靶向CD26/DPPIV动员骨髓来源内皮祖细胞抑制脉络膜新生血管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景年龄相关性黄斑变性(age-related macular degeneration,AMD)在老年人群中,是最常见的、导致不可逆视力损害(包括法定盲)的主要原因之一。脉络膜新生血管(choroidal neovascularization,CNV)是AMD最严重的形式。目前,AMD的治疗方法包括激光治疗,光动力疗法(photodynamic therapy,PDT),玻璃体内注射皮类固醇类药物和抗血管生成因子的治疗。但这些方法都不能“治愈”AMD或者逆转它的病程,只是试图避免进一步视力损害。选择靶向骨髓来源细胞(bonemarrow–derived cells,BMCs)治疗AMD是一个有前景的治疗途径。通过体外培养和局部给药的方式,BMCs能有利于修复和再生视网膜和脉络膜组织的损伤或变性。然而,尽管靶向BMCs治疗AMD是一个令人振奋的途径,但BMCs在外周循环的数量有限,使这一治疗转入临床应用还面临很大障碍。目前的技术还达不到使体外扩增的BMCs能被常规用于细胞治疗。
     骨髓来源的内皮祖细胞(endothelial progenitor cells,EPCs)可能代表一个重要的内源性修复途径。体内动员和扩增骨髓来源的EPCs能对组织修复提供充足的自体细胞,因而可能解决目前细胞治疗的瓶颈问题。基质细胞衍生因子(stromal cell-derivedfactor1α,SDF-1α)及其受体CXCR4的相互作用是调控EPCs动员的关键。最近的发现提示肽酶CD26(dipeptidyl peptidase IV,DPP IV)能降解和失活骨髓内SDF-1α,最终导致阻断SDF-1/CXCR4axis,是EPCs动员一个重要的调控机制。而且,血管紧张素转换酶(angiotensin-converting enzyme,ACE)抑制剂能调控CD26/DPP IV从骨髓动员EPCs。尽管骨髓来源的EPCs参与了CNV的形成,但是否诱导体内EPCs动员对CNV是有益的仍然未被充分确定。EPCs能否在CNV损伤区域发挥保护作用还需要进一步被揭示。
     目的和内容本研究的目的是探讨调控CD26/DPP IV系统(CD26/DPP IVsystem)增加体内EPCs动员在CNV形成中的作用。确定是否在激光诱导的CNV,EPCs内源性的损伤修复机制和星形胶质细胞相关。本研究使用激光诱导的小鼠CNV模型1)观察ACE抑制剂(ACE inhibitor,ACEI),咪达普利(imidapril)在体内调控CD26/DPP IV system的作用,探讨在激光诱导的损伤条件下,ACEI对骨髓和外周血中肽酶活动的影响;2)观察ACEI调控CD26/DPP IV system降解SDF-1α,阻断SDF-1/CXCR4axis,动员体内EPCs参与激光诱导的CNV形成的作用;确定在损伤条件下,ACEI能否通过调控CD26肽酶活动诱发EPCs动员;3)观察动员的EPCs靶向视网膜神经纤维层(nerve filber layer,NFL)的星形胶质细胞(astrocytes)抑制CNV形成的作用。探讨EPCs在激光诱导的CNV可能通过保护星形胶质细胞,发挥内源性的损伤修复作用。
     方法532nm二极管激光器诱发C57BL/6J小鼠Bruch’膜的破裂建立CNV模型。小鼠被随机分为5组,在激光诱导CNV前5天,小鼠被分别预处理给予胃饲磷酸盐缓冲液(phosphate-buffered saline,PBS),胃饲咪达普利和/或皮下注射Diprotin-A(DPP IV抑制剂)治疗持续直到激光诱导后的14天。正常对照为无激光和无干预组。(1)荧光激活细胞分选(fluorescence-activated cell sorting,FACS)检测:在激光诱导CNV后12天,获得所有动物的外周血和骨髓样本。心脏穿刺获得外周血,同时股骨的骨髓细胞被提取。外周血细胞和骨髓细胞经鉴定使用单个核细胞部分。检测结合异硫氰酸荧光素(fluorescein isocyanat,FITC)-CD26单克隆抗体的CD26+细胞在外周血和骨髓中的数量。单个核细胞双标FITC-CD34单克隆抗体和藻红蛋白(phycoerythrin, PE)-Flk-1单克隆抗体被鉴定为EPCs。流式细胞仪计数循环EPCs(CD34+/VEGFR2+cells)的数量。(2)淋巴细胞丝状肌动蛋白(filamentous actin,F-actin)聚合作用检测。小鼠的全血样本收集来自激光诱导CNV后12天。细胞刺激或未刺激30nM的重组小鼠SDF-1蛋白和FITC-鬼笔环肽(FITC-phalloidin)染色。流式细胞仪检测细胞内平均荧光强度(mean fluorescence intensity,MFI)。(3)分别在不同干预的第1、5天和激光诱导CNV后3、7、14天尾静脉取血,外周血白细胞(white blood cells,WBCs)计数。(4)全自动酶标仪检测CD26肽酶活动,血浆和骨髓上清收集在激光诱导CNV后12天。肽酶活动通过检测生成对硝基苯胺(p-Nitroaniline,pNA)的水平,以酶的活性浓度单位(U/L)来表示。酶标仪读数405波长的吸光值。(5)酶联免疫吸附测定(enzyme linked immunosorbent assay,ELISA)SDF-1水平:激光诱导CNV后3、7、14天,全血离心收集血浆,同时来自股骨的骨髓上清被提取。ELISA检测血浆和骨髓上清的SDF-1α浓度。(6)荧光血管造影(fluorescein angiography,FA)评价激光诱导CNV后13天的荧光渗漏情况。FA图像被采集在注射造影剂后4-6分钟。按评分标准比较CNV的渗漏情况。(7)组织病理学观察CNV厚度、直径和面积。在激光诱导CNV后14天,苏木精和伊红(Hematoxylin-Eosin,HE)染色观察CNV的厚度和直径,FITC-植物凝集素(fluorescein isocyanate-Griffonia simplicifolia isolectin-B4,FITC-Isolectin B4)染色检测CNV表面积。(8)免疫荧光标记神经胶质酸性蛋白(glial fibrillary acidic protein,GFAP),激光诱导CNV后14天观察视网膜NFL星形胶质细胞的表达。(9)蛋白印记法(western blotting)检测激光诱导CNV后14天视网膜GFAP蛋白的表达。
