心房过表达血管紧张素转化酶2改善犬心房快速起搏所致心房电重构的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     心房颤动(Atrial Fibrillation,简称房颤)是临床上最常见的心律失常,具有较高的致残率和致死率,严重影响患者生活质量。既往研究表明肾素-血管紧张素系统(Renin-Angiotensin System, RAS)的过度激活,尤其是血管紧张素II(Angiotensin II,Ang II)不仅在心房结构重构中扮演了重要作用,也对心房肌离子通道和缝隙连接蛋白具有不良效应而表现出促心律失常作用。
     血管紧张素转换酶2(ACE2)是一种羧肽酶,其能够将具有血管收缩效应的AngII转化为扩血管七肽血管紧张素-(1-7)[Ang-(1-7)],从而起到负性调节RAS的作用。研究表明,过表达ACE2能够拮抗血管紧张素Ⅱ介导的心肌肥厚和间质纤维化,防止心功能不全。新近,一些研究提示Ang-(1-7)不仅能够预防90%动作电位时程的缩短,也能够改善长期心房快速起搏所致的犬心房肌离子通道重构。然而,ACE2/Ang-(1-7)对心房离子通道和缝隙连接蛋白的影响及其分子机制目前尚不清楚。
     目的:
     既往研究已经证明心房外膜涂染腺病毒具有较高靶向性和高转染效率。本研究拟通过心外膜涂染血管紧张素转化酶2(Angiotensin-converting enzyme2, ACE2)基因的方法探讨其预防和改善心房快速起搏模型所致电重构的影响及其分子机制。
     方法:
     入选成年健康杂种犬(雌雄不分,20-30Kg)28只,随机分为Sham组(假手术组)、Control组(对照组)、Ad-EGFP组(心房快速起搏+心房外膜涂染Ad-EGFP)和Ad-ACE2组(心房快速起搏+心房外膜涂染Ad-ACE2),每组7只。其中假手术组和对照组为空腺病毒,Ad-EGFP组和Ad-ACE2组分别涂抹携带有EGFP和ACE2的腺病毒。所有对照组、Ad-EGFP组和Ad-ACE2组的实验犬均接受心房快速起搏(450次/分),假手术组不给予心房起搏。2周后,所有实验犬接受开胸手术操作和心外膜电生理研究(Electrophysiological study, EP),然后完成心外膜基因涂染。基因转染后21天,所有动物完成第二次心脏电生理检查后处死,取动物标本进行组织学和分子生物学研究,如下:
     1)为探讨心房快速起搏所致的组织病理学改变,采用苏木精-伊红(HE)和天狼猩红染色评价。
     2)为探讨过表达ACE2对RAS的影响,本研究采用了实时荧光定量RT-PCR、免疫印迹、ELISA和免疫组化等方法评价了RAS系统成员的表达,如ACE2, Ang II和Ang-(1-7)。
     3)进一步探索过表达ACE2对心房离子通道蛋白和缝隙连接的影响,采用免疫印迹、激光共聚焦免疫组化和实时定量RT-PCR检测相关蛋白的表达与分布。
     结果:
     3周后第二次手术与第一次手术时相比较,Control组、Ad-EGFP组和Ad-ACE2组左、右心房的有效不应期(Atrial effective refractoryperiod, AERP)均有显著性降低,且(AERP350-AERP250)/100(反应AERP频率适应性)亦显著降低,Sham组基因转染前后左、右心房的AERP无显著改变。在房性心律失常的诱发率与持续时间方面,Sham组仅能诱发出短暂房性心律失常;与Sham组和基线相比,Control组和Ad-EGFP组房性心律失常诱发率显著增加,且房性心律失常的持续时间明显延长;然而,Ad-ACE2组基因转染前后房性心律失常的诱发率和持续时间无明显改变。
     HE染色未见各组犬发生严重的心包炎症、渗出和出血。Sham组犬心房肌细胞纤维排列有序,细胞之间的间隙适中。Control组和Ad-EGFP组犬心房肌细胞纤维出现挛缩、断裂、排列紊乱,天狼星染色提示心房肌间质广泛纤维化,心内膜和心外膜纤维组织增厚。相反,与Control组和Ad-EGFP组相比,上述病理异常在Ad-ACE2组明显减轻,心房肌纤维分布与排列大致有序,心肌间质纤维化显著减轻。
     纤维化定量分析进一步显示。Ad-ACE2组心房肌纤维化百分比显著低于Control组和Ad-EGFP组(5.8±2.4%vs.11.9±2.3%vs.14.3±3.4%,P<0.001),但与Sham组相比无明显差异(P=0.614)。
     Western blot半定量分析结果:与Sham组相比,Control组和Ad-EGFP组ACE2蛋白表达水平显著降低;然而,Ad-ACE2组ACE2表达水平为Sham组的2倍。进一步地,Relatime RT-PCR结果显示ACE2基因的mRNA表达水平在各组之中呈现出与其蛋白表达相一致的趋势(图5)。
     采用免疫组化半定量分析方法评价Ang II和Ang-(1-7)在心房组织中的相对表达水平。结果表明Control组和Ad-EGFP组心房组织中AngII的表达水平显著高于Sham组和Ad-ACE2组,而Control组和Ad-EGFP组Ang-(1-7)的表达水平较Sham组和Ad-ACE2组更低。ELISA的结果显示与上述免疫组化的结果一致。
     实时定量RT-PCR显示,与Sham组相比,Control组和Ad-EGFP组心房肌的Cav1.2和Kv4.2的mRNA表达量均显著降低(P <0.01);与Control组和Ad-EGFP组比较,Ad-ACE2组Cav1.2和Kv4.2的mRNA表达显著上调,但其与Sham组比较无统计学差异。Kv4.3和KChiP2的mRNA表达水平在各组之间无显著差异。
     Western blot结果显示,与Sham组相比,Control组和Ad-EGFP组心房肌的Cx40蛋白表达水平明显增加;与后两组相比较,心房过表达ACE2能够显著增加Cx40蛋白表达水平,但其与Sham组比较无明显差异。相反,Ad-ACE2组和Sham组心房肌组织中Cx43蛋白表达水平明显高于Control组和Ad-EGFP组。Ad-ACE2组和Sham组两者之间Cx43和Cx40的蛋白表达水平均无显著差异。此外,实时定量RT-PCR结果表明Cx40和Cx43的mRNA表达水平显著高于Control组和Ad-EGFP组。激光共聚焦免疫组织化学荧光技术结果表明绝大部分Cx43蛋白主要表达于与心肌长轴垂直的心房肌闰盘,仅有少量表达于横向肌膜;相比之下,绝大部分Cx40蛋白主要位于在横向肌膜,但有少量表达于与心肌长轴垂直的心房肌闰盘。
     结论:
     本研究主要发现:(i)心房过表达ACE2降低房颤诱发率和缩短房颤持续时间;(ii)心房过表达ACE2导致心房肌组织局部内源性Ang II水平的降低和Ang-(1-7)水平的增加,将ACE2/Ang(1-7)/Mas轴与ACE/Ang II/AT1R轴之间的平衡向保护性的ACE2/Ang(1-7)/Mas轴移动;(iii)心房过表达ACE2明显改善心房快速起搏所致的心肌纤维化;(iv)本研究在国内外首次证明,心房过表达ACE2能够改善心房快速起搏所致的心房肌离子通道蛋白与缝隙连接重构。
     我们的研究结果表明,心房外膜转染ACE2能够降低房颤复发率和缩短房颤持续时间,其机制可能涉及调节RAS平衡向保护性效应方向移动,削弱心肌间质纤维化,以及改善长期心房快速起搏所致的心肌离子通道蛋白与缝隙连接重构。
Background:
     Atrial fibrillation (AF) is the most common clinical arrhythmia and isassociated with cardiovascular morbidity and excessive mortality. Previousstudies have demonstrated activation of the local renin angiotensin system(RAS), especially angiotensin II (Ang II) have been found to not only playan important role in atrial structural remodeling, but also have potenteffects on atrial ion channels and connexins, showing strong proarrhythmiceffects.
