虫媒登革病毒(Mosquito-borne dengue viruses)基因组进化与分子诊断的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫媒介病毒(虫媒病毒)是一大类主要由吸血昆虫叮咬人、家畜及野生动物而传播的病毒。其特点是病毒在节肢动物媒介体内繁殖而不发病,具有自然疫源性。目前已经证实的媒介昆虫达586种,主要为蚊(300种)和蜱(116种)。虫媒病毒引起人畜共患疾病,近年来备受关注。目前国际上发现有500多种虫媒病毒,其中130余种可引起人畜共患疾病。同时,虫媒病毒可随人群流动、宿主和媒介昆虫的迁移而传播到异地。由于大部分虫媒病毒感染没有特效药物,也没有可用的疫苗,因此虫媒病毒的研究对病毒的预防与控制具有积极意义。登革病毒隶属于黄病毒属,有四个血清型(DENV-1、-2、-3和-4),经由节肢动物白纹伊蚊(Aedesalbopictus)与埃及伊蚊(Ae.aegypti)传播,是热带、亚热带地区重要的虫媒病毒。目前登革热(Dengue Fever,DF)在超过100个国家流行,威胁着大约25亿人口,全球每年大约有5000万到1亿人受到感染,25000人死亡。由于没有有效的疫苗,病毒早期诊断与及时医疗护理显得尤为重要。我国建国后第一次登革热流行发生在1978年的广州佛山,至今登革热已经成为我国南方重要的公共卫生问题,现已是法定的传染病。系统的了解我国登革病毒三十年来分子流行病学可以阐明病毒的发生、发展,对病毒防护有指导意义。基于此,本研究以我国建国以来收集到的登革病毒为研究对象,从分子水平研究其流行与进化规律,同时开发了登革病毒的实时荧光PCR探针法诊断技术。现将研究结果总结如下:
     一、虫媒登革病毒的基因组进化
     1、基因组测定与比较
     实验测得收集剑的14株登革病毒的DENV-1、-2和-4的基因组全长分别为10735bp、10723bp和10649bp。DENV-1的5'和3'非编码区分别为94nt和462nt,编码区从95位开始到10272位结束,全长10179bp,编码3392个氨基酸。DENV-2的5'和3'非编码区分别为96nt和454nt,编码区从97位开始到10272位结束,全长10176bp,编码3391个氨基酸。DENV-4的5'和3'非编码区分别为101nt和384nt,编码区从102位开始到10265位结束,全长10164bp,编码3387个氨基酸。
     8株DENV-1(1991~2006年)全基因组核酸序列相似性在91.8%-99.7%之间,编码的氨基酸序列相似性在97.0%-99.7%之间;4株(1993~2001年)DENV-2全基因组核酸序列相似性在92.3%-98.8%之间,氨基酸序列相似性在96.5%-98.8%之间;2株(1978和1990年)DENV-4病毒株的全基因组核苷酸相似性为93.6%,编码的氨基酸序列相似性为96.0%。
     同一血清型间5'UTR和3'UTR序列相似性非常高,仅有几个核苷酸差异。我们比较所测的分离株单基因水平氨基酸相似性,发现虽然氨基酸相似性在不同年代、不同病毒株、不同蛋白区域没有明显规律,但总体来讲,在NS3、NS4A、NS4B、NS5蛋白的氨基酸的相似性较高,而在结构蛋白区域氨基酸相似性较低。同时发现,2002-2003、2004、2006和2007四个时间点分离株的E461位点氨基酸分别为异亮氨酸(I)、缬氨酸(V)、亮氨酸(L)、丙氨酸(A),其疏水性参数分别为4.5、4.2、3.8和1.8,疏水性逐渐降低。病毒E蛋白C末端为E蛋白的转膜区,参与病毒与宿主的识别附着,这种疏水性变化趋势是否与病毒与人类宿主细胞相互作用的适应有关值得进一步研究。
     2、虫媒登革病毒基因组进化
     本文对1978至2006年登革热爆发时收集的细胞分离株基因组测序,结合GenBank上已经公布的病毒序列,总共获得145个外膜蛋白E基因序列和74个全基因组序列。基于外膜蛋白E基因与全长编码区序列所构建的系统发生树具有很好的一致性。结果显示:一、我国的大部分登革病毒与东南亚邻近国家的分离株系在进化树位置上更接近,暗示我国登革病毒大部分可能起源于登革病毒多发的东南亚国家,如泰国、菲律宾、印度尼西亚等:二、三种血清型(DENV-1、-2、-4)的虫媒登革病毒在基因型和分支水平具有丰富的遗传多样性,同时,血清型内大量基因重组现象发生也增加了遗传多样性的复杂程度;三、纯化选择是登革病毒进化的主要驱动力,但在病毒的非结构蛋白NS1的94氨基酸位点检测到强烈阳性选择。有趣的是,NS1蛋白94位氨基酸以亲水性及疏水性可以区分特定的进化血系。
     二、虫媒登革病毒的实时荧光PCR诊断
     1、实时荧光PCR诊断技术的建立
     通过生物信息学比对分析GenBank登陆的以及本文测序的登革病毒株系序列,利用PrimerPress3软件设计实时荧光PCR特异性引物及TaqMan探针,14个登革病毒培养上清提取RNA评估引物及探针的特异性、灵敏度。研究表明:本试验设计的四种型特异性引物及TaqMan探针具有特异性好(血清型间、与相近属种、人类基因组、蚊虫细胞间无交叉反应)、敏感性高(最低检测限为15-80拷贝RNA/反应)等特点,可用于诊断登革病毒感染。
     2、实时荧光PCR诊断技术的初步应用
     近年来我国南方发生的登革病毒大部分是血清1型。本文收集到2006年广州1型血清型病毒流行时64份不同病程的病人临床血清样品,评估上述建立的诊断方法的应用性。结果表明:一、本研究开发的实时荧光PCR诊断方法检测阳性率为71.9%(46/64),而传统的免疫荧光分析法(IFA)检测的阳性率IgM为54.7%(35/64),IgG为34.4%(22/64),显示实时荧光PCR诊断方法具有较好的应用性;二、本文开发的实时荧光PCR诊断方法对登革热症状起始1-3天病人血清检测阳性率高达86.4%(19/22),而IFA检测中,IgM与IgG的阳性率仅为18.2%(4/22)和9.1%(2/22),表明此方法能在登革热症状起始后1-3天内较准确的检测病毒感染,克服了IFA检测速度慢及假阳性问题,因此在临床上可应用此方法进行登革病毒的早期快速诊断。
Insect-vectored or arthropod-borne viruses(arboviruses) are a large group of viruses that are spread mainly by blood-sucking insects such as mosquito,sandfly and midge.Those viruses are just carried and transmitted by insects,rather than causing their disease,therefore as natural sources for human disease emergence.Currently,more than 586 specieses of insect have been identified for transmission of 500 viruses,of which 130 viruses could cause serious zoonotic disease.Arboviruses could also be transmitted to other yet-epidemic area by host(human,insect) movement.Despite the serious threat of arbovirus to human health,few specific medicine or vaccine are available for their control,highlighting the necessity of continuing research.Dengue viruses(DENVs),which are transmitted by Aedes albopictus and Ae.Aegypti,belong to the genus of flavivirus with more than one of the four serotypes(DENV-1,-2,and -3) circulating in tropical and subtropical regions. Dengue virus is epidemic in over one hundred countries,threatening 2.5 billion people all over the world.Due to the unavailability of effective vaccine,early diagnosis and timely medical care are of significance for dengue patient.In China,the first epidemic of dengue happens in 1978 in Foshan city,Guangzhou.But now dengue has caused serious public health impact in southern China,and has been documented as an official infectious disease.A systematic understanding of the molecular aspects of dengue epidemiology over thirty-year period is of meaningful for dengue control.As such, this work is focusing on 1) molecular epidemiology of dengue viruses in China from its first emergence in 1978 to the latest outbreak in 2006,and 2) development of real-time PCR TaqMan probe for rapid and early diagnosis of dengue virus.The main results were as follows:
     1.Genomic evolution of dengue virus
     1.1 Genomic sequencing and comparison