     结果(1)ACEI能够调控CD26/DPP IV system打破骨髓和外周血之间的肽酶活动的平衡。激光诱导CNV后12天,咪达普利不能改变骨髓CD26+细胞数量,但增加了CD26/DPP IV肽酶活动。在外周血,咪达普利由于抗炎作用下降了WBCs数量,导致CD26+细胞数量明显减少,最终下降外周血总的CD26/DPP IV肽酶活动,而且Diprotin-A能完全阻断咪达普利调控CD26/DPP IV system的作用。(2)ACEI能够通过调控CD26/DPP IV system阻断了SDF-1/CXCR4axis,动员EPCs到外周循环。在激光诱导CNV后12天,咪达普利明显下降了骨髓SDF-1的水平,释放大量失活的SDF-1到外周循环,导致外周循环血的SDF-1水平增高和外周血中SDF-1诱导的F-actin聚合作用下降。咪达普利组的这个现象与骨髓内肽酶活动增高和外周血中肽酶活动的降低有关。最终,逆转的骨髓和外周血SDF-1浓度梯度导致显著增加了EPCs从骨髓动员到外周循环。而且,在激光诱导的CNV,咪达普利对EPCs的动员作用完全被Diprotin A阻断了。(3)咪达普利能够抑制CNV的形成与动员的EPCs对视网膜NFL星形胶质细胞有保护作用密切相关。在激光诱导CNV后13天行眼底FA检查,咪达普利比其它各组明显减少了CNV的渗漏。HE和FITC-Isolectin B4染色均显示咪达普利抑制了CNV,比其它各组明显减少了的病变的直径、厚度和面积。GFAP上调是星形胶质细胞活化的标志。GFAP免疫荧光染色显示咪达普利组视网膜NFL上GFAP免疫反应的细胞较其它各组明显增高。Western blot检测各组视网膜内GFAP蛋白表达比较,在激光诱导CNV后14天检测。咪达普利组比溶剂组明显增加了GFAP蛋白的表达。
     结论本研究证实(1)在激光诱导CNV损伤时,ACEI显著增加骨髓微环境内的CD26/DPP IV的肽酶活动,降低了外周循环的肽酶活动,破坏了骨髓和外周循环蛋白水解活动的平衡,有效的活化了CD26/DPPIV system。(2)CD26/DPP IV system通过增加骨髓内蛋白水解SDF-1的活动,能负向调节SDF-1/CXCR4axis,引起循环血中SDF-1水平增加,逆转骨髓和外周血的SDF-1浓度梯度,引起EPCs从骨髓动员到外周循环。(3)动员的骨髓来源的EPCs靶向NFL的星形胶质细胞,可能通过内源性修复途径抑制了激光诱导的CNV。
     动员骨髓来源的EPCs能抑制激光诱导的CNV。本研究首次明确了EPCs参与CNV的形成是有积极的作用。ACEI调控CD26/DPP IV system动员EPCs可能代表一个重要的内源性修复途径。这一研究结果不但为体内扩增骨髓来源EPCs治疗眼新生血管提供了新奇的靶向,而且为BMCs细胞治疗眼微血管疾病转入临床应用提供新的思路。目前和未来的治疗应靶向干预CNV发展的病程。相对与抗血管生成的治疗,EPCs可能通过促进血管修复和再生,探索一个新奇的治疗途径,这可能被认为是理想的治疗。
Background Age-related macular degeneration (AMD) is one of the mostcommon irreversible causes of severe loss of vision, including legal blindness, in theelderly population. Choroidal neovascularization (CNV) is the most severe form of AMD.There are no current treatments that can “cure” AMD or reverse its course, including laserphotocoagulation, verteporfin photodynamic therapy (PDT) and intravitreal injections ofcorticosteroids and anti-angiogenic agents. Generally, these therapies seek to avoid furthervision loss rather than to improve existing vision. Selective targeting of bonemarrow–derived cells (BMCs) has been heralded as a promising avenue for age-relatedmacular degeneration (AMD) therapeutics. Cell therapy using BMCs by ex vivo isolation and local delivery could provide beneficial effects for repair and regeneration of injuredand degenerated retina and choroid tissues. Although BMC therapy with may be the mostexciting avenue for AMD therapeutics, a major barrier to transferring the use ofautologous BMCs into clinical practice is the limited quantity of BMCs in the peripheralcirculation. Technology has not yet reached a stage where ex vivo–expanded BMCs can beroutinely used for cell therapy.
