基于微电极阵列的高通量细胞电融合方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞电融合技术自从由Zimmermann发明以来,就因为效率高、可控性强、操作简便、重复性好、对细胞无毒害等优点而得到广泛应用,逐渐成为现代生物工程技术中的一个重要工具,被广泛应用于物种产生或改良、单克隆抗体制备、癌症免疫治疗等领域。
     本文运用现代微机电系统(micro electro mechanical systems, MEMS)加工技术在厘米见方的基底材料上制作了微电极阵列细胞电融合芯片。所包含的微电极对数达到103数量级,微电极间距小于100μm。同时,研究开发了细胞电融合仪,可以与芯片集成为高通量细胞电融合系统,并利用介电电泳和细胞电致穿孔原理实现细胞操控和电融合。
     细胞定位、穿孔及挤压操作是细胞电融合的基础。因此,本文首先对细胞操控和电融合原理进行了深入的探讨,在此基础上运用有限元方法分析了不同形状、分布的微电极阵列在外加电压条件下的电场分布,并以此为据来优化微电极和微电极阵列设计,以获得有利于细胞电融合的电场环境。在此期间确定了矩形梳状交叉微电极阵列芯片模型。随后,对芯片加工工艺、材料、封装技术等进行了研究,成功研制了硅基底-硅微电极、玻璃基底-硅微电极、硅基底-全金属微电极、电路板(printed circuit board, PCB)微电极等四种不同材料的细胞电融合芯片。同时,研制开发了细胞电融合仪。最后,在芯片和融合仪组成的高通量细胞电融合平台上进行了微生物、动物、植物细胞电融合实验。具体来说,论文研究工作主要包括以下几个方面:
     1.芯片上微电极尺寸及分布对电场强度及梯度的影响。在细胞融合芯片上,三维微电极的几何及分布参数包括微电极厚度、宽度、深度、纵向间隔、横向间隔,微电极尖端几何形状(直角形齿、锥形齿、平行板),电极排列方式(对称性和非对称型)等。这些参数的改变都会对微通道中的电场强度及梯度产生影响。通过有限元方法,对微电极阵列进行了建模仿真。根据细胞电融合的要求,提出了一种有利于细胞电融合的矩形梳状交叉微电极阵列芯片模型,为实现高效细胞电融合奠定了理论基础。在该芯片中,可以产生有利于细胞电融合的电场环境,提高对细胞的操控能力和融合率。
     2.芯片和微电极材料及制作工艺的选择。为了使细胞电融合芯片获得最佳的电气和生化性能,本文研究了全硅微电极、硅玻结合(玻璃基底加硅微电极)、硅基底全金属微电极、PCB铜电极等四种芯片,包括其微电极和微通道设计、加工工艺选择、封装设计和材料选择等。
     3.细胞电融合仪的设计及制作。在研究了细胞电融合过程中涉及到的细胞操作,即排队、电穿孔、挤压等三个基本过程及所需电信号特征后,提出了用单频正弦信号和双向归零高压脉冲信号作为细胞电融合的最佳操控与穿孔信号。在此基础上,设计了信号产生电路、智能控制电路、显示电路、高压电源电路并进行相应的软件编写、PCB设计、电子装配与调试,参数测试等,获得了可以提供高通量细胞电融合所需电信号的细胞电融合仪,其技术指标达到国内先进水平。
     4.细胞电融合实验研究。利用新研制的芯片和融合仪建立了细胞电融合实验平台,开展了微生物(酵母细胞)、动物(HEK-293、鸡血细胞)、植物(烟草叶肉原生质体)细胞的排队或融合实验。结果表明,芯片内数量巨大微电极(103对/cm2数量级)可以同时操控大量细胞来完成排队和电穿孔,从而实现高通量电融合。另一方面,由于微电极间距小到微米数量级,细胞操作和融合所需电压很低,如细胞排队电压(Vpp)在6 V左右即可达到满意效果,电穿孔脉冲电压幅值也小于60 V。这样,融合电压的降低提高了细胞电融合系统安全性,也降低了电融合仪的设计要求和生产成本。通过一系列分析、仿真及实验研究,使芯片内微电极的设计、选材及加工工艺得以优化,可以产生更有利于细胞电融合的电场和电场梯度分布。实验结果表明,芯片上的细胞电融合可以获得较高的电融合率。以烟草叶肉原生质体的电融合为例,其融合率最高达到50.2%。动物细胞HEK-293的融合率最高也达39.1%,酵母细胞最高达33.4%,这些都较传统的利用聚乙二醇(polyethylene glycol, PEG)的化学融合方法的融合率(< 1%)和传统电融合仪器上的融合率(< 10%)高出很多。
     总之,通过对细胞电融合芯片电极设计以及电学特性的研究,研制出高通量、高融合率的细胞电融合芯片,并根据细胞电融合过程和所需电信号要求,研制开发出智能化细胞电融合仪。集成融合芯片及电融合仪建立了细胞电融合微系统实验平台,在对微生物、动物、植物原生质体等细胞的电融合实验中,取得了很好的实验效果。该研究为实现细胞电融合系统微型化、建立高效、自动的细胞融合芯片实验室奠定了良好的基础。
Since cell-electrofusion technology was invented by Ulrich Zimmermann, due to its many advantages such as high efficiency, good controllability, simple operation, excellent repeatability and harmlessness to cells, it has been extensively applied in species production or improvement, monoclonal antibody preparation, immunological treatment of cancer, and so on.