     Angiotensin-converting enzyme2(ACE2) is a monocarboxypeptidasethat metabolizes vasoconstrictive octopeptide Ang II into vasodilativeheptapeptide angiotensin-(1-7)[Ang-(1-7)], thereby functioning as anegative regulator of the renin-angiotensin system. Recent studies haveshown overexpression of ACE2could suppress Ang II–mediatedmyocardial hypertrophy and fibrosis, and prevent cardiac dysfunction.Recengtly, some researchers found that the product of ACE2, Ang-(1-7), might have some antiarrhythmogenic effects during myocardialischemia-reperfusion. Furthermore, another study suggested that Ang-(1-7)could effectively prevent the shortening of90%action potential duration(APD90) and improve ion channels remodeling induced by chronic rapidatrial pacing in dogs. However, the effects of ACE2/Ang-(1-7) on atrial ionchannels and connexins remodeling and their mechanisms are still notclear.
     Objective:
     Previous studies have shown that epicardial gene painting causeshomogeneous and complete transmural atrial gene transfer. Therefore, thepurpose of this study was to investigate whether atrial overexpression ofACE2by homogeneous transmural atrial gene transfer can help to reverseAF induced atrial electrical remodeling and their mechanisms in a canineatrial pacing model.
     Method:
     Twenty-eight mongrel dogs of either gender, weighing20to30Kg,were randomly divided into4groups: Sham-operated (Sham), control, genetherapy with Ad-EGFP (Ad-EGFP group) and gene therapy with Ad-ACE2(Ad-ACE2group)(n=7per subgroup). All dogs in the control, Ad-EGFPand Ad-ACE2group were paced at450beats per minute for a period of14days. The dogs in Sham group were instrumented without pacing. After2 weeks, all dogs underwent thoracotomy operation and an invasiveelectrophysiology (EP) study, then receveid epicardial gene painting. Onpostgene transfer day21, animals underwent electrophysiology study,histology, and molecular studies, as described follow:
     1) To identify the potential pathologic substrate underlying conductionabnormalities in rapid-pacing dogs, histologic studies were performed.Atrial tissue sections was stained with Hematoxylin and eosin (H-E) orPicrosirius Red staining by traditional methods.
     2) To study the effect of ACE2overexpression on other RAS components,we measured the expression levels of ACE2, Ang II and Ang-(1-7) byreal-time PCR, western blot, ELISA and immunohistochemistry.
     3) To further explore the effects of overexpression of ACE2on atrial ionchannel and connexins protein, they were detected by western blot,confocal immunohistochemistry and real time RT-PCR.
     Results:
     In addition to sham group, after5weeks atrial tachypacing, AERP atall BCLs at either site decreased significantly,(AERP350-AERP250)/100became significantly smaller, suggesting a reduction of rate adaptation ofAERP. After3weeks of gene transfer, AF became inducible in all controland Ad-EGFP dogs, the inducibility and duration of AF increased dramatically compared with the baseline and the Sham group (P<0.01),whereas the inducibility and duration of AF were found to be markedlylower in the Ad-ACE2group than those in the control and Ad-EGFP group.
     Serious pericardial inflammation, effusion, and hemorrhage were notobserved in any of the dogs. Atrial myocyte from sham dogs showed anormal composition of sarcomeres distributed throughout the cell, and theintra-cellular space also appeared normal. In contrast, atrial myocytes ofcontrol and Ad-EGFP dogs showed a loss of some contractile materials andabnormal sarcomeres. In addition, extensive interstitial fibrosis, evidencedby Picrosirius Red stain was found in these tissues. Thick layers of fibroustissue were observed in the endocardium and epicardium. In contrast, thesepathologic abnormalities of atrial tissues were attenuated in the Ad-ACE2group.
     A quantitative analysis of fibrosis showed that the percentage offibrosis in all atrial regions in the Ad-ACE2group was markedly lowerthan that in the Sham and Ad-EGFP group (5.8±2.4%vs.11.9±2.3%and14.3±3.4%at the right atrial appendage, p<0.001), and was comparablewith that in the Sham group (p=0.614).
     ACE2protein expression in the control and Ad-EGFP group wassignificantly decreased compared with that in the Sham subjects; comparedwith the later, it was increased two folds in the Ad-ACE2group. Similarly, ACE2gene expression showed the same statistical trend as its proteinexpression.
     The relative expression levels of Ang II and Ang-(1-7) in the atrialtissue were evaluated by semi-quantitative analysis ofimmunohistochemistry. In comparison with the Sham and Ad-ACE2group,the expression levels of Ang II were significantly higher in the Ad-EGFPand control group, but the expression levels of Ang-(1-7) was lower.Corresponding to that, the changing trend of both Ang II and Ang-(1-7) inatrial tissue detected by ELISA was similar to the results ofsemi-quantitative analysis of immunohistochemistry.