     Bone marrow–derived endothelial progenitor cells (EPCs) may represent animportant endogenous repair mechanism. In vivo mobilization and expansion of EPCscould supply sufficient autologous cells for tissue repair, thereby circumventing theexisting issues of cells therapy. The interaction of stromal cell-derived factor1α (SDF-1α)and CXCR4has been identified as a principal axis in the regulation of EPC mobilization.A recent finding has shown that SDF-1α degradation and inactivation within the bonemarrow by the peptidase CD26(dipeptidyl peptidase IV, DPP IV) may ultimately result inthe abrogation of the SDF-1/CXCR4axis, which is an important regulatory mechanism formobilization of EPCs. Moreover, CD26/dipeptidylpeptidase IV (DPP IV) modification byangiotensin-converting enzyme (ACE) inhibitor plays a critical role in mobilizing EPCsfrom bone marrow. In spite of bone marrow-derived EPCs have been shown to contributeto CNV, whether the beneficial effect of induced EPCs mobilization has yet to be fullydetermined. In addition, whether homing of EPCs to the site requiring repair may exertspositive effectsf for laser-induced CNV remains to be answered.
     Objectives The purpose of the present study was to investigate the role of theincreased EPC mobilization by modulation CD26/DPP IV system in the development ofCNV. To determine whether the endogenous repair mechanism of EPCs may beassociated with reactive astrocytes in the laser-induced CNV.This study, using a murine model of laser-induced CNV,(1) observe that imidapril, anACE inhibitor (ACEI), regulate the activity of CD26/DPP IV system in vivo andinvestigate the effects of ACEI on proteolytic activation between bone marrow andperipheral circulation under laser-induced injure conditions;(2) observe that ACEImodulate the function of SDF-1and influence the level of EPC mobilization throughmanipulation of the CD26system in the development of CNV and confirm the underlyingmechanism under injury stress conditions;(3) observe mobilization of EPCs target astrocytes at the retina nerve filber layer (NFL) to intervene development of CNV. Weinvestigate that EPCs target activated astrocytes by manipulation of endogenous repairmechanisms in the laser-induced CNV.