     This thesis is involved in the research and development of a microelectrode array based cell-electrofusion chip on about 1 cm2 substrate by using MEMS manufacturing technology. The number of microelectrode pairs on this chip reaches the magnitude of 103 and the distance between each couple of electrodes is less than 100μm. Based on the study, a cell-electrofusion instrument was developed, which was integrated with the chip to form a high-throughput cell-electrofusion system. Using the principles of dielectrophoresis and electroporation, the instrument can be used to manipulate cells and carry out cell fusion.
     Cell location, electroporation and extrusion are the bases for cell fusion. Therefore, at first our study focused on exploring the principles of cell manipulation and cell fusion. Based on theoretical study, finite element method was used to analyze the profile of electric field within a microelectrode array with different shape, position, and external voltage applied. The computational result can be used to optimize the design of microelectrode array in order to obtain a favorable electric field environment. Based on the analysis, an interdigital, pectinate, and rectangular microelectrode array model was chosen. Then, studies have been done about the material choice, chip processing technology, and packaging technology, etc. And as a result, four cell-electrofusion chips fabricated on different materials, i.e. silicon-silicon, glass-silicon, silicon-metal and PCB, were developed. Meanwhile, high-throughput cell-electrofusion instrument was developed. Finally, cell-fusion experiments on microbiologic cells, animal cells, and plant cells were carried out. The detailed study includes:
     1. The impact of the size and distribution of microelectrode on the electric-field intensity and gradient. On the cell-electrofusion chip, the 3-D microelectrode geometry and distribution parameters include the thickness, width, and depth of the electrode, and the longitudinal and lateral interval between electrode pairs, the geometry shape (right angled tooth, cone-shape tooth, pillbox) of the tip of the microelectrode, and the distribution (symmetry and asymmetrical) of a microelectrode array, etc. The change of these parameters will influence the electric-field intensity and the gradient in microchannel. Based on the finite element method, modeling and simulation of the microelectrode array were carried out. According to the requirement of cell electrofusion, the interdigital, pectinate, and rectangular microelectrode array was chosen for high-efficiency cell electrofusion. The chip can produce a suitable electric field environment for cell electrofusion and enhance the controlling ability for cells and the fusion efficiency.
     2. Choice of the material and fabrication technology for the chip and microelectrode. For obtaining best electrical and biochemical performance, four types of chips with different electrode were studied, including silicon-silicon, glass-silicon, silicon-metal and PCB microelectrodes. This thesis also studied the design of the microelectrode and microchannel, fabrication technique, material choice, and packaging technology, etc.
     3. Design and manufacture of cell-electrofusion instrument. After studying the electric signal characteristics required in cell alignment, electroporation and extrusion, a mono-frequent sinusoidal signal and a bidirectional zeroing high-voltage pulse signal were selected as the controlling and electroporation signals, respectively. Based on this study, electric circuits for producing signal, intelligent control, display, and high-voltage power supply were designed, and corresponding software was also developed. At the same time, PCB was designed, electronic components were assembled and debugged, and parameters test was implemented. Finally, a cell-electrofusion instrument was manufactured, which can provide the electronic signal required for high-throughput fusion, and its technical parameters reached the international advanced level.