     Real time RT-PCR analysis showed that, compared withSham-operated dogs, both Cav1.2and Kv4.2mRNA abundance werelower in the myocardium of control and Ad-EGFP dogs (P<0.01), but wasup-regulated significantly in Ad-ACE2group. No significant differencewas found in terms of Kv4.3and KChiP2mRNA abundance among thefour groups.
     Compared with Sham, the protein expression levels of Cx40wassignificantly increased in the control and Ad-EGFP group, but wassignificantly increased in Ad-ACE2group when compared with the controland Ad-EGFP dogs. In contrast, the protein expression levels of Cx43werehigher in Ad-ACE2group that those in the control and Ad-EGFP dogs. NO significant differences were observed in the expression of Cx40and Cx43between Sham and Ad-ACE2group. Furthermore, the mRNA expressionlevels of Cx40and Cx43were significantly higher in the control andAd-EGFP group than those in Sham and Ad-ACE2group, as shown in. Weevaluated connexin localization using confocal immunohistochemistry. Inlongitudinally sectioned atrial myocytes from all groups, Cx43was locatedmainly at the intercalated discs, with little signal at the lateral sarcolemma;in contrast, Cx40was located predominantly at the lateral sarcolemma, butthere was still a certain amount of signal at the intercalated discs.
     Conclusion:
     The salient findings of this study are:(i) overexpression of ACE2leadto a significant reduction of the endogenous Ang II level and a significantincrease of the endogenous Ang-(1-7) level, thus shifting the RAS balancetowards the protective axis;(ii) overexpression of ACE2attenuated cardiacfibrosisour;(iii) the present study demonstrated that, for the first time,overexpression of ACE2could improve ion channels and connexinsremodeling induced by chronic rapid atrial pacing in dogs
     In conclusion, our results demonstrate that overexpression of ACE2byhomogeneous transmural atrial gene transfer could decreased theinducibility and duration of AF, the mechanism of which are associatedwith shifting the RAS balance towards the protective axis, attenuateing cardiac fibrosis, and improving ion channels and connexins remodelinginduced by chronic rapid atrial pacing in dogs.
引文
[1].Ball J, Carrington MJ, McMurray JJ. et al. Atrial fibrillation: Profile and burdenof an evolving epidemic in the21st century [J]. Int J Cardiol,2013.
    [2].Lip GY, Brechin CM, Lane DA. The global burden of atrial fibrillation andstroke: a systematic review of the epidemiology of atrial fibrillation in regionsoutside [J] North America and Europe. Chest,2012.142(6):1489-98.
    [3].Zhang S. Atrial fibrillation in mainland China: epidemiology and currentmanagement [J]. Heart,2009.95(13):1052-5.
    [4].Zhou Z, Hu D. An epidemiological study on the prevalence of atrial fibrillationin the Chinese population of mainland China [J]. J Epidemiol,2008.18(5):209-16.
    [5].Ciervo CA, Granger CB, Schaller FA. Stroke prevention in patients with atrialfibrillation: disease burden and unmet medical needs [J]. J Am Osteopath Assoc,2012.112(9Suppl2): eS2-8.
    [6]. McManus DD, Rienstra M, Benjamin EJ. An update on the prognosis ofpatients with atrial fibrillation [J]. Circulation,2012.126(10): e143-6.
    [7].Wodchis WP, Bhatia RS, Leblanc K. et al. A review of the cost of atrialfibrillation [J]. Value Health,2012.15(2):240-8.
    [8].Eagle KA, Cannom DS, Garcia DA. Management of atrial fibrillation:translating clinical trial data into clinical practice [J]. Am J Med,2011.124(1):4-14.
    [9].Lafuente-Lafuente C, Longas-Tejero MA, Bergmann JF. et al. Antiarrhythmicsfor maintaining sinus rhythm after cardioversion of atrial fibrillation [J].Cochrane Database Syst Rev,2012.5: CD005049.
    [10].Krishnamoorthy S, Lip GY. How safe is the antiarrhythmic drug therapy in atrialfibrillation [J]? Europace,2009.11(7):837-9.
    [11].Nair GM, Nery PB, Diwakaramenon S. et al. A systematic review of randomizedtrials comparing radiofrequency ablation with antiarrhythmic medications inpatients with atrial fibrillation [J]. J Cardiovasc Electrophysiol,2009.20(2):138-44.
    [12].Shah RU, Freeman JV, Shilane D. et al. Procedural complications,rehospitalizations, and repeat procedures after catheter ablation for atrialfibrillation [J]. J Am Coll Cardiol,2012.59(2):143-9.
    [13].Wann LS, Curtis AB, January CT. et al.2011ACCF/AHA/HRS focused updateon the management of patients with atrial fibrillation (updating the2006guideline): a report of the American College of Cardiology Foundation/AmericanHeart Association Task Force on Practice Guidelines [J]. Circulation,2011.123(1):104-23.
    [14].Balk EM, Garlitski AC, Alsheikh-Ali AA. et al. Predictors of Atrial FibrillationRecurrence After Radiofrequency Catheter Ablation: A Systematic Review [J]. JCardiovasc Electrophysiol,2010.
    [15].Casaclang-Verzosa G, Gersh BJ, Tsang TS. Structural and functional remodelingof the left atrium: clinical and therapeutic implications for atrial fibrillation [J]. JAm Coll Cardiol,2008.51(1):1-11.
    [16].Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation:mechanisms and implications [J]. Circ Arrhythm Electrophysiol,2008.1(1):62-73.
    [17].Nishida K, Michael G, Dobrev D. et al. Animal models for atrial fibrillation:clinical insights and scientific opportunities [J]. Europace,2010.12(2):160-72.
    [18].Dobrev D, Nattel S. New insights into the molecular basis of atrial fibrillation:mechanistic and therapeutic implications [J]. Cardiovasc Res,2011.89(4):689-91.
    [19].Aldhoon B, Melenovsky V, Peichl P. et al. New insights into mechanisms ofatrial fibrillation [J]. Physiol Res,2010.59(1):1-12.
    [20].Kourliouros A, Savelieva I, Kiotsekoglou A. et al. Current concepts in thepathogenesis of atrial fibrillation [J]. Am Heart J,2009.157(2):243-52.