     Based on published dengue sequences from GenBank,different specific primers for DENV-1, -2 and -4 full genome amplification were designed,followed by RT-PCR amplification,cloning into pGEM-T vector,and sequencing.By assembling of sequenced fragments,totally,six E gene and fourteen full-genome sequences were obtained.The full-length of genome of DENV-1,-2 and -4 are 10735bp,10723bp,and 10649bp,encoding 3392,3391,3387 amino acids,respectively.The 5' and 3' non-coding region of DENV-1 were 94 and 462 nts,respectively,while DENV-2 were 94 and 452 nts,and DENV-1 were 101 and 485 nts,respectively.
     Nucleotide sequence similarity of eight DENV-1(2001-2006) full genomes was ranging from 91.8%to 99.7%,while their corresponding amino acid sequence similarity was ranging from 97.0% to 98.8%.Nucleotide sequence similarity of four DENV-2(1993-2001) full genomes was ranging from 92.3%to 98.8%,while their corresponding amino acid sequence similarity was ranging from 96.5%to 98.8%.Nucleotide sequence similarity of two DENV-4(1978 and 1990) full genomes was 93.6%,while their corresponding amino acid sequence similarity was ranging from 96%.
     The sequences of 5'UTR and 3'UTR of the same serotype were really conservative,with only several nucleotides difference.According to the amino acid comparison of single protein encoded by sequences determined in the study,the amino acid sequences of NS3,NS4A,NS4B,and NS5 showed superior similarity to that of structural proteins and other nonstructural proteins.We further explored the amino acid change of envelope protein genes collected in the article,and found amino acid position 461 of envelope protein(E461) was Ile(I),Val(V),L(Leu),and A(Ala) at the time point of 2002-2003,2004,2006 and 2007,respectively.And the corresponding hydrophobic parameters for each amino acid were 4.5,4.2,3.8 and 1.8,demonstrating a decreasing trend of hydrophobic parameters.E461 was on the C-terminal of envelope protein,a transmembrane region involving in the host identification and attachment.Whether the trend indicates an adaption of the dengue virus to host remains undetermined.
     1.2 Genomic evolution of dengue virus
     A dataset of 14 full-length DENV genome sequences from 1978 to 2006 and six complete E gene sequences from patients' sera in 2006 was obtained.These sequences were combined with 60 DENV full coding region sequences and 125 E gene sequences taken from GenBank representing a wide range in geographic localities.The longitudinal study of dengue(DENV-1,-2 and -4) molecular epidemiology in south China over the thirty-year period revealed,that 1) introduction from neighboring countries contributes most to the dengue outbreak in China,although endemic strain was inferred and China might also be a dengue source,that 2) genetic diversity of Chinese isolates in genotype and clade level was seen,but it was further complicated by diverse potential intra-serotype recombination,that 3) purifying selection was predominating evolutionary drive, while positively selected site on NS1 of DENV-1 was detected that shows to drive specific lineage evolution by changing hydrophilic amino acids to hydrophobic ones.Those highlight the necessity of concern on natural recombination and nonstructural protein gene for dengue evolution.
     2.Development of real-time PCR diagnosis of dengue viruses
     2.1 Establishment of real-time PCR diagnosis
     All the available sequences from GenBank and the sequences determined in the study were aligned to find their serotype-specific regions for real-time PCR primers and probe exploration by Primer Press 3,followed by evaluation of their specificity and sensitivity by RNA extracted from dengue virus cell culture suspension.Results show that 1) the four sets of primers and TaqMan probes have significant specificity,with no cross reaction between different serotypes,close genus, human genome,and mosquito cell RNA,high sensitivity,with the detection limitation ranging from 15 to 80 copies/reaction.Those indicate the developed real-time PCR methods were reliable for dengue diagnosis.
     2.2 Preliminary evaluation of real-time PCR for dengue diagnosis
     Recently,DENV-1 is the main serotype circulating in south China.Sixty-four clinical blood samples with different time after disease onset were collected during dengue epidemic in 2006 in Guangzhou to evaluate the applicability of the established method.Results show that 1) the positive rate of real-time PCR for detecting dengue is 71.9%(46/64),while the immuno-fluorescence assay (IFA) of IgM is 54.7%(35/64),IgG is 34.4%(22/64),showing superior performance of real-time PCR over IFA,that 2) during the first 1-3 days after the symptom onset,the positive rate of real-time PCR is as high as 86.4%(19/22),while in IFA,the IgM and IgG are 18.2%(4/22) and 9.1(2/22), respectively,indicating real-time PCR detecting dengue in the study is superior,especially in early dengue diagnosis.Those above results indicate real-time PCR developed in the study can be used to dengue diagnosis,especially in early diagnosis.