     4. Experiment study of cell electrofusion. The chip and cell-electrofusion instrument were integrated to form an experimental platform, and series of cell alignment and fusion experiments for different cells including microbiologic cells (yeast), animal cells (HEK-293 and chicken red blood cells), and plant cells (tobacco mesophyll protoplasts) were carried out. The result indicated that the chip with a great number of microelectrode (magnitude of 103 couples /cm2) could align and perforate lots of cells simultaneously, and the target of high-throughput cell electrofusion was also achieved. On the other hand, low voltage was required for cell manipulation and fusion for short distance between microelectrode pairs. Fax example, the peak-peak voltage (Vpp) for cell alignment is about 6 V, and the pulse voltage for cell electroporation is also less than 60 V. Lower voltage means a safer cell-electrofusion system, lower design requirements and production cost. Using a series of analyses, simulation and experimental study, microelectrode design, material choice and packaging technology were optimized, and it can generate a favorite electric field and electric-strength gradient distribution for cell-electrofusion. The experimental result indicated that a higher fusion rate could be obtained on the chip. For example, for the tobacco mesophyll protoplast, its fusion rate was as high as 50.2%. Furthermore, the cell-fusion rate reached a high level of 39.1% for HEK-293, 33.4% for yeast cells, respectively. Compared with traditional chemical fusion (polyethylene glycol PEG) (< 1%) and electrofuion method (< 10%), the fusion rate on our devices is much higher.
     In a word, based on the study of the electrode design and electric property, a high-throughout and high fusion-rate chip was developed. Furthermore, according to electric signal required for electrofusion, an intellectualized cell-fusion instrument was also set up. The instrument can be integrated with the chip to for an excellent experimental platform. On this platform, good experimental effect has been obtained in the cell fusion of microbiologic cells, animal cells, and plant protoplasts. This study made it possible to miniaturize cell-electrofusion system and set up a solid foundation for further research and development of an automatic cell-fusion chip laboratory.
引文
[1] OkadaY, Murayama F. Requirement of calcium ions for the cell fusion reaction of animal cells by HVJ [J]. Exp. Cell Res., 1966, 2: 527-551.
    [2] Kao KN, Michayluk MR. A method for high-frequency intergeneric fusion of plant protoplasts [J]. Planta, 1974, 115: 355-367.
    [3] Zimmermann U, Pilwat G, Richter HP. Electric-field-stemulated fusion increased field stability of cells induced by pronase [J]. Naturewissenschaften, 1981, 68: 577-579.
    [4] Harris H, Watts JW. Hybrid cells derived from mouse and man: artificial heterokaryons of mammalian cells from different species [J]. Nature, 1965, 205: 640-646.
    [5]焦瑞身.细胞工程[M].北京,化学工业出版社, 1994.
    [6] Carlson PS, Smith HH, Dearing RD.Parasexual interspecific plant hybridization [J]. Proc. Nat. Acad. Sci. USA, 1972, 69: 2292-2294.
    [7] Keller WA, Melchers G.The effect of high pH and calcium on tobacco leaf protoplast fusion [J]. Z. Naturforsch, 1973, 11: 737-741.
    [8] Senda M, Takeda JAS, Nakamura T. Induction of cell fusion of plant protoplasts by electrical stimulation [J]. Plan. Cell Phsiol., 1979, 20: 1441-1443.
    [9] Scheurick P, Zimmermann U. Membrance fusion and deformation of red blood cells electric fields [J]. Z. Naturforsch, 1980, 35: 1081-1085.
    [10] Scheurick P, Zimmermann U. Electrically stimulated fusion of different plant cell protoplasts [J]. Plant Physiol., 1981, 67: 849-853.
    [11] Scheurick P, Zimmermann U. Giant human erthrocytes by electric-field induced cell-to-cell fusion [J]. Naturewissenschaften, 1981, 68: 45-47.
    [12] Richter HP, Scheurick P, Zimmermann U. Electric field-induced fusion of sea urchin eggs [J]. Dev. Growth. Diff., 1981, 23:479-486.