    [21].Neuberger HR, Schotten U, Blaauw Y. et al. Chronic atrial dilation, electricalremodeling, and atrial fibrillation in the goat [J]. J Am Coll Cardiol,2006.47(3):644-53.
    [22].Patel VV. Novel insights into the cellular basis of atrial fibrillation [J]. ExpertRev Cardiovasc Ther,2010.8(7):907-16.
    [23].Michael G, Xiao L, Qi XY. et al. Remodelling of cardiac repolarization: howhomeostatic responses can lead to arrhythmogenesis [J]. Cardiovasc Res,2009.81(3):491-9.
    [24].Wijffels MC, Kirchhof CJ, Dorland R. et al. Atrial fibrillation begets atrialfibrillation. A study in awake chronically instrumented goats [J]. Circulation,1995.92(7):1954-68.
    [25].Ehrlich JR, Hohnloser SH, Nattel S. Role of angiotensin system and effects of itsinhibition in atrial fibrillation: clinical and experimental evidence [J]. Eur Heart J,2006.27(5):512-8.
    [26].Iravanian S, Dudley SJ. The renin-angiotensin-aldosterone system (RAAS) andcardiac arrhythmias [J]. Heart Rhythm,2008.5(6Suppl): S12-7.
    [27].Mentz RJ, Bakris GL, Waeber B. et al. The past, present and future ofrenin-angiotensin aldosterone system inhibition [J]. Int J Cardiol,2012.
    [28].Schotten U, Verheule S, Kirchhof P. et al. Pathophysiological mechanisms ofatrial fibrillation: a translational appraisal [J]. Physiol Rev,2011.91(1):265-325.
    [29].Savelieva I, Kakouros N, Kourliouros A. et al. Upstream therapies formanagement of atrial fibrillation: review of clinical evidence and implications forEuropean Society of Cardiology guidelines. Part I: primary prevention [J].Europace,2011.13(3):308-28.
    [30].Savelieva I, Kakouros N, Kourliouros A. et al. Upstream therapies formanagement of atrial fibrillation: review of clinical evidence and implications forEuropean Society of Cardiology guidelines. Part II: secondary prevention [J].Europace,2011.13(5):610-25.
    [31].Goette A, Lendeckel U. Electrophysiological effects of angiotensin II. Part I:signal transduction and basic electrophysiological mechanisms [J]. Europace,2008.10(2):238-41.
    [32].Tsai CT, Lai LP, Hwang JJ. et al. Renin-angiotensin system componentexpression in the HL-1atrial cell line and in a pig model of atrial fibrillation [J]. JHypertens,2008.26(3):570-82.
    [33].Goette A, Arndt M, Rocken C. et al. Regulation of angiotensin II receptorsubtypes during atrial fibrillation in humans [J]. Circulation,2000.101(23):2678-81.
    [34].Malhotra R, Sadoshima J, Brosius FR. et al. Mechanical stretch and angiotensinII differentially upregulate the renin-angiotensin system in cardiac myocytes Invitro [J]. Circ Res,1999.85(2):137-46.
    [35].Hussain W, Patel PM, Chowdhury RA. et al. The Renin-Angiotensin systemmediates the effects of stretch on conduction velocity, connexin43expression,and redistribution in intact ventricle [J]. J Cardiovasc Electrophysiol,2010.21(11):1276-83.
    [36].Kumagai K, Nakashima H, Urata H. et al. Effects of angiotensin II type1receptor antagonist on electrical and structural remodeling in atrial fibrillation [J].J Am Coll Cardiol,2003.41(12):2197-204.
    [37]. Laszlo R, Eick C, Rueb N. et al. Inhibition of the renin-angiotensin system:effects on tachycardia-induced early electrical remodelling in rabbit atrium [J]. JRenin Angiotensin Aldosterone Syst,2008.9(3):125-32.
    [38].Wang YH, Shi CX, Dong F. et al. Inhibition of the rapid component of thedelayed rectifier potassium current in ventricular myocytes by angiotensin II viathe AT1receptor [J]. Br J Pharmacol,2008.154(2):429-39.
    [39]. Nakashima H, Kumagai K. Reverse-remodeling effects of angiotensin II type1receptor blocker in a canine atrial fibrillation model [J]. Circ J,2007.71(12):1977-82.
    [40].Li Y, Li WM, Gong YT. et al. The effects of cilazapril and valsartan on themRNA and protein expressions of atrial calpains and atrial structural remodelingin atrial fibrillation dogs [J]. Basic Res Cardiol,2007.102(3):245-56.
    [41].Wang K, Takahara A, Nakamura Y. et al. In vivo electropharmacological effectsof amiodarone and candesartan on atria of chronic atrioventricular block dogs [J].J Pharmacol Sci,2007.103(2):207-13.
    [42].Li Y, Li WM, Xue JY. et al. Effects of Losartan on acute atrial electricalremodeling [J]. Chin Med J (Engl),2004.117(5):643-6.
    [43]. Shi Y, Li D, Tardif JC. et al. Enalapril effects on atrial remodeling and atrialfibrillation in experimental congestive heart failure [J]. Cardiovasc Res,2002.54(2):456-61.
    [44].Li D, Shinagawa K, Pang L. et al. Effects of angiotensin-converting enzymeinhibition on the development of the atrial fibrillation substrate in dogs withventricular tachypacing-induced congestive heart failure [J]. Circulation,2001.104(21):2608-14.
    [45].Schneider MP, Hua TA, Bohm M. et al. Prevention of atrial fibrillation byRenin-Angiotensin system inhibition a meta-analysis [J]. J Am Coll Cardiol,2010.55(21):2299-307.
    [46].Bhuriya R, Singh M, Sethi A. et al. Prevention of recurrent atrial fibrillation withangiotensin-converting enzyme inhibitors or angiotensin receptor blockers: asystematic review and meta-analysis of randomized trials [J]. J CardiovascPharmacol Ther,2011.16(2):178-84.
    [47].Crackower MA, Sarao R, Oudit GY. et al. Angiotensin-converting enzyme2isan essential regulator of heart function [J]. Nature,2002.417(6891):822-8.
    [48].Grobe JL, Mecca AP, Lingis M. et al. Prevention of angiotensin II-inducedcardiac remodeling by angiotensin-(1-7)[J]. Am J Physiol Heart Circ Physiol,2007.292(2): H736-42.