     Methods CNV in C57BL/6J mice was generated by focal rupture of Bruch’smembrane with a532-nm diode laser. Animals were randomized to5treatment groups.Animals were pretreated intragastrically with phosphate-buffered saline (PBS),intragastrically with imidapril (ACEI) and/or subcutaneously with diprotin-A (a DPP IVantagonist) for days5before photocoagulation and the treatments were continued dailyuntil days14after laser induction. Normal control group is nontreated and nonlasered.(1)Fluorescence-activated cell sorting (FACS) Analysis: Peripheral blood and bone marrowsamples were obtained from all groups after laser-induced CNV day12. Blood was wasobtained by cardiac puncture, while bone marrow cells were extracted from femurscirculating cells and bone marrow cells were identified using a nucleated cell fraction. Thequantity of CD26+cells in the bone marrow and peripheral blood was estimated using afluorescein isocyanate (FITC)-conjugated anti-mouse CD26antibody. The nucleated cellswere double labelled with FITC-conjugated anti-CD34monoclonal antibody andphycoerythrin (PE)-conjugated anti-Flk-1antibody. Circulating EPCs were quantified byenumerating CD34+and VEGFR2+cells. The cells were examined by flow cytometry.(2)SDF-1filamentous actin (F-actin) polymerization of lymphocytes by is quantified bymeans of flow cytometry. Whole blood samples collected from the animals afterlaser-induced CNV day12. The cells were stimulated with or without30nM of SDF-1and stained with FITC phalloidin. The intracellular fluorescence was determined by FACSanalysis. The lymphocyte population was gated, and median fluorescence was measured.(3) Blood samples were obtained by via a tail vein on pretreated with different drug dailyon days1,5and after laser-induced CNV day3, day7, day14. The total number of whiteblood cells (WBCs) was enumerated with a Neubauer hematocytometer.(4) CD26proteolytic activity was examined by a microplate reader. plasma and bone marrowextracellular fluids were obtained after laser-induced CNV day12. Proteolytic activity wasdetermined by measuring the amount of p-Nitroaniline (pNA) formed and the DPP IVactivity in units/liter (U/L) calculated in the supernatant at405nm.(5) Enzyme linkedimmunosorbent assay (ELISA) measurement of cytokines: peripheral blood murine samples and bone marrow were obtained from all groups after laser-induced CNV day3,7,14. Blood was centrifuged to collect plasma, while bone marrow extracellular fluids wereextracted from femurs as previously described. Plasma and bone marrow SDF-1αconcentrations were measured with a mouse SDF-1α ELISA kit.(6) Fluoresceinangiography (FA) was performed after laser photocoagulation day13and fluoresceinleakage was evaluated. Late-stage FA images were taken at4-6minutes post injection. Thegrading protocol used to compare leakage in experimentally induced CNV.(7)Histopathology study evaluated CNV Lesion size by hematoxylin-eosin (HE) staining andfluorescein isocyanate-Griffonia simplicifolia isolectin-B4(FITC-isolectin B4) Stainingafter laser-induced CNV day14.(8) Glial fibrillary acidic protein (GFAP) immunoreactivecells were identified as astrocytes cells by immunofluorescence labelling within the retinaNFL after laser-induced CNV day14.(9) The protein expression of GFAP was measuredin the retinal by western blotting after laser-induced CNV day14.
     Results (1) ACEI disrupted the balance of the proteolytic activity of bone marrowand peripheral blood by manipulation of CD26/DPP IV system. In the bone marrow,imidapril was primarily through the upregulation of CD26/DPP IV activity on bonemarrow cell rather than through altering the number of CD26+cells after laser-inducedCNV day12. In the blood, imidapril significantly decreased CD26+cell numbers, leadingto a decrease in total CD26/DPP IV activity, because decrease the number of WBCsthrough an anti-inflammatory effect. Furthermore, Diprotin A can completely blockedCD26/DPP IV activity caused by imidapril intervention.(2) ACEI has the ability tonegatively regulate the SDF-1/CXCR4axis by manipulation of CD26/DPP IV system.Imidapril-treated animals after laser-induced CNV demonstrated significant increases inplasma–SDF-1compared with other groups after laser-induced CNV day12. Meanwhile,SDF-1concentrations in the bone marrow were significantly lower in the imidapril groupcompared to the other groups. Imidapril also caused a significant decrease SDF-1inducedactin polymerization in whole blood. These phenomena were associated with a lowerCD26activity in bone marrow but higher in the blood in the imidapril group, compared tothe other groups. The inversing SDF-1concentration gradient between the bone marrowand the peripheral blood significantly mobilized EPCs from the bone marrow into thecirculation. The effect of imidapril on EPC mobilization in laser-inducd CNV was significantly blocked by Diprotin A.(3) The mobilization of EPC significantly inhibitedthe laser-induced CNV and reactive astrocytes. FA was conducted after laserphotocoagulation day13. Treatment with imidapril significantly decreased CNV leakagecompared to the other groups after laser-induced CNV. HE and FITC-Isolectin B4-stainedalso showed mice treated with imidapril suppressed CNV volume versus other groups.GFAP up-regulation is a hallmark of reactive astrocytes. Immunofluorescence taining ofGFAP showed mice treated with imidapril GFAP immunoreactive cell were significantlyincreased in the retina NFL versus the other groups. Imidapril group was significantlyincreased the protein expression of GFAP compare with other groups after thelaser-induced CNV day14.
     Conclusions (1) ACE inhibitor effectively regulated the activity of CD26/DPPIV system in laser-induced CNV. In the bone marrow, imidapril did not alter CD26+cellnumbers; however, it did amplify CD26/DPP IV activity. In the blood, through theanti-inflammatory effect, imidapril significantly decreased CD26+cell numbers, leading toa decrease in total CD26/DPP IV activity.(2) CD26/DPP IV has the ability to negativelyregulate the SDF-1/CXCR4axis by proteolytic degradation of SDF-1α in bone marrow,which significantly reduced the concentration of SDF-1α and increases in plasma–SDF-1α.The inversing SDF-1α concentration gradient between the bone marrow and the peripheralblood significantly mobilized EPCs from the bone marrow into the circulation.(3) Themobilization of bone marrow-derived EPCs target reactive astrocytes at the retina NFLandinhibits the laser-induced CNV in term of manipulation of endogenous repair avenue.
