Theory. Transactions of the ASME, Journal of Tribology, April 1974: 284~290
    124 Constantinescu V. N. Galetuse S. On Extending the Narrow Spiral-Groove Theory to Configurations of Interestin Seals. Transactions of the ASME, Journal of Tribology, Vol.114, July 1992, 563~566
    125 M. R. Mokhtarzadeh-Dehghan, N. Ladommatos and T. J. Brennan. Finite element analysis of flow in a hydraulic pressure valve. Applied Math Modelling. 1997(7):437~445
    126 ANSYS, INC. Guide to Interfacing with ANSYS(Release 6.0). ANSYSProgrammer’s Manual. 1999
    127 ANSYS, INC. ANSYS APDL Programmer’s Guide(Release 6.0). ANSYS Programmer’s Manual. 1999
    128 ANSYS, INC. ANSYS UIDL Programmer’s Guide(Release 6.0). ANSYS Programmer’s Manual. 1999
    129美国ANSYS公司,流体动力学培训手册. 2000年5月
    130 Bonneau D, Huitric J, Tournerie B. Finite ElementAnalysis of Grooved Gas Thrust Bearings and Grooved Face Seals. ASME Transaction, Journal of Tribology, 1993, 115 (7) :348~354
    131 Zirkelback N. Parametric Study of Spiral Groove Gas Face Seals. Tribology Transaction, 2000, 43 (2) : 337~343
    132冯向忠,彭旭东.螺旋槽干式气体端面密封性能的数值分析.润滑与密封, 2004 (6): 41~43
    133 Vladimir Kudriavtsev, M Jack Braum, Robert C Hendricks. Computational Studies of Fluid and Pressure Distributions in A Spiral Groove Seals. 9 th Annual Conference of the CFD Siciety of Canada, Kitchener, Ontario, 27 - 29 May, 2001
    134王和顺,陈次昌,黄泽沛,等.径向直线槽干气密封端面流场数值模拟.液压与气动, 2004 (10): 21~23
    135宋云强,方宗德,陈善志,陶福星.直升机一体化齿轮轴的模态分析及优化.机械设计与制造. 2008.10 (10): 152~154
    136 Paolo Casoli, Andrea Vacca, Gian Luigi Berta. Potentials of a numerical tool for the simulation of flow in external gear machines. The tenth Scandinavian International Conference on Fluid Power, SICFP’07. Tampere, Finland. 2007:21~23
    137 ADIANA R & D, Inc. Automatic Dynamic Incremental Nonlinear Analysis, Theory and Modeling Guide Volume III: ADINA CFD & FSI. 229~270
    138 Hou Zhang, Xiaoli Zhang, Shanhong Ji, et al. Recent development of fluid-structure interaction capabilities in the ADINA system. Computers & Structures. 2003,81:1071~1085.
    139 X. Wang, L. B. Wang. Dynamic analysis of a water-soil-pore water coupling system. Computers & Structures. 2007,85:1020~1031