    [49].Santiago NM, Guimaraes PS, Sirvente RA. et al. Lifetime overproduction ofcirculating Angiotensin-(1-7) attenuates deoxycorticosterone acetate-salthypertension-induced cardiac dysfunction and remodeling [J]. Hypertension,2010.55(4):889-96.
    [50].Marques FD, Ferreira AJ, Sinisterra RD. et al. An oral formulation ofangiotensin-(1-7) produces cardioprotective effects in infarcted andisoproterenol-treated rats [J]. Hypertension,2011.57(3):477-83.
    [51].Zhu Z, Zhong J, Zhu S. et al. Angiotensin-(1-7) inhibits angiotensin II-inducedsignal transduction [J]. J Cardiovasc Pharmacol,2002.40(5):693-700.
    [52].考国营范晋奇张晓歌等,血管紧张素(-1-7)对血管紧张素Ⅱ在大鼠心脏成纤维细胞中信号转导的影响及其机制[J].中国生物制品学杂志,2013(1):16-21
    [53].Sampaio WO, Souza DSR, Faria-Silva R. et al. Angiotensin-(1-7) throughreceptor Mas mediates endothelial nitric oxide synthase activation viaAkt-dependent pathways [J]. Hypertension,2007.49(1):185-92.
    [54].Giani JF, Gironacci MM, Munoz MC. et al. Angiotensin-(1-7) has a dual role ongrowth-promoting signalling pathways in rat heart in vivo by stimulatingSTAT3and STAT5a/b phosphorylation and inhibiting angiotensin II-stimulatedERK1/2and Rho kinase activity [J]. Exp Physiol,2008.93(5):570-8.
    [55].Pan CH, Lin JL, Lai LP. et al. Downregulation of angiotensin convertingenzyme II is associated with pacing-induced sustained atrial fibrillation [J]. FEBSLett,2007.581(3):526-34.
    [56].Liu E, Xu Z, Li J. et al. Enalapril, irbesartan, and angiotensin-(1-7) prevent atrialtachycardia-induced ionic remodeling [J]. Int J Cardiol,2011.146(3):364-70.
    [57].Liu E, Yang S, Xu Z. et al. Angiotensin-(1-7) prevents atrial fibrosis and atrialfibrillation in long-term atrial tachycardia dogs [J]. Regul Pept,2010.162(1-3):73-8.
    [58].Su CH, Wu YJ, Wang HH. et al. Nonviral gene therapy targeting cardiovascularsystem [J]. Am J Physiol Heart Circ Physiol,2012.303(6): H629-38.
    [59].Katz MG, Swain JD, White JD. et al. Cardiac gene therapy: optimization of genedelivery techniques in vivo [J]. Hum Gene Ther,2010.21(4):371-80.
    [60].Telemaque S, Marsh JD. Modification of cardiovascular ion channels by genetherapy [J]. Expert Rev Cardiovasc Ther,2009.7(8):939-53.
    [61].Greener I, Donahue JK. Gene therapy strategies for cardiac electricaldysfunction [J]. J Mol Cell Cardiol,2010.
    [62].Kikuchi K, McDonald AD, Sasano T. et al. Targeted modification of atrialelectrophysiology by homogeneous transmural atrial gene transfer [J]. Circulation,2005.111(3):264-70.
    [63].Igarashi T, Finet JE, Takeuchi A. et al. Connexin gene transfer preservesconduction velocity and prevents atrial fibrillation [J]. Circulation,2012.125(2):216-25.
    [64].Amit G, Kikuchi K, Greener ID. et al. Selective Molecular Potassium ChannelBlockade Prevents Atrial Fibrillation [J]. Circulation,2010.
    [65].崔坤范晋奇考国营等,经犬心房外膜涂布实现外源基因在心房肌(细胞)的高效转染[J].中国生物化学与分子生物学报,2011,12:1167-1173
    [66].Kumagai K, Nakashima H, Urata H. et al. Effects of angiotensin II type1receptor antagonist on electrical and structural remodeling in atrial fibrillation [J].J Am Coll Cardiol,2003.41(12):2197-204.
    [67].Iwai M, Horiuchi M. Role of the ACE2/angiotensin1-7/Mas axis in thecardiovascular system [J]. Hypertens Res,2010.33(11):1108-9.
    [68].Castro-Chaves P, Cerqueira R, Pintalhao M. et al. New pathways of therenin-angiotensin system: the role of ACE2in cardiovascular pathophysiologyand therapy [J]. Expert Opin Ther Targets,2010.14(5):485-96.
    [69].Zhong J, Basu R, Guo D. et al. Angiotensin-converting enzyme2suppressespathological hypertrophy, myocardial fibrosis, and cardiac dysfunction [J].Circulation,2010.122(7):717-28,18p following728.
    [70].Mercure C, Yogi A, Callera GE. et al. Angiotensin(1-7) blunts hypertensivecardiac remodeling by a direct effect on the heart [J]. Circ Res,2008.103(11):1319-26.
    [71].Zhong J, Guo D, Chen CB. et al. Prevention of Angiotensin II-Mediated RenalOxidative Stress, Inflammation, and Fibrosis by Angiotensin-Converting Enzyme2[J]. Hypertension,2011.57(2):314-22.
    [72].Bu L, Qu S, Gao X. et al. Enhanced angiotensin-converting enzyme2attenuatesangiotensin II-induced collagen production via AT1receptor-phosphoinositide3-kinase-Akt pathway [J]. Endocrine,2011.39(2):139-47.
    [73].Ferreira AJ, Shenoy V, Qi Y. et al. Angiotensin-converting enzyme2activationprotects against hypertension-induced cardiac fibrosis involving extracellularsignal-regulated kinases [J]. Exp Physiol,2011.96(3):287-94.
    [74].Der Sarkissian S, Grobe JL, Yuan L. et al. Cardiac overexpression of angiotensinconverting enzyme2protects the heart from ischemia-induced pathophysiology[J]. Hypertension,2008.51(3):712-8.
    [75].Ferreira AJ, Santos RA, Almeida AP. Angiotensin-(1-7): cardioprotective effectin myocardial ischemia/reperfusion [J]. Hypertension,2001.38(3Pt2):665-8.