     Bone marrow-derived EPCs mobilization can inhibit the laser-induced CNV. Thebeneficial effect of induced EPCs mobilization in the development of CNV wasdetermined firstly. CD26/DPP IV modification by ACEI activate EPCs mobilization mayrepresent an important endogenous repair avenue. The therapeutic strategy may providethe novel target of EPC mobilization to treat CNV and overcome the existing problems ofBMC-based therapy in clinical application. Present and future therapies will be aimed atmodifying the course of CNV development. EPC mobilization may provide a novelavenue of therapeutic exploitation to promote repair and re-generation,then it may betimely to consider therapies other than antiangiogenesis.
引文
1. Fine SL, Berger JW, Maguire MG, Ho AC. Age-related macular degeneration. NEngl J Med.2000;342:483-492.
    2. Stein JD, Brown MM, Brown GC, Hollands H, Sharma S. Quality of life withmacular degeneration: perceptions of patients, clinicians, and community members.Br J Ophthalmol.2003;87:8-12.
    3. Nowak JZ. Age-related macular degeneration (AMD): pathogenesis and therapy.Pharmacol Rep.2006;58:353-363.
    4. Ding X, Patel M, Chan CC. Molecular pathology of age-related maculardegeneration. Prog Retin Eye Res.2009;28:1-18.
    5. Caputo M, Zirpoli H, Di BR, De NK, Tecce MF. Perspectives of choroidalneovascularization therapy. Curr Drug Targets.2011;12:234-242.
    6. Augustin AJ, Scholl S, Kirchhof J. Treatment of neovascular age-related maculardegeneration: current therapies. Clin Ophthalmol.2009;3:175-182.
    7. Lima e Silva R, Shen J, Hackett SF, Kachi S, Akiyama H, Kiuchi K, Yokoi K,Hatara MC, Lauer T, Aslam S, Gong YY, Xiao WH, Khu NH, Thut C, CampochiaroPA. The SDF-1/CXCR4ligand/receptor pair is an important contributor to severaltypes of ocular neovascularization. FASEB J.2007;21:3219-3230.
    8. Alcazar O, Cousins SW, Striker GE, Marin-Castano ME.(Pro)renin receptor isexpressed in human retinal pigment epithelium and participates in extracellularmatrix remodeling. Exp Eye Res.2009;89:638-647.
    9. Afzal A, Shaw LC, Ljubimov AV, Boulton ME, Segal MS, Grant MB. Retinal andchoroidal microangiopathies: therapeutic opportunities. Microvasc Res.2007;74:131-144.
    10. Enseleit F, Michels S, Ruschitzka F. Anti-VEGF therapies and blood pressure: morethan meets the eye. Curr Hypertens Rep.2010;12:33-38.
    11. Caballero S, Sengupta N, Crafoord S, Lund R, Kruse FE, Young M, Grant MB. Themany possible roles of stem cells in age-related macular degeneration. Graefes ArchClin Exp Ophthalmol.2004;242:85-90.
    12. Chan-Ling T, Baxter L, Afzal A, Sengupta N, Caballero S, Rosinova E, Grant MB.Hematopoietic stem cells provide repair functions after laser-induced Bruch'smembrane rupture model of choroidal neovascularization. Am J Pathol.2006;168:1031-1044.
    13. Jonas JB, Witzens-Harig M, Arseniev L, Ho AD. Intravitreal autologous bonemarrow-derived mononuclear cell transplantation: a feasibility report. ActaOphthalmol.2008;86:225-226.
    14. Sasahara M, Otani A, Oishi A, Kojima H, Yodoi Y, Kameda T, Nakamura H,Yoshimura N. Activation of bone marrow-derived microglia promotes photoreceptorsurvival in inherited retinal degeneration. Am J Pathol.2008;172:1693-1703.
    15. Minamino K, Adachi Y, Yamada H, Higuchi A, Suzuki Y, Iwasaki M, Nakano K,Koike Y, Mukaide H, Kiriyama N, Shigematsu A, Matsumura M, Ikehara S.Long-term survival of bone marrow-derived retinal nerve cells in the retina.Neuroreport.2005;16:1255-1259.
    16. Kicic A, Shen WY, Wilson AS, Constable IJ, Robertson T, Rakoczy PE.Differentiation of marrow stromal cells into photoreceptors in the rat eye. J Neurosci.2003;23:7742-7749.
    17. Harris JR, Brown GAJ, Jorgensen M, Kaushal S, Ellis EA, Grant MB, Scott EW.Bone marrow-derived cells home to and regenerate retinal pigment epithelium afterInjury. Invest Ophthalmol Vis Sci.2006;47:2108-2113.