引文
[1]Halstead,S.B.Pathogenesis of dengue:challenges to molecular biology.Science,1988,239:476-481.
    [2]杨佩英,秦鄂德.登革热和登革出血热.北京:人民军医出版社,1999.
    [3]俞永新.虫媒病毒病的全球分布和重现概况.中华实验和临床病毒学杂志,2005,19:401-407.
    [4]王环宇,梁国栋.我国虫媒病毒研究10年回顾.中国公共卫生,2003,19:473-476.
    [5]王雷,梁国栋.我国虫媒病毒分子生物学研究进展.中华实验和临床病毒学杂志,2006,20:90-9a
    [6]Gubler,D.J.Dengue and dengue hemorrhagic fever.Clin Microbiol Rev,1998,11:480-496.
    [7]Kuhn,R.J.,Zhang,W.,Rossmann,M.G.,et al.Structure of dengue virus:implications for flavivirus organization,maturation,and fusion.Cell,2002,108:717-725.
    [8]涂增,陈唯军,万永继.基于RNA扩增的登革热病毒快速检测.药物分析杂志,2009,29:178-182.
    [9]Ma,L.,Jones,C.T.,Groesch,T.D.,et al.Solution structure of dengue virus capsid protein reveals another fold.Proe Natl Acad Sei U S A,2004,101:3414-3419.
    [10]朱武洋,姜涛,秦成峰等.衣壳蛋白缺失突变对登革病毒致病性及免疫原性的影响.自然科学进展,2007,17:174-181.
    [11]Modis,Y.,Ogata,S.,Clements,D.,et al.Structure of the dengue virus envelope protein after membrane fusion.Nature,2004,427:313-319.
    [12]Modis,Y.,Ogata,S.,Clements,D.,et al.A ligand-binding pocket in the dengue virus envelope glycoprotein.Proc Natl Acad Sci USA,2003,100:6986-6991.
    [13]Huang,K.J.,Yang,Y.C.,Lin,Y.S.,et al.The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection.J Immunol,2006,176:2825-2832.
    [14]张志珊,严延生.登革热试验诊断和疫苗的研究进展.中国人畜共患病学报,2006,22:460-463.
    [15]Winkler,G.,Randolph,V.B.,Cleaves,G.R.,et al.Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer.Virology,1988,162:187-196.
    [16]Crabtree,M.B.,Kinney,R.M.,Miller,B.R.Deglycosylation of the NS1 protein of dengue 2 virus,strain 16681:Construction and characterization of mutant viruses.Arch Virol,2005,150:771-786.
    [17]Pryor,M.J.,Wright,P.J.Glycosylation mutants of dengue virus NS1 protein.J Gen Virol, 1994,75:1183-1187.
    [18]Pryor,M.J.,Wright,P.J.The effects of site-directed mutagenesis on the dimerization and secretion of the NS1 protein specified by dengue virus.Virology,1993,194:769-780.
    [19]Crooks,A.J.,Lee,J.M.,Easterbrook,L.M,et al.The NS1 protein of tick-borne encephalitis virus forms multimeric species upon secretion from the host cell.J Gen Virol,1994,75:3453-3460.
    [20]Libraty,D.H.,Young,P.R.,Pickering,D.,et al.High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever.J Infect Dis,2002,186:1165-1168.
    [21]Flamand,M,Megret,F,Mathieu,M.,et al.Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion.J Virol,1999,73:6104-6110.
    [22]Costa,S.M.,Azevedo,A.S.,Paes,M.V.,et al.DNA vaccines against dengue virus based on the nsl gene:The influence of different signal sequences on the protein expression and its correlation to the immune response elicited in mice.Virology,2007,358:413-423.
    [23]Costa,S.M.,Freire,M.S.,Alves,A.M.B.DNA vaccine against the non-structural 1 protein (NS1) of dengue 2 virus.Vaccine,2006,24:4562-4564.
    [24]Shu,P.-Y.,Chen,L.-K.,Chang,S.-F,et al.Dengue virus serotyping based on envelope and membrane and nonstructural protein NS1 serotype-specific capture immunoglobulin Menzyme-linked immunosorbent assays.J Clin Microbiol,2004,42:2489-2494.
    [25]Shu,P.-Y,Huang,J.-H.Current advances in dengue diagnosis.Clin Diagn Lab Immun,2004,11:642-650.
    [26]Falgout,B.,Chanock,R.,Lai,C.J.Proper processing of dengue virus nonstructural glycoprotein NS1 requires the N-terminal hydrophobic signal sequence and the downstream nonstructural protein NS2a.J Virol,1989,63:1852-1860.
    [27]Yusof,R.,Clum,S.,Wetzel,M.,et al.Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro.J Biol Chem,2000,275:9963-9969.
    [28]Benarroch,D.,Selisko,B.,Locatelli,G A.,et al.The RNA helicase,nucleotide 5'-triphosphatase,and RNA 5'-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core.Virology,2004,328:208-218.
    [29]Bartelma,G,Padmanabhan,R.Expression,purification,and characterization of the RNA 5'-triphosphatase activity of dengue virus type 2 nonstructural protein 3.Virology,2002,299: 122-132.
    [30]Lindenbach,B.D.,Rice,C.M.Genetic interaction of flavivirus nonstructural proteins NS1and NS4A as a determinant of replicase function.J Virol,1999,73:4611-4621.
    [31]Umareddy,I.,Chao,A.,Sampath,A.,et al.Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA.J Gen Virol,2006,87:2605-2614.
    [32]Munoz-Jordan,J.L.,Sanchez-Burgos,G.G.,Laurent-Rolle,M.,et al.Inhibition of interferon signaling by dengue virus.Proc Natl Acad Sci USA,2003,100:14333-14338.
    [33]Koonin,E.V.Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus.J Gen Virol,1993,74:733-740.
    [34]Egloff,M.-P.,Benarroch,D.,Selisko,B.,et al.An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polyrnerase NS5:crystal structure and functional characterization.EMBO J,2002,21:2757-2768.
    [35]Hanley,K.A.,Lee,J.J.,Blaney,J.E.,Jr.,et al.Paired charge-to-alanine mutagenesis of dengue virus type 4 NS5 generates mutants with temperature-sensitive,host range,and mouse attenuation phenotypes.J Virol,2002,76:525-531.