    [13] Pilwat G, Richter HP, Zimmermann U. Giant cultrre cells by electric field-induced fusion [J]. FEBS Lett., 1981, 133: 169-174.
    [14] Vienken J, Ganser R, Hamipp R. Electric field-induced fusion of isolated vacroles and protoplasts of different developmental and metabolic provenisce [J]. Physiol. Plant, 1981, 53: 64-70.
    [15] Buschl R, Ringdorf J, Zimmermann U. Electric field-induced fusion of large liposomes from natural and polymerizable lipids [J]. FEBS Lett., 1982, 150: 38-42.
    [16] Bischoff R, Eisert RM, Schedel J. et al. Human hybridoma cells produced by electro-fusion[J]. FEBS Lett., 1982, 147: 64-68.
    [17] Vienken J, Zimmermann U. Electric field-induced fusion:electro-hydraulic procedure for production of heterokaryon cells in high yield [J]. FEBS Lett., 1982, 137: 11-13.
    [18] Halfmann HJ, Rocken W, Emeis CC, et al. Transter of mitochondrial function into a cytoplasmic respiratory-deficient mutant of Saccharocharomyces yeast by electro-fusion [J]. Curr. Genet., 1982, 6: 25-28.
    [19] Halfmann HJ, Emeis CC, Zimmermann U. Electro-fusion of haploid Saccharocharomyces yeast cells of identical mating type [J]. Arch. Micrbiol., 1983, 134: 1-4.
    [20] Schmitt JJ, Zimmermann U. Enhanced hybridoma production by electrofusion in strongly hypo-osmolar solutions [J]. Biochem. Biophys. Acta, 1989, 983: 42-55.
    [21] Zimmermann U, Gessner P, Schnettler R, et al. Efficient hybridization of mouse-human cell lines by means of hypo-osmolar electrofusion [J]. J. Immunol. Methods, 1990, 134: 43-50.
    [22] Foung S, Perkins S, Zimmermann U, et al. Development of microfusion techniques to generate human hybidomas [J]. J. Immunol. Methods, 1990, 43: 35-42.
    [23] Lo MS, Tsong TY, Conrad MK, et al. Monoclonal antibody production by receptor-mediated electrically-induced cell fusion [J]. Nature, 1984, 310: 792-794.
    [24] Wang HM, Lu YW. Electric field-induced fusion of tricum aestivuml mesophyll cell protoplasts [J]. Science Bulletin., 1985, 30: 1664-1667.
    [25]汪和睦,鲁玉瓦,武延宽等.电场诱导营养缺陷型酵母原生质体的融合[J],生物工程学报, 1986, 32: 44-51.
    [26]汪和睦,鲁玉瓦.酵母完整细胞和原生质体电穿孔的最佳条件[J],生物物理学报, 1986, 4: 364-371.
    [27]汪和睦,鲁玉瓦.相同交配型酵母原生质体的电融合次及融合产物的分析[J].生物工程学报, 1986, 4: 29-34.
    [28]汪和睦,谢廷栋,武延宽等.细胞电融合——一种改进的平行多电极系统[J].科学通报, 1987, 13: 1032-1035.
    [29]饶颐年,汪和睦,谢廷栋等.用电融合技术建立抗四组虫媒病毒单克隆抗体杂交瘤细胞系统的研究[J].单克隆抗体, 1987, 2: 49-56.
    [30]鲁玉瓦,张雷.植物原生质体的融合[J].南开大学学报(自然科学版), 1987, 2: 70-78.
    [31]谢廷栋,汪和睦,鲁玉瓦,等.鼠淋巴细胞和骨髓瘤细胞的电融合[J].中国生物医学工程学报, 1989, 1: 25-31.
    [32]王耀武,汪和睦.电诱导酿酒酵母和Aureobasium pullulan3层间的原生质体融合[J].微生物学报, 1990, 1: 56-63.
    [33]郑强,吴逸,赵南明,等.甘蓝和中国甘蓝原生质体间的融合[J].生物物理学报, 1988,2: 134-139.
    [34] Cai GP, Zheng Q, Zhao NM. Observation of the microtubule system in cell-electrofusion by immunofluoresence [C]. The Second Japan-China Bilateral Symposioum on Biophysics. Kyoto, Japan, 1988.