    18. Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedlander M. Bonemarrow-derived stem cells target retinal astrocytes and can promote or inhibit retinalangiogenesis. Nat Med.2002;8:1004-1010.
    19. Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI, Friedlander M. Myeloidprogenitors differentiate into microglia and promote vascular repair in a model ofischemic retinopathy. J Clin Invest.2006;116:3266-3276.
    20. Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, Heckenlively J,Friedlander M. Rescue of retinal degeneration by intravitreally injected adult bonemarrow-derived lineage-negative hematopoietic stem cells. J Clin Invest.2004;114:765-774.
    21. Sasahara M, Otani A, Yodoi Y, Yoshimura N. Circulating hematopoietic stem cellsin patients with idiopathic choroidal neovascularization. Invest Ophthalmol Vis Sci.2009;50:1575-1579.
    22. Thill M, Strunnikova NV, Berna MJ, Gordiyenko N, Schmid K, Cousins SW,Thompson DJS, Csaky KG. Late outgrowth endothelial progenitor cells in patientswith age-related macular degeneration. Invest Ophthalmol Vis Sci.2008;49:2696-2708.
    23. Dimmeler S, Leri A. Aging and disease as modifiers of efficacy of cell therapy. CircRes.2008;102:1319-1330.
    24. Yodoi Y, Sasahara M, Kameda T, Yoshimura N, Otani A. Circulating hematopoieticstem cells in patients with neovascular age-related macular degeneration. InvestOphthalmol Vis Sci.2007;48:5464-5472.
    25. Smadja DM, Cornet A, Emmerich J, Aiach M, Gaussem P. Endothelial progenitorcells: characterization, in vitro expansion, and prospects for autologous cell therapy.Cell Biol Toxicol.2007;23:223-239.
    26. Shih CC, DiGiusto D, Forman SJ. Ex vivo expansion of transplantable humanhematopoietic stem cells: where do we stand in the year2000? J Hematother StemCell Res.2000;9:621-628.
    27. Dimmeler S. Regulation of bone marrow-derived vascular progenitor cellmobilization and maintenance. Arterioscler Thromb Vasc Biol.2010;30:1088-1093.
    28. Tilling L, Chowienczyk P, Clapp B. Progenitors in motion: mechanisms ofmobilization of endothelial progenitor cells. Br J Clin Pharmacol.2009;68:484-492.
    29. Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM. Differentialmobilization of subsets of progenitor cells from the Bone Marrow. Cell Stem Cell.2009;4:62-72.
    30. Calzi SL, Neu MB, Shaw LC, Kielczewski JL, Moldovan NI, Grant MB. EPCs andpathological angiogenesis: when good cells go bad. Microvasc Res.2010;79:207-216.
    31. Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR, Bhavsar JR,Yoder MC, Haneline LS, Ingram DA. Human CD34+AC133+VEGFR-2+cells arenot endothelial progenitor cells but distinct, primitive hematopoietic progenitors.Exp Hematol.2007;35:1109-1118.
    32. Khoo CP, Pozzilli P, Alison MR. Endothelial progenitor cells and their potentialtherapeutic applications. Regen Med.2008;3:863-876.
    33. Grossniklaus HE, Green WR. Choroidal neovascularization. Am J Ophthalmol.2004;137:496-503.
    34. Smythe J, Fox A, Fisher N, Frith E, Harris AL, Watt SM. Measuring angiogeniccytokines, circulating endothelial cells, and endothelial progenitor cells in peripheralblood and cord blood: VEGF and CXCL12correlate with the number of circulatingendothelial progenitor cells in peripheral blood. Tissue Eng Part C Methods.2008;14:59-67.
    35. Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C,Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S. Erythropoietin is a potentphysiologic stimulus for endothelial progenitor cell mobilization. Blood.2003;102:1340-1346.
    36. Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood.2005;106:1901-1910.
    37. Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles ofchemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells.Exp Hematol.2002;30:973-981.
    38. Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, Zhang J,Ratajczak J, Ratajczak MZ. CXCR4-SDF-1signalling, locomotion, chemotaxis andadhesion. J Mol Histol.2004;35:233-245.
    39. Sharma M, Afrin F, Satija NK, Thripati RK, Gangenahalli GU. SDF-1/CXCR4signaling: indispensable role in homing and engraftment of hematopoietic stem cellsin bone marrow. Stem Cells Dev.2011.[Epub ahead of print]
    40. Winkler IG, L vesque JP. Mechanisms of hematopoietic stem cell mobilization:when innate immunity assails the cells that make blood and bone. Expe Hematol.2006;34:996-1009.
    41. Sadir R, Imberty A, Baleux Fo, Lortat-Jacob H. Heparan sulfate/heparinoligosaccharides protect stromal cell-derived factor-1(SDF-1)/CXCL12againstproteolysis induced by CD26/Dipeptidyl Peptidase IV. J Bio Chem.2004;279:43854-43860.