    [36]Benarroch,D.,Egloff,M.-P.,Mulard,L.,et al.A structural basis for the inhibition of the NS5 dengue virus mRNA 2'-O-methyltransferase domain by ribavirin 5'-triphosphate.J Biol Chem,2004,279:35638-35643.
    [37]Cui,T.,Sugrue,R.J.,Xu,Q.,et al.Recombinant dengue virus type 1 NS3 protein exhibits specific viral RNA binding and NTPase activity regulated by the NS5 protein.Virology,1998,246:409-417.
    [38]Yon,C.,Teramoto,T.,Mueller,N.,et al.Modulation of the nucleoside triphosphatase/RNA helicase and 5'-RNA triphosphatase activities of dengue virus type 2 nonstructural protein 3(NS3) by interaction with NS5,the RNA-dependent RNA polymerase.J Biol Chem,2005,280:27412-27419.
    [39]Chen,C.J.,Kuo,M.D.,Chien,L.J.,et al.RNA-protein interactions:involvement of NS3,NS5,and 3' noncoding regions of Japanese encephalitis virus genomic RNA.J Virol,1997,71:3466-3473.
    [40]Medin,C.L.,Fitzgerald,K.A.,Rothman,A.L.Dengue virus nonstructural protein NS5induces interleukin-8 transcription and secretion.J Virol,2005,79:11053-11061.
    [41]Wang,W.-K.,Sung,T.-L.,Tsai,Y.-C.,et al.Detection of dengue virus replication in peripheral blood mononuclear cells from dengue virus type 2-infected patients by a reverse transcription-real-time PCR assay.J Clin Microbiol,2002,40:4472-4478.
    [42]AnandaRao,R.,Swaminathan,S.,Khanna,N.The identification of immunodominant linear epitopes of dengue type 2 virus capsid and NS4a proteins using pin-bound peptides.Virus Res,2005,112:60-68.
    [43]Mukhopadhyay,S.,Kuhn,R.J.,Rossmann,M.G.A structural perspective of the flavivirus life cycle.Nat Rev Microbiol,2005,3:13-22.
    [44]Lindenbach,B.D.,Rice,C.M.Trans-complementation of yellow fever virus NSl reveals a role in early RNA replication.J Virol,1997,71:9608-9617.
    [45]Falgout,B.,Miller,R.H.,Lai,C.J.Deletion analysis of dengue virus type 4 nonstructural protein NS2B:identification of a domain required for NS2B-NS3 protease activity.J Virol,1993,67:2034-2042.
    [46]Krishna Murthy,H.M.,Judge,K.,DeLucas,L.,et al.Crystal structure of dengue virus NS3 protease in complex with a bowman-birk inhibitor:implications for flaviviral polyprotein processing and drug design.J Mol Biol,2000,301:759-767.
    [47]Luo,D.,Xu,T,Hunke,C,et al.Crystal structure of the NS3 protease-helicase from dengue virus.J Virol,2008,82:173-183.
    [48]Miller,S.,Kastner,S.,Krijnse-Locker,J.,et al.The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner.J Biol Chem,2007,282:8873-8882.
    [49]Munoz-Jordan,J.L.,Laurent-Rolle,M.,Ashour,J.,et al.Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses.J Virol,2005,79:8004-8013.
    [50]Yap,T.L.,Xu,T,Chen,Y.-L.,et al.Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution.J Virol,2007,81:4753-4765.
    [51]Filomatori,C.V.,Lodeiro,M.F.,Alvarez,D.E.,et al.A 5' RNA element promotes dengue virus RNA synthesis on a circular genome.Genes Dev,2006,20:2238-2249.
    [52]Alvarez,D.E.,Lodeiro,M.F.,Luduena,S.J.,et al.Long-range RNA-RNA interactions circularize the dengue virus genome.J Virol,2005,79:6631-6643.
    [53]Zeng,L.,Falgout,B.,Markoff,L.Identification of specific nucleotide sequences within the conserved 3'-SL in the dengue type 2 virus genome required for replication.J Virol,1998,72:7510-7522.
    [54]Tilgner,M.,Deas,T.S.,Shi,P.-Y.The flavivirus-conserved penta-nucleotide in the 3' stem-loop of the West Nile virus genome requires a specific sequence and structure for RNA synthesis,but not for viral translation.Virology,2005,331:375-386.
    [55]Elghonemy,S.,Davis,W.G,Brinton,M.A.The majority of the nucleotides in the top loop of the genomic 3'terminal stem loop structure are cis-acting in a West Nile virus infectious clone.Virology,2005,331:238-246.
    [56]Hahn,C.S.,Hahn,Y.S.,Rice,C.M.,et al.Conserved elements in the 3' untranslated region of flavivirus RNAs and potential cyclization sequences.J Mol Biol,1987,198:33-41.
    [57]Alvarez,D.E.,De Lella Ezcurra,A.L.,Fucito,S.,et al.Role of RNA structures present at the 3' UTR of dengue virus on translation,RNA synthesis,and viral replication.Virology,2005,339:200-212.
    [58]Alvarez,D.E.,Filomatori,C.V.,Gamarnik,A.V.Functional analysis of dengue virus cyclization sequences located at the 5' and 3'UTRs.Virology,2008,375:223-235.
    [59]于学东,姜涛,陈水平等.登革4型病毒5'非编码区SLB元件对病毒复制和翻译的调控作用.解放军医学杂志,2008,33:806-810.
    [60]Polacek,C.,Foley,J.E.,Harris,E.Conformational changes in the solution structure of the dengue virus 5' end in the presence and absence of the 3' untranslated region.J Virol,2009,83:1161-1166.
    [61]尉雁,姜涛,李晓峰等.登革2型病毒中国株3'非编码区RNA元件对翻译的影响.微生物学报,2008,48:583-588.
    [62]于学东,姜涛,陈水平等.登革4型病毒基因组cHP发卡结构对病毒复制和翻译的调控作用.军事医学科学院院刊,2008,32:201-206.
    [63]Clyde,K.,Harris,E.RNA secondary structure in the coding region of dengue virus type 2directs translation start codon selection and is required for viral replication.J Virol,2006,80:2170-2182.
    [64]Alcon,S.,Talarmin,A.,Debruyne,M.,et al.Enzyme-linked immunosorbent assay specific to dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary Infections.J Clin Microbiol,2002,40:376-381.