    [35]郑强,赵南明. IBRS2细胞的电融合及融合过程的研究[J].中国科学(B辑), 1988, 3: 303-313.
    [36]郑强,王竞,赵南明,等.细胞融合的新方法[J].生物工程学报, 1989, 3: 185-190.
    [37]郑强,赵南明.电融合法有效生成鼠杂交瘤细胞[J].生物物理学报, 1989, 1 :94-96.
    [38]刘祖同,陈艳,赵南明.电场诱导酵母原生质体融合的研究[J].清华大学学报, 1990, 6: 60-67.
    [39]徐华强,蔡国平,赵南明,等.电穿孔法将基因转移到完整植物细胞[J].植物学报, 1990, 4: 759-765.
    [40]徐华强,吴逸,赵南明.电穿孔法将基因转移到中国甘蓝和黄瓜原生质体[J].植物学报, 1991, 3: 7-13.
    [41] Tresset G, Takeuchi S. A microfluidic device for electrofusion of biological vesicles [J]. Biomed. Microdev., 2004, 3: 213-218.
    [42] Wang J, Lu C. Microfluidic cell fusion under continuous direct current voltage [J]. Appl. Phys. Lett., 2006, 89: 234102.
    [43] Masuda S, Washizu M, Nanba T. Novel method of cell fusion in field constriction area in fluid integrated circuit. IEEE Transac. Indus. Appl. [J], 1989, 4: 732-737.
    [44] Stromberg A, Karlsson A, Ryttsen F, et al. Microfluidic device for combinatorial fusion of liposomes and cells [J]. Anal. Chem., 2001, 73: 126-130.
    [45] Kramer I, Vienken K, Zimmermann U. et al. Magneto-electro-fusion of human erythrocytes [J]. Biochim. Biophys. Acta., 1984, 3: 407-410.
    [46] Vienken J, Zimmermann U, Zenner HP, et al. Electro-acoustic fusion of cells [J]. Naturwissenschaften, 1985, 8: 441-442.
    [47] Vienken J, Zimmermann U, Zenner HP, et al. Electro-acoustic fusion of erythrocytes and of myeloma cells [J]. Biochim. Biophys. Acta., 1985, 2: 259-264.
    [48] Zimmermann U,Scheurich P. The cellfusion of method with electro-mechanical fusion[J]. Planta, 1981, 151: 26-32.
    [49] Mehrle W, Hampp R, Naton B, et al. Effects of microgravitation on electrofusion of plant cell protoplasts [J]. Plant Physiol., 1989, 89: 1172-1177.
    [50] Hoffmann E, Schoenherr K, Johann P, et al. Electrofusion of plant cell protoplasts under microgravity-a D-2 spacelab experiment [J]. Micrograv. Sci. Technol., 1995, 3: 1881.
    [51] ZimmermannU, Schnettler R, Hannig K. Biotechnology in space: Potentials and perspectives [J]. Biotechnology, 1988, 6: 637-672.
    [52]黄静,赵琦,赵玉锦,等.植物细胞电融合技术在空间实验中的应用[J].生物技术通报, 2007, 1: 80-83.
    [53]郑慧琼,王六发,陈爱地,等.烟草细胞的空间电融合[J].科学通报, 2003, 13: 1438-1441.
    [54] Wiegand R, Weber G, Zimmermann K, et al. Laser-induced fusion of mammalian-cells and plantprotoplasts [J]. J. Cell Sci., 1987, 88: 145-149.
    [55] Steubing RW, Cheng S, Wright WH, et al. Laserinduced cell-fusion in combination with optical tweezers-the laser cell-fusion.trap [J]. Cytometry, 1991, 12: 505-510.
    [56] Wiegand R, Weber G, Zimmermann K, et al. Laser-induced fusion of mammalian cells and plant protoplasts [J]. J. Cell Sci., 1987, 88: 145-149.
    [57]张闻迪,赵百,王秋,等.激光诱导泥鳅卵细胞融合——一种新的细胞融合方法[J].生物工程学报, 1988, 4: 298-303.
    [58]张闻迪,赵白,姚纪花,等.超远缘鱼类-斑马鱼和泥鳅-受精卵的激光融合[J].青岛海洋大学学报(自然科学版), 1992, 3: 11-17.