    42. Herrera C, Morimoto C, Blanco J, Mallol J, Arenzana F, Lluis C, Franco R.Comodulation of CXCR4and CD26in human lymphocytes. J Bio Chem.2001;276:19532-19539.
    43. Mentlein R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatorypeptides. Regul Pept.1999;85:9-24.
    44. Lambeir AM, Proost P, Durinx C, Bal G, Senten K, Augustyns K, Scharpe S, VanDJ, De M, I. Kinetic investigation of chemokine truncation by CD26/dipeptidylpeptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem.2001;276:29839-29845.
    45. Wang CH, Verma S, Hsieh IC, Chen YJ, Kuo LT, Yang NI, Wang SY, Wu MY,Hsu CM, Cheng CW, Cherng WJ. Enalapril increases ischemia-induced endothelialprogenitor cell mobilization through manipulation of the CD26system. J Mol CellCardiol.2006;41:34-43.
    46. Lefebvre J, Murphey LJ, Hartert TV, Jiao Shan R, Simmons WH, Brown NJ.Dipeptidyl Peptidase IV activity in patients with ACE-Inhibitor-associatedangioedema. Hypertension.2002;39:460-464.
    47. Bauvois B. Transmembrane proteases in cell growth and invasion: new contributorsto angiogenesis? Oncogene.2004;23:317-329.
    48. Asahara T. ACE inhibitor raps CD26/dipeptidylpeptidase IV knuckles for cytokineEPC mobilization. J Mol Cell Cardiol.2006;41:8-10.
    49. Jonas JB, Witzens-Harig M, Arseniev L, Ho AD. Intravitreal autologous bone-marrow-derived mononuclear cell transplantation. Acta Ophthalmol.2010;88:e131-e132.
    50. Kociok N. Can the injection of the patient's own bone marrow-derived stem cellspreserve cone vision in retinitis pigmentosa and other diseases of the eye? GraefesArch Clin Exp Ophthalmol.2005;243:187-188.
    51. Zou H, Otani A, Oishi A, Yodoi Y, Kameda T, Kojima H, Yoshimura N. Bonemarrow-derived cells are differentially involved in pathological and physiologicalretinal angiogenesis in mice. Biochem Biophys Res Commun.2010;391:1268-1273.
    52. Takahashi H, Yanagi Y, Tamaki Y, Muranaka K, Usui T, Sata M. Contribution ofbone marrow-derived cells to choroidal neovascularization. Biochem Biophys ResCommun.2004;320:372-375.
    53. Lecomte J, Louis K, Detry B, Blacher S, Lambert V, Bekaert S, Munaut C, Paupert J,Blaise P, Foidart JM, Rakic JM, Krane S, Noel As. Bone marrow-derivedmesenchymal cells and MMP13contribute to experimental choroidal neovasculariza-tion. Cell Mol Life Sci.2010;68:677–686.
    54. Tomita M, Adachi Y, Yamada H, Takahashi K, Kiuchi K, Oyaizu H, Ikebukuro K,Kaneda H, Matsumura M, Ikehara S. Bone marrow-derived stem cells candifferentiate into retinal cells in injured rat retina. Stem Cells.2002;20:279-283.
    55. Chiou SH, Kao CL, Peng CH, Chen SJ, Tarng YW, Ku HH, Chen YC, Shyr YM,Liu RS, Hsu CJ, Yang DM, Hsu WM, Kuo CD, Lee CH. A novel in vitro retinaldifferentiation model by co-culturing adult human bone marrow stem cells withretinal pigmented epithelium cells. Biochem Biophys Res Commun.2005;326:578-585.
    56. Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H. Characteristics ofbone marrow-derived microglia in the normal and injured retina. Invest OphthalmolVis Sci.2008;49:4162-4168.
    57. Enzmann V, Yolcu E, Kaplan HJ, Ildstad ST. Stem cells as tools in regenerativetherapy for retinal degeneration. Arch Ophthalmol.2009;127:563-571.
    58. Li Y, Reca RG, tmaca-Sonmez P, Ratajczak MZ, Ildstad ST, Kaplan HJ, EnzmannV. Retinal rigment epithelium damage enhances expression of chemoattractants andmigration of bone marrow-derived stem cells. Invest Ophthalmol Vis Sci.2006;47:1646-1652.
    59. Sheridan CM, Rice D, Hiscott PS, Wong D, Kent DL. The presence ofAC133-positive cells suggests a possible role of endothelial progenitor cells in theformation of choroidal neovascularization. Invest Ophthalmol Vis Sci.2006;47:1642-1645.
    60. Grossniklaus HE, Ling JX, Wallace TM, Dithmar S, Lawson DH, Cohen C, ElnerVM, Elner SG, Sternberg P, Jr. Macrophage and retinal pigment epitheliumexpression of angiogenic cytokines in choroidal neovascularization. Mol Vis.2002;8:119-126.