    [65]陈万山,张复春,卢业成等.固相酶联免疫测定法检测NS1抗原在登革病毒感染早期诊断中的应用.热带医学杂志,2007,7.742-744
    [66]Ty Hang,V.,Minh Nguyet,N.,The Trung,D.,et al.Diagnostic accuracy of NS1 ELISA and lateral flow rapid tests for dengue sensitivity,specificity and relationship to viraemia and antibody responses.PLoS Negl Trop Dis,2009,3:e360.
    [67]Qiu,L.-W.,Di,B.,Wen,K.,et al.Development of an antigen capture immunoassay based on monoclonal antibodies specific for dengue virus serotype 2 nonstructural protein 1 for early and rapid identification of dengue virus serotype 2 infections.Clin Vaccine Immunol,2009,16:88-95.
    [68]Xu,H.,Di,B.,Pan,Y.X.,et al.Serotype 1-specific monoclonal antibody-based antigen capture immunoassay for detection of circulating nonstructural protein NSI:Implications for early diagnosis and serotyping of dengue virus infections.J Clin Microbiol,2006,44:2872-2878.
    [69]Alcon-LePoder,S.,Sivard,P.,Drouet,M.T.,et al.Secretion of faviviral non-structural protein NS1:from diagnosis to pathogenesis.In:GREGORY,B.& JAMIE,G.(Eds.) New treatment strategies for dengue and other flaviviral diseases.Chichester,John Wiley & Sons Ltd.,2006.
    [70]Lanciotti,R.S.,Calisher,C.H.,Gubler,D.J.,et al.Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction.J Clin Microbiol,1992,30:545-551.
    [71]Harris,E.,Roberts,T.G.,Smith,L.,et al.Typing of dengue viruses in clinical specimens and mosquitoes by single-tube multiplex reverse transcriptase PCR.J Clin Microbiol,1998,36:2634-2639.
    [72]肖维威,马文丽,郑夔等.用多重PCR快速检测登革病毒并分型.检验医学,2004,19:393-395.
    [73]任瑞文,方美玉,刘建伟等.多重逆转录-聚合酶链反应快速检测登革病毒及其临床应用.中华流行病学杂志,2005,26:29-32.
    [74]Johnson,B.W.,Russell,B.J.,Lanciotti,R.S.Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay.J Clin Microbiol,2005,43:4977-4983.
    [75]Lo,C.L.H.,Yip,S.P.,Cheng,P.K.C.,et al.One-step rapid reverse transcription-PCR assay for detecting and typing dengue viruses with GC tail and induced fluorescence resonance energy transfer techniques for melting temperature and color multiplexing.Clin Chem,2007,53:594-599.
    [76]王佃鹏,朱玉兰,吴兵等.SYBR Green I荧光PCR检测登革热病毒基因方法的建立.中国热带医学,2007,7:1743-1744.
    [77]刘建军,阳帆,何建凡等.登革病毒实时荧光PCR快速检测技术研究.卫生研究,2006,35:736-738.
    [78]柯昌文,郑夔,张欣等.TaqMan MGB探针实时聚合酶链反应检测登革病毒.中国人兽共患病杂志,2005:716-720.
    [79]徐昌平,卢亦愚,严菊英等.TaqMan荧光定量RT-PCR快速检测登革1、2型病毒.中国媒介生物学及控制杂志,2006,17:481-483.
    [80]郑夔,洪烨,李小波等.一种无RNA纯化步骤TaqMan RT-PCR方法用于快速检测登革 病毒.华南预防医学,2008,34:6-10.
    [81]Laue,T.,Emmerich,P.,Schmitz,H.Detection of dengue virus RNA in patients after primary or secondary dengue infection by using the TaqMan automated amplification system.J Clin Microbiol,1999,37:2543-2547.
    [82]Callahan,J.D.,Wu,S.-J.L.,Dion-Schultz,A.,et al.Development and evaluation of serotype- and group-specific fluorogenic reverse transcriptase PCR(TaqMan) assays for dengue virus.J Clin Microbiol,2001,39:4119-4124.
    [83]Chen,R.-F.,Yeh,W.-T.,Yang,M.-Y.,et al.A model of the real-time correlation of viral titers with immune reactions in antibody-dependent enhancement of dengue-2 infections.FEMS Immunol Med Microbiol,2001,30:1-7.
    [84]Houng,H.-S.H.,Chung-Ming Chen,R.,Vaughn,D.W.,et al.Development of a fluorogenic RT-PCR system for quantitative identification of dengue virus serotypes 1-4using conserved and serotype-specific 3' noncoding sequences.J Virol Methods,2001,95:19-32.
    [85]Warrilow,D.,Northill,J.A.,Pyke,A.,et al.Single rapid TaqMan fluorogenic probe based PCR assay that detects all four dengue serotypes.J Med Virol,2002,66:524-528.
    [86]Drosten,C.,Gottig,S.,Schilling,S.,et al.Rapid detection and quantification of RNA of ebola and marburg viruses,lassa virus,crimean-congo hemorrhagic fever virus,rift valley fever virus,dengue virus,and yellow fever virus by Real-Time reverse transcription-PCR.J Clin Microbiol,2002,40:2323-2330.
    [87]Shu,P.-Y.,Chang,S.-F.,Kuo,Y.-C.,et al.Development of group- and serotype-specific one-step SYBR Green I-based real-time reverse transcription-PCR assay for dengue virus.J Clin Microbiol,2003,41:2408-2416.
    [88]Ito,M.,Takasaki,T.,Yamada,K.-I.,et al.Development and evaluation of fluorogenic TaqMan reverse transcriptase PCR assays for detection of dengue virus types 1 to 4.J Clin Microbiol,2004,42:5935-5937.
    [89]Chien,L.-J.,Liao,T.-L.,Shu,P.-Y.,et al.Development of real-time reverse transcriptase PCR assays to detect and serotype dengue viruses.J Clin Microbiol,2006,44:1295-1304,
    [90]Gomes-Ruiz,A.C.,Nascimento,R.T.,Paula,S.O.d.,et al.SYBR green and TaqMan real-time PCR assays are equivalent for the diagnosis of dengue virus type 3 infections.J Med Virol,2006,78:760-763.
    [91]Kong,Y.Y.,Thay,C.H.,Tin,T.C.,et al.Rapid detection,serotyping and quantitation of dengue viruses by TaqMan real-time one-step RT-PCR,J Virol Methods,2006,138:123-130.