    [59] Chiu DT. A microfluidics platform for cell fusion[J]. Curr. Opin. Chem. Bio., 2001, 5: 609-612.
    [60] Ju J, Ko JM, Cha HC. A microfluidic device for electrofusion of two plant cells [J]. IFMBE Proc., 2007, 4: 302-305.
    [61] Chang DC. Cell poration ang cell fusion using an oscillating electric field [J]. Biophys. J., 1989, 56: 641-652.
    [62]汪和睦,谢廷栋.细胞电穿孔电融合电刺激原理技术及应用[M].天津,天津科学技术出版社, 2000, 95.
    [63] Jones TB. Electromechanics of particles [M]. Cambridge, Cambridge University Press, 1995.
    [64] Wang XJ, Wang XB, Gascoyne PRC. General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method [J]. J. Electrostat., 1997, 39: 277-295.
    [65] Benguigui L, Lin IJ. The dielectrophoresis force [J]. American J. Phys., 1986, 5: 447-450.
    [66] Hughes MP. Strategies for dielectrophoretic separation in laboratory-on-a-chip systems [J]. Electrophoresis, 2002, 16: 2569-2582.
    [67] O’konski CT. A history of electro-optics. Molecular-Opties (Krause S) [M]. New York, Plenum Press, 1981, 1-25.
    [68] Liebesny P. Athermic short-wave therapy [J]. Arch. Phys. Ther., 1938, 19: 736.
    [69] Pohl HA. The motion and precipitation of suspensoids in divergent electric fields [J]. J. Appl. Phys., 1951, 22: 869-871.
    [70] Pohl HA. Separation of living and dead cells by dielectrophoresis [J]. Science, 1966, 152: 647-649.
    [71] Pohl HA, Crane JS. Dielectrophoresis of cells [J]. Biophys. J., 1971, 11: 711-727.
    [72] Iglesisas FJ, Lopez MC, Santamaria C, et al. Dielectrophoretic properties of yeast cells dividing by budding and by trabsversal fissioh [J]. Biochim. Biophys. Acta., 1984, 804: 221-229.
    [73] Iglesisas FJ, Lopez MC, Santamaria C, et al. Orientation of Schizosacharomyces pombe nonliving cells under alternating uniform and nonuniform electric fields [J]. Biophys. J., 1985, 48: 721-726.
    [74] Zimmermann U, Arnold WM. The interpretation and use of the rotaion of biological cells [J]. Coher. Excit. Bio. Sys., 1983, 2: 211-221.
    [75] Mischel M, Lamprecht I. Dielectrophoretie rotation in budding yeast cells [J]. Z. Naturforsch, 1980, 35: 1111-1113.
    [76] Teixeira-Pinto AA, Nejelski LL, Cutter J, et. al. The behavior of unicellular organisms in an electromagnetic field [J]. Exp. Cell Res., 1960, 20: 548-564.
    [77] Bates GW, Saunders JA,Sowers AE. Electrofusion:Principles and applications. Cell Fusion(Sowers AE) [M]. New York, Plenum Press, 1987. 367-395.
    [78] Schwan HP. Dielectrophoresis and rotation of cells. Electroporation and Electrofusion in Cell Biology (Neumann E, Sowers AE, Jordar CA) [M], New York, Plenum Press, 1989. 3-21.
    [79] Iglesisas FJ, Santamaria C, Lopez MC, et al. Dielectrophoresis behavior of microorganisms and effect of electric fields on orientation phenomena. Electroporation and Electrofusion in Cell Biology (Nemmann E, Sowers AE, Jordan CA) [M], New York, Plenum Press, 1989, 37-57.
    [80]殷之文.电介质物理学(第二版) [M].北京,科学出版社, 2003, 89.
    [81]梁灿彬,秦光戎,梁竹健.电磁学[M].北京,高等教育出版社, 1980, 92.
    [82] Singer SJ, Nicholsom GL. The fluid mosaic model of the structure of cell membranes [J]. Science, 1972, 4023: 720-731.
    [83]全泽松.电磁场理论[M].成都,成都电子科技大学出版社, 1987, 68.
    [84]姚志欣.偶极子在非均匀外场中的受力[J].大学物理, 1990, 10: 10-12.