    [76].De Mello WC, Ferrario CM, Jessup JA. Beneficial versus harmful effects ofAngiotensin (1-7) on impulse propagation and cardiac arrhythmias in the failingheart [J]. J Renin Angiotensin Aldosterone Syst,2007.8(2):74-80.
    [77].De Mello WC. Angiotensin (1-7) reduces the cell volume of swollen cardiaccells and decreases the swelling-dependent chloride current. Implications forcardiac arrhythmias and myocardial ischemia [J]. Peptides,2010.31(12):2322-4.
    [78].Liu E, Yang S, Xu Z. et al. Angiotensin-(1-7) prevents atrial fibrosis and atrialfibrillation in long-term atrial tachycardia dogs [J]. Regul Pept,2010.162(1-3):73-8.
    [79].Allessie M, Ausma J, Schotten U. Electrical, contractile and structuralremodeling during atrial fibrillation [J]. Cardiovasc Res,2002.54(2):230-46.
    [80].Schotten U, Duytschaever M, Ausma J. et al. Electrical and contractileremodeling during the first days of atrial fibrillation go hand in hand [J].Circulation,2003.107(10):1433-9.
    [81].Nattel S, Shiroshita-Takeshita A, Brundel BJ. et al. Mechanisms of atrialfibrillation: lessons from animal models [J]. Prog Cardiovasc Dis,2005.48(1):9-28.
    [82].Michael G, Xiao L, Qi XY. et al. Remodelling of cardiac repolarization: howhomeostatic responses can lead to arrhythmogenesis [J]. Cardiovasc Res,2009.81(3):491-9.
    [83].Nattel S, Li D. Ionic remodeling in the heart: pathophysiological significanceand new therapeutic opportunities for atrial fibrillation [J]. Circ Res,2000.87(6):440-7.
    [84].van der Velden H, van der Zee L, Wijffels MC. et al. Atrial fibrillation in thegoat induces changes in monophasic action potential and mRNA expression ofion channels involved in repolarization [J]. J Cardiovasc Electrophysiol,2000.11(11):1262-9.
    [85].Krummen DE, Bayer JD, Ho J. et al. Mechanisms of human atrial fibrillationinitiation: clinical and computational studies of repolarization restitution andactivation latency [J]. Circ Arrhythm Electrophysiol,2012.5(6):1149-59.
    [86].Nattel S, Frelin Y, Gaborit N. et al. Ion-channel mRNA-expression profiling:Insights into cardiac remodeling and arrhythmic substrates [J]. J Mol Cell Cardiol,2010.48(1):96-105.
    [87].Hatem SN, Coulombe A, Balse E. Specificities of atrial electrophysiology: Cluesto a better understanding of cardiac function and the mechanisms of arrhythmias[J]. J Mol Cell Cardiol,2010.48(1):90-5.
    [88].van der Velden HM, Jongsma HJ. Cardiac gap junctions and connexins: theirrole in atrial fibrillation and potential as therapeutic targets [J]. Cardiovasc Res,2002.54(2):270-9.
    [89].Nattel S, Maguy A, Le Bouter S. et al. Arrhythmogenic ion-channel remodelingin the heart: heart failure, myocardial infarction, and atrial fibrillation [J]. PhysiolRev,2007.87(2):425-56.
    [90].Severs NJ, Bruce AF, Dupont E. et al. Remodelling of gap junctions andconnexin expression in diseased myocardium [J]. Cardiovasc Res,2008.80(1):9-19.
    [91].Bosch RF, Scherer CR, Rub N. et al. Molecular mechanisms of early electricalremodeling: transcriptional downregulation of ion channel subunits reducesI(Ca,L) and I(to) in rapid atrial pacing in rabbits [J]. J Am Coll Cardiol,2003.41(5):858-69.
    [92].Liu E, Xu Z, Li J. et al. Enalapril, irbesartan, and angiotensin-(1-7) prevent atrialtachycardia-induced ionic remodeling [J]. Int J Cardiol,2011.146(3):364-70.
    [93].Severs NJ, Bruce AF, Dupont E. et al. Remodelling of gap junctions andconnexin expression in diseased myocardium [J]. Cardiovasc Res,2008.80(1):9-19.
    [94].Burstein B, Comtois P, Michael G. et al. Changes in connexin expression and theatrial fibrillation substrate in congestive heart failure [J]. Circ Res,2009.105(12):1213-22.
    [95].Liu X, Shi HF, Tan HW. et al. Decreased connexin43and increased fibrosis inatrial regions susceptible to complex fractionated atrial electrograms [J].Cardiology,2009.114(1):22-9.
    [96].Severs NJ, Bruce AF, Dupont E. et al. Remodelling of gap junctions andconnexin expression in diseased myocardium [J]. Cardiovasc Res,2008.80(1):9-19.
    [97].Zhong JQ, Zhang W, Gao H. et al. Changes in connexin43, metalloproteinaseand tissue inhibitor of metalloproteinase during tachycardia-inducedcardiomyopathy in dogs [J]. Eur J Heart Fail,2007.9(1):23-9.
    [98].Kanagaratnam P, Cherian A, Stanbridge RD. et al. Relationship betweenconnexins and atrial activation during human atrial fibrillation [J]. J CardiovascElectrophysiol,2004.15(2):206-16.
    [99].Ausma J, van der Velden HM, Lenders MH. et al. Reverse structural andgap-junctional remodeling after prolonged atrial fibrillation in the goat [J].Circulation,2003.107(15):2051-8.
    [100].Fukaya H, Niwano S, Satoh D. et al. Inhomogenic effect of bepridil on atrialelectrical remodeling in a canine rapid atrial stimulation model [J]. Circ J,2008.72(2):318-26.
    [101].Sakabe M, Fujiki A, Nishida K. et al. Enalapril prevents perpetuation of atrialfibrillation by suppressing atrial fibrosis and over-expression of connexin43in a
    canine model of atrial pacing-induced left ventricular dysfunction [J]. J
    Cardiovasc Pharmacol,2004.43(6):851-9.[102].Polontchouk L, Haefliger JA, Ebelt B. et al. Effects of chronic atrial fibrillation
    on gap junction distribution in human and rat atria [J]. J Am Coll Cardiol,2001.
    38(3):883-91.
    [1] Finkielstein D, Schweitzer P. Role of angiotensin-converting enzyme inhibitors inthe prevention of atrial fibrillation [J]. Am J Cardiol.2004,93:734–736.