    [92]Lai,Y.-L.,Chung,Y.-K.,Tan,H.-C.,et al.Cost effective real time RT-PCR to screen for dengue followed by rapid single-tube multiplex RT-PCR for serotyping of the virus.J Clin Microbiol,2007,45:935-941.
    [93]Gurukumar,K.,Priyadarshini,D.,Patil,J.,et al.Development of real time PCR for detection and quantitation of dengue viruses.Virology J,2009,6:10.
    [94]Wu,S.-J.L.,Lee,E.M.,Putvatana,R.,et al.Detection of dengue viral RNA using a nucleic acid sequence-based amplification assay.J Clin Microbiol,2001,39:2794-2798.
    [95]Parida,M.,Horioke,K.,Ishida,H.,et al.Rapid detection and differentiation of dengue virus serotypes by a real-time reverse transcription-loop-mediated isothermal amplification assay.J Clin Microbiol,2005,43:2895-2903.
    [96]Matheus,S.,Meynard,J.-B.,Lacoste,V.,et al.Use of capillary blood samples as a new approach for diagnosis of dengue virus infection.J Clin Microbiol,2007,45:887-890.
    [97]Dyer,J.,Chisenhall,D.M.,Mores,C.N.A multiplexed TaqMan assay for the detection of arthropod-borne tlaviviruses.J Virol Methods,2007,145:9-13.
    [98]Mizuno,Y.,Kotaki,A.,Harada,F.,et al.Confirmation of dengue virus infection by detection of dengue virus type 1 genome in urine and saliva but not in plasma.Trans R Soc Trop Med Hyg,2007,101:738-739.
    [99]Colbert,J.,Gordon,A.,Roxelin,R.,et al.Ultrasound measurement of gallbladder wall thickening as a diagnostic test and prognostic indicator for severe dengue in pediatric patients.Pediatr Infect Dis J,2007,26:850-852.
    [100]赵卫,曹虹,张文炳.登革病毒与登革热的起源研究.中国人畜共患病杂志,2006,22:170-172.
    [101]Holmes,E.C.,Twiddy,S.S.The origin,emergence and evolutionary genetics of dengue virus.Infect Genet Evol,2003,3:19-28.
    [102]方美玉,赵文忠,刘建伟.登革热分子流行病学研究概况.中华流行病学杂志,2002,23:148-150.
    [103]Rico-Hesse,R.Molecular evolution and distribution of dengue viruses type 1 and 2 in nature.Virology,1990,174:479-493.
    [104]Thant,K.Z.,Morita,K.,Igarashi,A.Sequences of E/NS1 genejunction from four dengue-2viruses of Northeastern Thailand and their evolutionary relationships with other dengue-2viruses.Microbiol immunol,1995,39:581-590.
    [105]Lanciotti,R.S.,Lewis,J.G.,Gubler,D.J.,et al.Molecular evolution and epidemiology of dengue-3 viruses.J Gen Virol,1994,75:65-75.
    [106]Lanciotti,R.S.,Gubler,D.J.,Trent,D.W.Molecular evolution and phylogeny of dengue-4 viruses.J Gen Virol,1997.78:2279-2284。
    [107]Li,G,Yao,J.L.,Peng,W W,et al.Co-infection of dengue virus type 2 and 4 during 1993epidemic in Guangdong province,China.Chin Med J,1995,75:38-39.
    [108]胡志君,杨敬,赵卫等.我国两株登革2型病毒基因组的全序列分析.中国病毒学,2002,12:17-21.
    [109]李晓萸,耿丽卿,苑锡同等.我国登革1型病毒广州株基因组全序列测定与分析.军事医学科学院院刊,2001,25:161-165.
    [110]王鹏程,秦鄂德,于曼等.我国登革4型病毒B5株基因组全序列的测定及分析.中国生物化学与分子生物学报,2001,17:148-154.
    [111]苑锡同,耿丽卿,于曼等.我国登革3型病毒广西80-2株基因组全序列分析.中国生物化学与分子生物学报,2001,17:621-625.
    [112]刘志文,俞永新,贾丽丽等.建国后首次登革热暴发分离的2株登革4型病毒prM和E 基因序列测定及其系统发生分析.中国人兽共患病学报,2007,23:678-682.
    [113]Zhu,W.,Chen,S.,Qin,C.,et al.Construction and identification of reverse genetics system of dengue type 2 virus isolated in China.Chinese Sci Bull,2006,51:2065-2071.
    [114]罗招凡,薛红漫,刘建伟等.TaqMan MGB实时荧光定量PCR检测登革Ⅰ型病毒.中华医院感染学杂志,2007,17:1174-1177.
    [115]肖维威,马文丽,黄吉城等.应用RT-PCR制备登革病毒诊断基因芯片探针.生命科学研究,2004:67-70.
    [116]梁国栋.虫媒病毒是我国亟待加强的研究领域.中华实验和临床病毒学杂志,2005,19:503-504.
    [117]卢业成.2003广州地区登革热病毒感染的快速诊断及可能来源分析.广州:暨南大学,2004.
    [118]梁文佳,何剑峰,罗会明等.广东省2001-2006年登革热流行病学分析.华南预防医学,2007,33:4-7.
    [119]张光学,王静,于爱莲等.蚊虫幼虫生物防治研究进展.中华实验和临床感染病杂志(电子版),2008,2.
    [120]Hu,X.,Fan,W.,Han,B.,et al.Complete genome sequence of the mosquitocidal bacterium Bacillus sphaericus C3-41 and comparison with those of closely related bacillus species.J Bacteriol,2008,190:2892-2902.
    [121]Nene,V.,Jennifer R.Wortman,Daniel Lawson,et al.Genome sequence of Aedes aegypti,a major arbovirus vector.Science,2007,316:1718-1723.
    [122]Waterhouse,R.M.,Kriventseva,E.V.,Meister,S.,et al.Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes.Science,2007,316: 1738-1743.
    [123]Xi,Z.,Ramirez,J.L.,Dimopoulos,G.The Aedes aegypti toll pathway controls dengue virus infection.PLoS Pathog,2008,4:e1000098.
    [124]S(?)nchez-Vargas,I.,Scott,J.C.,Poole-Smith,B.K.,et al.Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway.PLoS Pathog,2009,5:e1000299.
    [125]Nimmo,D.D.,Alphey,L.,Meredith,J.M.,et al.High efficiency site-specific genetic engineering of the mosquito genome.Insect Mol Biol,2006,15.