    [85] Docoslis A, Kalogerakis N, Behie LA, et al. A novel dielectrophoresis-based device for the selective retention of viable cells in cell culture media [J]. Biotechnol. Bioeng., 1997, 54: 239-250.
    [86] Das CM, Becker F, Vernon S, et al. Dielectrophoretic segregation of different human cell types on microscope slides [J]. Anal. Chem., 2005, 77: 2708-2719.
    [87] Benz R, Zimmermann U. Pulse-length dependence of the electrical breakdown in lipid bilayer memberanes [J]. Biochim. Biophys. Acta., 1980, 597: 637-642.
    [88] Chernomordik LV, Sukharev SI, Abidor IG, et al. Breakdoen of lipid bilayer memberanes in an electrica field [J]. Biochim. Biophys. Acta., 1983, 736: 203-213.
    [89] Holazapfel C, Vienken J, Zimmermann U. Rotaion of cells in an alternating electric field: theory and experimental proof [J].J. Membr. Biol., 1982, 67: 13-26.
    [90] Sugar IP, Neumann E. Stochastic meodel for electric fled-induced membrane pores [J]. Electropor. Biophys. Chem., 1984, 3: 211-225.
    [91] Dimitrov DS, Jain RK. Membrane stability [J]. Biochim. Biophys. Acta.– Rev. Biomembr., 1984, 4: 437-468.
    [92] Gabrijel M, Repnik UK, Kreft M, et al. Quantification of cell hybridoma yields with confocal microscopy and flow cytometry [J]. Biochem. Biophys. Res. Commun., 2004, 314: 717-723.
    [93] Sukhorukov VL, Reuss R, Endter JM, et al. A biophysical approach to the optimisation of dendritic-tumour cell electrofusion [J]. Biochem. Biophys. Res. Commun., 2006, 346: 829-839.
    [94] Caoyi, Vinayagamoorthy T, Noujaim AA, et al. A rapid non-selective method to generate quadromas by microelectrofusion [J]. J. Immun. Meth., 1995, 187: l-7.
    [95] Lin YC, Huang MY. Electroporation microchips for in vitro gene transfection [J]. J. Micromech. Microeng., 2001, 11: 542-547.
    [96] Huang Y, Rubinsky B. Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation [J]. Sens. Actuat. A, 2003, 104: 205-212.
    [97] He HQ, Chang DC, Lee YK. Micro pulsed radio-frequency electroporation chips [J]. Bioelectrochemistry, 2006, 68: 89-97.
    [98] Huang KS, Lin YC, Su CC, et al. Enhancement of an electroporation system for gene delivery using electrophoresis with a planar electrode [J]. Lab Chip, 2007, 7: 86-92.
    [99] Lin YC, Li M, Fan CS. A microchip for electroporation of primary endothelial cells [J]. Sens. Actuat. A, 2003, 108: 12-19.
    [100] Kim JA, Cho K, Shin YS. A multi-channel electroporation microchip for gene transfection in mammalian cells [J]. Biosens. Bioelectron., 2007, 22: 3273-3277.
    [101] Ramadan Q, Samper V, Poenar D, et al. Simultaneous cell lysis and bead trapping in a continuous flow microfluidic device [J]. Sens. Actuat. B, 2006, 113: 944-955.
    [102] Lee SW, Tai YC. A micro cell lysis device [J]. Sens. Actuat., 1999, 73: 74-79.
    [103] Lu H, Schmidt MA, Jensen KF. A microfluidic electroporation device for cell lysis [J]. Lab Chip, 2005, 5: 23-29.
    [104] Liu FJ, Zhang Y, Zheng YM, et al. Optimization of electrofusion protocols for somatic cell nuclear transfer [J]. Small Rum. Res., 2007, 73:246-251.
    [105] Wang HY, Lu C. Electroporation of mammalian cells in a microfluidic channel with geometric variation [J]. Anal. Chem., 2006, 78: 5158-5164.
    [106] Lu KY, Wo AM, Lo YJ, et al. Three dimensional electrode array for cell lysis via electroporation [J]. Biosens. Bioelectron., 2006, 22: 568-574.