    [2] Wachtell K, Lehto M, Gerdts E. et al. Angiotensin II receptor blockade reducesnew-onset atrial fibrillation and subsequent stroke compared to atenolol: theLosartan Intervention For End Point Reduction in Hypertension (LIFE) study [J]. JAm Coll Cardiol,2005.45(5):712-9.
    [3] Vermes E, Tardif J-C, Bourassa MG, et al. Enalapril decreases the incidence ofatrial fibrillation in patients with left ventricular dysfunction. Single-centersubstudy of the SOLVD trial, examining the occurrence of atrial fibrillation [J].Circulation2003,107:2926-31.
    [4] Swedberg K, Pfeffer M, Coen-Solal A et al.: Prevention of atrial fibrillation insymptomatic chronic heart failure by candesartan: results from the CHARM study[J]. J Am Coll Cardiol2004,43(suppl A):222A.
    [5] Val-HeFT: Post-hoc analysis suggests valsartan reduces new AF in patients withheart failure [R]. Clinical Trial Update II: Heart Failure, Presentation#2457.
    [6] Heidbuchel H. A paradigm shift in the treatment for atrial fibrillation: fromelectrical to structural therapy?[J] Eur Heart J2003,24:2077–2078.
    [7] Unger T. The role of the renin-angiotensin system in the development ofcardiovascular disease [J]. Am J Cardiol2002,89:3A–9A.
    [8] Sigurdsson A, Swedberg K. The role of neurohormonal activation in chronic heartfailure and postmyocardial infarction [J]. Am Heart J1996,132:229–234.
    [9] Tsai CT, Lai LP, Lin JL et al. Renin-angiotensin system gene polymorphisms andatrial fibrillation [J]. Circulation2004,109:1640–1646.
    [10]Goette A, Staack T, Rocken C et al. Increased expression of extracellularsignal-regulated kinase and angiotensin-converting enzyme in human atrial duringatrial fibrillation [J]. J Am Coll Cardiol2000,35:1669–1677.
    [11]Goette A, Arndt M, Rocken C, et al.: Regulation of angiotensin II receptor subtypesduring atrial fibrillation in humans. Circulation2000,101:2678–2681.
    [12]Psaty BM, Manolio TA, Kuller LH. Incidence and risk factors for atrial fibrillationin older adults [J]. Circulation1997,96:2455–2461.
    [13]Ciaroni S, Cuenoud L, Bloch A. Clinical study to investigate the predictiveparameters for the onset of atrial fibrillation in patients with essential hypertension[J]. Am Heart J2000,139:814–819.
    [14]Tsang TS, Barnes ME, Bailey KR et al. Left atrial volume: important risk marker ofincident atrial fibrillation in1655older men and women [J]. Mayo Clin Proc2001,76:467–47.
    [15]Morillo CA, Klein GJ, Jones DL et al. Chronic rapid atrial pacing:structural,functional, and electrophysiological characteristics of a new model ofsustained atrial fibrillation [J]. Circulation1995,91:1588–1595.
    [16]Ravelli F, Allessie M. Effects of atrial dilatation on refractory period andvulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart[J]. Circulation1997,96:1686–1695.
    [17]Li D, Fareh S, Leung TK et al. Promotion of atrial fibrillation by heart failure indogs: atrial remodeling of a different sort [J]. Circulation1999,100:87–95.
    [18]Daoud EG, Bogun F, Goyal R, et al. Effect of atrial fibrillation on atrialrefractoriness in humans [J]. Circulation1996,94:1600–1606.
    [19]Sanders P, Morton JB, Davidson NC, et al. Electrical remodeling of the atrial incongestive heart failure: electrophysiological and electroanatomic mapping inhumans [J]. Circulation2003,108:1461–1468.
    [20]Fukunami M, Yamada T, Ohmori M et al. Detection of patients at risk forparoxysmal atrial fibrillation during sinus rhythm by P-wave triggeredsignalaveraged electrocardiogram [J]. Circulation1991,83:162–169.
    [21]Fujiki A, Sakabe M, Nishida K, et al.: Role of fibrillation cycle length inspontaneous and drug-induced termination of human atrial fibrillation:spectralanalysis of fibrillation waves from surface electrocardiogram [J]. Circ J2003,67:391–395.
    [22]Guidera SA, Steinberg JS. The signal-averaged P-wave duration: arapid,non-invasive marker of risk of atrial fibrillation [J]. J Am Coll Cardiol1993,21:1645–1651.
    [23]Soylu M, Demir AD, Ozdemir O et al. Increased dispersion of refractoriness inpatients with atrial fibrillation in the early post-operative period after coronaryartery bypass grafting [J]. J Cardiovasc Electrophysiol,2003;14:28–31.
    [24]Sanders P, Morton JB, Davidson NC et al. Electrical remodelingof the atria incongestive heart failure [J]. Circulation,2003;108:1461–1468.
    [25]Bosch RF, Zeng I, Grammer JB et al. Ionic mechanisms of electrical remodeling inhuman atrial fibrillation [J]. Cardio Res,1999;44:121–131.
    [26]Van Wagoner DR, Pond AL, Lamorgese M et al. Atrial L-type Ca2+currents andhuman atrial fibrillation [J]. Circ Res,1999;85:428–436.
    [27]Nattel S, Li D. Ionic remodeling in the heart. Pathophysiological significance andnew therapeutic opportunities for atrial fibrillation [J].Cir Res,2000;87:440–447.
    [28]Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodelingunderlyingaction potential changes in a canine model of atrial fibrillation [J]. Circ Res,1997;81:512–525.
    [29]Van Wagoner DR, Pond AL, McCarthy PM et al. Outward K+current densities andKv1.5expression are reduced in chronic human atrial fibrillation [J]. Circ Res,1997;80:772–781.
    [30]Shi Y, Tardif J-C, Nattel S. Enalapril effects on atrial remodeling and atrialfibrillation in experimental congestive heart failure [J]. Cardiovasc Res2002,54:456–461.
    [31]Li D, Pang L, Leung TK, et al.: Effects of angiotensin-converting enzyme inhibitionon the development of the atrial fibrillation substrate in dogs with ventriculartachypacing-induced congestive heart failure [J]. Circulation2001,104:2608–2614.
    [32]Cardin S, Thorin-Trescases N, Leung TK, et al.: Evolution of the atrial fibrillationsubstrate in experimental congestive heart failure: angiotensindependent andindependent pathways [J]. Cardiovasc Res2003,60:315–325.