    [126]Xi,Z.,Khoo,C.C.H.,Dobson,S.L.Wolbachia establishment and invasion in an Aedes aegypti laboratory population.Science,2005,310:326-328.
    [127]McMeniman,C.J.,Lane,R.V.,Cass,B.N.,et al.Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti.Science,2009,323:141-144.
    [128]Franz,A.W.E.,Sanchez-Vargas,I.,Adelman,Z.N.,et al.Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti.Proc Natl Acad Sci U S A,2006,103:4198-4203.
    [129]Travanty,E.A.,Adelman,Z.N.,Franz,A.W.E.,et al.Using RNA interference to develop dengue virus resistance in genetically modified Aedes aegypti.Insect Biochem Mole Biol,2004,34:607-613.
    [130]梁国栋.我国虫媒病毒研究状况.中国人兽共患病学报,1997,13:61-63.
    [131]方美玉,赵文忠,蒋廉华等.广东省登革病毒的分子流行病学研究.中华微生物学和免疫学杂志,2001,21:326-329.
    [132]Drake,J.W.,Holland,J.J.Mutation rates among RNA viruses.Proc Natl Acad Sci U S A,1999,96:13910-13913.
    [133]Rebeca,R.-H.Microevolution and virulence of dengue viruses.Adv Virus Res,2003,59:315-341.
    [134]Twiddy,S.S.,Holmes,E.C.,Rambaut,A.Inferring the rate and time-scale of dengue virus evolution.Mol Biol Evol,2003,20:122-129.
    [135]Sanchez,I.J.,Ruiz,B.H.A single nucleotide change in the E protein gene of dengue virus 2 Mexican strain affects neumvirulence in mice.J Gen Virol,1996,77:2541-2545.
    [136]Twiddy,S.S.,Farrar,J.J.,Vinh Chau,N.,et al.Phylogenetic relationships and differential selection pressures among genotypes of dengue-2 virus.Virology,2002,298:63-72.
    [137]WHO.Dengue haemorrhagic fever:diagnosis,treatment,prevention and control.Geneva,Switzerland:World Health Organization,1997.
    [138]Fu,J.,Tan,B.-H.,Yap,E.-H.,et al.Full-length cDNA sequence of dengue type 1 virus (Singapore strain S275/90).Virology,1992,188:953-958.
    [139]Deubel,V.,Kinney,R.M.,Trent,D.W.Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of dengue type 2 virus,Jamaica genotype:comparative analysis of the full-length genome.Virology,1988,165:234-244.
    [140]Durbin,A.P.,Karron,R.A.,Sun,W.,et al.Attenuation and immunogenicity in humans of a live dengue virus type-4 vaccine candidate with a 30 nucleotide deletion in its 3'-untranslated region.Am J Trop Med Hyg,2001,65:405-413.
    [141]Posada,D.,Crandall,K.A.MODELTEST:testing the model of DNA substitution.Bioinformatics,1998,14:817-818.
    [142]Guindon,S.,Gascuel,O.A simple,fast,and accurate algorithm to estimate large phylogenies by maximum likelihood.Syst Biol,2003,52:696-704.
    [143]Guindon,S.,Lethiec,F.,Duroux,P.,et al.PHYML online-a web server for fast maximum likelihood-based phylogenetic inference.Nucl Acids Res,2005,33:W557-559.
    [144]Martin,D.P.,Williamson,C,Posada,D.RDP2:recombination detection and analysis from sequence alignments.Bioinformatics,2005,21:260-262.
    [145]Martin,D.P.,Posada,D.,Crandall,K.A.,et al.A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints.AIDS Res Hum Retroviruses,2005,21:98-102.
    [146]Posada,D.,Crandall,K.A.Evaluation of methods for detecting recombination from DNA sequences:Computer simulations.Proc Natl Acad Sci USA,2001,98:13757-13762.
    [147]Padidam,M.,Sawyer,S.,Fauquet,C.M.Possible emergence of new Geminiviruses by frequent recombination.Virology,1999,265:218-225.
    [148]Smith,J.M.Analyzing the mosaic structure of genes.J Mol Evol,1992,34:126-129.
    [149]Kosakovsky Pond,S.L.,Frost,S.D.W.Datamonkey:rapid detection of selective pressure on individual sites of codon alignments.Bioinformatics,2005,21:2531-2533.
    [150]Kosakovsky Pond,S.L.,Posada,D.,Gravenor,M.B.,et al.GARD:a genetic algorithm forrecombination detection.Bioinformatics,2006,22:3096-3098.
    [151]Kosakovsky Pond,S.L.,Frost,S.D.W.,Muse,S.V.HyPhy:hypothesis testing using phylogenies.Bioinformatics,2005,21:676-679.
    [152]Kishino,H.,Hasegawa,M.Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data,and the branching order in hominoidea.J Mol Evol,1989,29:170-179.
    [153]Goncalvez,A.P.,Escalante,A.A.,Pujol,F.H.,et al.Diversity and evolution of the envelope gene of dengue virus type 1.Virology,2002,303:110-119.
    [154]Nukui,Y,Tajima,S.,Kotaki,A.,et al.Novel dengue virus type 1 from travelers to Yap State,Micronesia.Emerg Infect Dis,2006,12:343-346.
    [155]A-Nuegoonpipat,A.,Berlioz-Arthaud,A.,Chow,V.,et al.Sustained transmission of dengue virus type 1 in the Pacific due to repeated introductions of different Asian strains.Virology,2004,329:505-512.
    [156]Domingo,C,Palacios,G,Jabado,O.,et al.Use of a short fragment of the C-terminal E gene for detection and characterization of two new lineages of dengue virus 1 in India.J Clin Microbiol,2006,44:1519-1529.
    [157]Xu,G,Dong,H.,Shi,N.,et al.An outbreak of dengue virus serotype 1 infection in CiXi,NingBo,People's Republic of China,2004,associated with a traveller from Thailand and high density of Aedes Albopictus.Am J Trop Med Hyg,2007,76:1182-1188.
    [158]Li,X.-Y,Geng,L.-Q.,Yuang,X.-T.,et al.Determination and analysis of the complete genome of dengue 1 virus GZ/80 strain.Bul Acad Mil Med Sci,2001,25:161-165.
    [159]Zhang,C,Mammen,M.P.,Jr.,Chinnawirotpisan,P.,et al.Structure and age of genetic diversity of dengue virus type 2 in Thailand.J Gen Virol,2006,87:873-883.