    [107]曹毅,杨军,阴正勤,等.高效细胞电融合芯片中的电场分析[J].分析化学, 2008, 5: 593-598.
    [108]邓凡平. ANSYS有限元分析自学手册[M].北京,人民邮电出版社, 2007.
    [109]王富耻,张朝辉. ANSYS有限元分析理论与工程应用[M].北京,电子工业出版社, 2006.
    [110] Huang Y, Rubinsky B. Micro-electroporation: improving the efficiency and understanding of electrical permeabilization of cells [J]. Biomed Microdev., 1999, 2: 145-150.
    [111] Lin YC, Jen CM, Huang MY, et al. Electroporation microchips for continuous gene transfection [J]. Sens. Actuat. B, 2001, 79: 137-143.
    [112] Valero A, Merino F, Wolbers F, et al. Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device [J]. Lab Chip, 2005, 1: 49-55.
    [113] Fox MB, Esveld E, Luttge R, et al. A new pulsed electric field microreactor: comparison between the laboratory and microscale [J]. Lab Chip, 2005, 9: 943-948.
    [114] Khine M, Lau A, Ionescu-Zanetti C, et al. A single cell electroporation chip [J]. Lab Chip, 2005, 5: 38-43.
    [115] Suehiro J, Shutou M, Hatano T, et al. High sensitive detection of biological cells using dielectrophoretic impedance measurement method combined with electropermeabilization [J]. Sens. Actuat. B, 2003, 96: 144-151.
    [116]曾磊,张卫汪,礼康.超大规模集成电路铜互连电镀工艺[J].中国集成电路, 2006, 11: 45-48.
    [117]李薇薇,王胜利,刘玉岭.微电子工艺基础[M],北京,化学工业出版社, 2006, 9: 222.
    [118] Mohammad H, Sorouraddin MA, Mohammad SS. Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry [J]. Anal. Chim. Acta., 2007, 589: 84-88.
    [119] Iliescu C, Poenar DP, Carp M, et al. A microfluidic device for impedance spectroscopy analysis of biological samples [J]. Sens. Actuat. B, 2007, 123: 168-176.
    [120] Goyal A, Hood V, Tadigadapa S. High speed anisotropic etching of Pyrex for microsystems applications [J]. J. Non-Cryst. Sol., 2006, 352: 657-663.
    [121] Sun Y, Yin XF. Novel multi-depth microfluidic chip for single cell analysis [J]. J. Non-Crystal. Sol., 2006, 352: 657-663.
    [122] Bu MQ, Melvin T, Ensell GJ, et al. A new masking technology for deep glass etching and its microfluidic application [J]. Sens. Actuat. A, 2004, 115: 476-482.
    [123]林明祥.集成电路制造工艺[M].北京,机械工业出版社, 2005, 44-45.
    [124]覃奇贤.适用于集成电路镀铜的新型镀液[J].电镀与精饰, 2008, 1: 25.
    [125] Zimmermann U, Pilwat G, Pohl HA. Electric field-mediated cell fusion [J]. J. Bio. Phys., 1982, 1: 43-50.
    [126] Fox MB, Esveld DC, Valero A. Electroporation of cells in microfluidic devices: a review [J]. Anal. Bioanal. Chem., 2006, 385: 474-485.
    [127]汪和睦,杭军.烟草叶肉原生质体的漂浮电介质电泳研究[J].中国科学B辑, 1992, 10: 1038-1044.
    [128]郭明霞,汪和睦.电穿孔脉冲宽度对细胞融合及DNA转化的作用研究[J].山西医药杂志, 1996, 4: 285-286.
    [129] Ohnishi K, Chiba J, Goto Y, et al. Improvement in the basic technology of electrofusion for generation of antibody-producing hybridomas [J]. J. Immunol. Meth., 1987, 100: 181-189.
    [130]陈名红,熊立,陈学军.烟草叶肉原生质体分离和纯化研究[J].云南民族大学学报(自然科学版), 2005, 4: 326-329.
    [131]黄文川,杨其光.一种简化有效的普通烟草原生质体培养方法[J].西北农业大学学报, 2000, 3: 101-103.
    [132] Lo MMS, Abeles F, Gaffron H, et al. The cell fusion of plant with the acoustic-electro fusion [J]. Nature, 1984, 310: 792-794.