    [33]Yue L, Wei-min L, Xue JY et al. Effects of losartan on acute atrial electricalremodeling [J]. Chin Med J2004,117:643–646.
    [34]Nakashima H, Kumagai K, Urata H et al. Angiotensin II antagonist preventselectrical remodeling in atrial fibrillation [J]. Circulation2000,101:2612–2617.
    [35]Kumagai K, Nakashima H, Urata H, et al.: Effects of angiotensin II type1receptorantagonist on electrical and structural remodeling in atrial fibrillation [J]. J Am CollCardiol2003,41:2197–2204.
    [36]Schmieder RE, Schlaich MP, Klingbeil AU et al. Update on reversal of leftventricular hypertrophy in essential hypertension (a meta-analysis of all randomizeddouble-blind studies until December1996)[J]. Nephrol Dial Transplant.1998,13:564–569.
    [37]Zaman AG, Kearney MT, Schecter C et al. Angiotensin-converting enzymeinhibitors as adjuvent therapy in patients with persistent atrial fibrillation [J]. AmHeart J2004,147:823–827.
    [38]L’Allier PL, Ducharme A, Keller PF et al. Angiotensin-converting enzymeinhibition in hypertensive patients is associated with a reduction in the occurrenceof atrial fibrillation [J]. J Am Coll Cardiol2004,44:159–164.
    [39]Hansson L, Lindholm LH, Ekbom T et al. Randomised trial of old and newantihypertensive drugs in elderly patients: cardiovascular mortality and morbiditythe Swedish Trial in Old Patients with Hypertension-2Study [J]. Lancet1999,354:1751–1756.
    [40]Hansson L, Lindholm LH, Niskanen L et al. Effect of angiotensin-convertingenzyme inhibition compared with conventional therapy on cardiovascular morbidityand mortality in hypertension: the captopril prevention project (CAPP) randomisedtrial [J]. Lancet1999,353:611–616.
    [41]Pedersen OD, Bagger H, Kober L et a1.Trandolapril reduces theincidence of atrialfibrillation after acute myocardial infarction in patients with left ventrieulardysfunction [J]. Circulation.1999,100:376-380.
    [42]Cha T J, Ehrlich J R, Zhang L M et a1. Atrial tachycardia remodeling of pulmonaryvein cardiomyoeytes: comparison with left atrium and potential relation toarrhythmogenesis [J].Circulation.2005,111(6):728-735.
    [43]Ausma J,Litjens N,Lenders MH,et a1.Time course of atrial fibrillation-inducedcellular structural remodeling in atria of the goat[J].J Mol Cell Cardiol.2001.33:2083-2094.
    [44]Duchen MR. Mitochondria and Ca++in cell physiology and pathphysiology [J].Cell Calcium.2000.28:339-348.
    [45]Fu X, Kassim SY, Parks WC, et a1. Hypochlorous acid genates the cysteine switchdomain of pro-matrilysin(MMP-7): a mechanism for matrix metalloproteinaseactivation and atheresclerotic plaque rupture by myeloperoxidase [J].J Biol Chem.2001,276:41279-41287.
    [46]Furberg CD, Psaty BM, Manolio TA et al. Prevalence of atrial fibrillation in elderlysubjects (the cardiovascular health study)[J]. Am. J.Cardiol.1994,74,236–241.
    [47]Yamazaki T, Komuro I, Kudoh S et al. Mechanical stress activates protein kinasecascade of phosphorylation in neonatal rat cardiac myocytes [J]. J. Clin. Invest.1995,96,438–446.
    [48]Rossomando AJ, Payne DM, Weber MJ et al. Evidence that pp42, a major tyrosinekinase target protein, is a mitogen-activated serine/threonine protein kinase [J].Proc. Natl.Acad. Sci.1989,86,6940–6943.
    [49]Sugden PH, Clerk A. Regulation of the ERK subgroup of MAP kinase cascadesthrough G protein-coupled receptors [J]. Cell Signal.1997,9,337–351.
    [50]Cohn, JN. Structural basis for heart failure. Ventricular remodeling and itspharmacological inhibition [J]. Circulation1995,91,2504–2507.
    [51]McEwan PE, Gray GA, Sherry L et al. Differential effects of angiotensin II oncardiac cell proliferation and intramyocardial perivascular fibrosis in vivo [J].Circulation.1998,98,2765–2773.
    [52]Li D, Shinagawa K, Pang L et al. Effects of angiotensin-converting enzymeinhibition on the development of the atrial fibrillation substrate in dogs withventricular tachypacing-induced congestive heart failure [J]. Circulation.2001,104,2608–2614.
    [53]Meffert S, Stoll M, Steckelings UM et al. The angiotensin II AT2receptor inhibitsproliferation and promotes differentiation in PC12W cells [J]. Mol. Cell.Endocrinol.1996,122,59–67.
    [54]Dinh DT, Frauman AG, Johnston CI et al. Angiotensin receptors: distribution,signalling and function [J]. Clin. Sci.(Lond.)2001,100,481–492.
    [55]Studer R, Reinecke H, Muller B et al. Increased angiotensin-I converting enzymegene expression in the failing human heart. Quantification by competitive RNApolymerase chain reaction [J]. J. Clin. Invest.1994,94,301–310.
    [56]Donoghue M, Hsieh F, Baronas E et al. A novel angiotensin-convertingenzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin1–9[J]. Circ Res.2000,87,E1–E9.
    [57]Tipnis, S.R., Hooper, N.M., Hyde, R et al.(2000) A human homolog ofangiotensinconverting enzyme. Cloning and functional expression as acaptopril-insensitive carboxypeptidase [J]. J. Biol. Chem.275,33238–33243.
    [58]Cmckower MA, Sarao R, Oudit GY et a1. Angiotensin—converting enzyme2is anessential regulator of heart function [J]. Nature,2002,417(20):822-826.
    [59]Tharaux PL, Chatziantoniou C, Fakhouri F et al. Angiotensin II activates collagen Igene through a mechanism involving the MAP/ER kinase pathway [J].Hypertension.2000,36,330–336.
    [60]Dai Y, Wang X, Cao L et al. Expression of extracellular signal-regulated kinase andangiotensin-converting enzyme in human atria during atrial fibrillation. J.HuazhongUniv. Sci. Technol [J]. Med. Sci.2004,24,32–36.