    [160]AbuBakar,S.,Wong,P.-F.,Chan,Y.-F.Emergence of dengue virus type 4 genotype ⅡA in Malaysia.J Gen Virol,2002,83:2437-2442.
    [161]Wang,E.,Ni,H.,Xu,R.,et al.Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses.J Virol,2000,74:3227-3234.
    [162]Setiati,T.E.,Wagenaar,J.F.P.,Martijn,D.d.K.,et al.Changing epidemiology of dengue haemorrhagic fever in Indonesia.Dengue Bulletin,2006,30.
    [163]Tolou,H.J.G,Couissinier-Paris,P.,Durand,J.P.,et al.Evidence for recombmation in natural populations of dengue virus type 1 based on the analysis of complete genome sequences.J Gen Virol,2001,82:1283-1290.
    [164]Chen,S.P.,Yu,M.,Jiang,T.,et al.Identification of a recombinant dengue virus type 1 with 3 recombination regions in natural populations in Guangdong province,China.Arch Virol,2008,153:1175-1179.
    [165]Holmes,E.C,Worobey,M.,Rambaut,A.Phylogenetic evidence for recombination in dengue virus.Mol Biol Evol,1999,16:405-409.
    [166]Worobey,M.,Rambaut,A.,Holmes,E.C.Widespread intra-serotype recombination in natural populations of dengue virus.Proc Natl Acad Sci USA,1999,96:7352-7357.
    [167]Aaskov,J.,Buzacott,K.,Field,E.,et al.Multiple recombinant dengue type 1 viruses in an isolate from a dengue patient.J Gen Virol,2007,88:3334-3340.
    [168]Kosakovsky Pond,S.L.,Posada,D.,Gravenor,M.B.,et al.Automated phylogenetic detection of recombination using a genetic algorithm.Mol Biol Evol,2006,23:1891-1901.
    [169]Anisimova,M,Nielsen,R.,Yang,Z.Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites.Genetics,2003,164:1229-1236.
    [170]Shriner,D.,Nickle,D.C,Jensen,M.A.,et al.Potential impact of recombination on sitewise approaches for detecting positive natural selection.Genet Res,2003,81:115-121.
    [171]Zhang,C,Mammen,M.P.,Jr.,Chinnawirotpisan,P.,et al.Clade replacements in dengue virus serotypes 1 and 3 are associated with changing serotype prevalence.J Virol,2005,79:15123-15130.
    [172]Rico-Hesse,R.Microevolution and virulence of dengue viruses.Adv Virus Res,2003,59:315-341.
    [173]Gubler,D.J.Dengue and dengue hemorrhagic fever.Clin Microbiol Rev,1998,11:480496.
    [174]Fan,W.E,Yu,S.R.,Cosgriff,T.M.The reemergence of dengue in China.Rev Infect Dis,1989,11:S847-853.
    [175]Craig,S.,Thu,H.M,Lowry,K.,et al.Diverse dengue type 2 virus populations contain recombinant and both parental viruses in a single mosquito host.J Virol,2003,77:4463-4467.
    [176]Thu,H.M.,Lowry,K.,Jiang,L.,et al.Lineage extinction and replacement in dengue type 1 virus populations are due to stochastic events rather than to natural selection.Virology,2005,336:163-172.
    [177]Ong,S.H.,Yip,J.T.,Chen,Y L.,et al.Periodic re-emergence of endemic strains with strong epidemic potential~A proposed explanation for the 2004 Indonesian dengue epidemic.Infect Genet Evol,2008,8:191-204.
    [178]Peng,W.,Man,Y,Baochang,E,et al.Simultaneous infection with dengue 2 and 3 viruses in a Chinese patient return from Sri Lanka.J Clin Virol,2005,32:194-198.
    [179]Bharaj,P.,Chahar,H.S.,Pandey,A.,et al.Concurrent infections by all four dengue virus serotypes during an outbreak of dengue in 2006 in Delhi,India.Virol J,2008,5.
    [180]Twiddy,S.S.,Woelk,C.H.,Holmes,E.C.Phylogenetic evidence for adaptive evolution of dengue viruses in nature.J Gen Virol,2002,83:1679-1689.
    [181]Bennett,S.N.,Holmes,E.C,Chirivella,M.,et al.Selection-driven evolution of emergent dengue virus.Mol Biol Evol,2003,20:1650-1658.
    [182]Rodriguez-Roche,R.,Alvarez,M.,Gritsun,T.,et al.Virus evolution during a severe dengue epidemic in Cuba,1997.Virology,2005,334:154-159.
    [183]Klungthong,C,Zhang,C,Mammen,J.M.P.,et al.The molecular epidemiology of dengue virus serotype 4 in Bangkok,Thailand.Virology,2004,329:168-179.
    [184]Mathew,A.,Kurane,I.,Rothman,A.L.,et al.Dominant recognition by human CD8+ cytotoxic T lymphocytes of dengue virus nonstructural proteins NS3 and NS1.2a.J Clin Invest,1996,98:1684-1691.
    [185]Falconar,A.K.I.The dengue virus nonstructural-1 protein (NSl) generates antibodies to common epitopes on human blood clotting,integrin/adhesin proteins and binds to humanendothelial cells:potential implications in haemorrhagic fever pathogenesis.Arch Virol,1997,142:897-916.
    [186]Mongkolsapaya,J.,Dejnirattisai,W.,Xu,X.-n.,et al.Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever.Nat Med,2003,9:921-927.
    [187]Avirutnan,P.,Punyadee,N.,Noisakran,S.et al.Vascular leakage in severe dengue virus infections:a potential role for the nonstructural viral protein NSl and complement.J Infect Dis,2006,193:1078-1088.
    [188]Avirutnan,P.,Zhang,L.,Punyadee,N.,et al.Secreted NSl of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E.PLoS Pathog,2007,3:e183.
    [189]Noisakran,S.,Dechtawewat,T.,Avirutnan,P.,et al.Association of dengue virus NS1 protein with lipid rafts.J Gen Virol,2008,89:2492-2500.
    [190]Xu,H.,Di,B.,Pan,Y.-X.,et al.Serotype 1-specific monoclonal antibody-based antigen capture immunoassay for detection of circulating nonstructural protein NSl:implications for early diagnosis and serotyping of dengue virus Infections.J Clin Microbiol,2006,44:2872-2878.