    61. Bhutto IA, McLeod DS, Merges CA, Hasegawa T, Lutty GA. Localization of SDF-1and CXCR4receptor in aged human control eyes and eyes with age-related maculardegeneration (AMD). ARVO Meeting Abstracts.2005;46:5293.
    62. Kent D, Sheridan C. Choroidal neovascularization: a wound healing perspective.Mol Vis.2003;9:747-755.
    63. Gurtner GC, Chang E."Priming" endothelial progenitor cells: a new strategy toimprove cell based therapeutics. Arterioscler Thromb Vasc Biol.2008;28:1034-1035.
    64. Albiero M, Menegazzo L, Avogaro A, Fadini GP. Pharmacologic targeting ofendothelial progenitor cells. Cardiovasc Hematol Disord Drug Targets.2010;10:16-32.
    65. Greinix HT, Worel N. New agents for mobilizing peripheral blood stem cells.Transfus Apher Sci.2009;41:67-71.
    66. Lemoli RM, D'Addio A. Hematopoietic stem cell mobilization. Haematologica.2008;93:321-324.
    67. Tousoulis D, Andreou I, Antoniades C, Tentolouris C, Stefanadis C. Role ofinflammation and oxidative stress in endothelial progenitor cell function andmobilization: therapeutic implications for cardiovascular diseases. Atherosclerosis.2008;201:236-247.
    68. Engerman RL, Pfaffenbach D, Davis MD. Cell turnover of capillaries. Lab Invest.1967;17:738-743.
    69. Csaky KG, Baffi JZ, Byrnes GA, Wolfe JD, Hilmer SC, Flippin J, Cousins SW.Recruitment of marrow-derived endothelial cells to experimental choroidalneovascularization by local expression of vascular endothelial growth factor. ExpEye Res.2004;78:1107-1116.
    70. Li Y, tmaca-Sonmez P, Schanie CL, Ildstad ST, Kaplan HJ, Enzmann V.Endogenous bone marrow derived cells express retinal pigment epithelium cellmarkers and migrate to focal areas of RPE damage. Invest Ophthalmol Vis Sci.2007;48:4321-4327.
    71. Kaur C, Foulds WS, Ling EA. Blood-retinal barrier in hypoxic ischaemic conditions:Basic concepts, clinical features and management. Prog Retin Eye Res.2008;27:622-647.
    72. Ramírez JM, Ramírez AI, Salazar JJ, de Hoz R, Trivi o A. Changes of astrocytes inretinal ageing and age-related macular degeneration. Exp Eye Res.2001;73:601-615.
    73. Bhatwadekar AD, Glenn JV, Curtis TM, Grant MB, Stitt AW, Gardiner TA. Retinalendothelial cell apoptosis stimulates recruitment of endothelial progenitor cells.Invest Ophthalmol Vis Sci.2009;50:4967-4973.
    74. Kaur C, Sivakumar V, Yong Z, Lu J, Foulds WS, Ling EA. Blood-retinal barrierdisruption and ultrastructural changes in the hypoxic retina in adult rats: thebeneficial effect of melatonin administration. J Pathol.2007;212:429-439.
    75. Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A. Technical noteson endothelial progenitor cells: ways to escape from the knowledge plateau.Atherosclerosis.2008;197:496-503.
    76. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ,Prchal JT, Ingram DA. Redefining endothelial progenitor cells via clonal analysisand hematopoietic stem/progenitor cell principals. Blood.2007;109:1801-1809.
    77. Friedlander M, Dorrell M, Ritter M, Marchetti V, Moreno S, El-Kalay M, Bird A,Banin E, Aguilar E. Progenitor cells and retinal angiogenesis. Angiogenesis.2007;10:89-101.
    78. Antonio N, Fernandes R, Rodriguez-Losada N, Jimenez-Navarro MF, Paiva A, deTeresa GE, Goncalves L, Ribeiro CF, Providencia LA. Stimulation of endothelialprogenitor cells: a new putative effect of several cardiovascular drugs. Eur J ClinPharmacol.2010;66:219-230.
    79. Hirschi KK, Ingram DA, Yoder MC. Assessing Identity, Phenotype, and Fate ofEndothelial Progenitor Cells. Arterioscler Thromb Vasc Biol.2008;28:1584-1595.
    80. Espinosa-Heidmann DG, Caicedo A, Hernandez EP, Csaky KG, Cousins SW. Bonemarrow-derived progenitor cells contribute to experimental choroidalneovascularization. Invest Ophthalmol Vis Sci.2003;44:4914-4919.
    81. Espinosa-Heidmann DG, Reinoso MA, Pina Y, Csaky KG, Caicedo A, Cousins SW.Quantitative enumeration of vascular smooth muscle cells and endothelial cellsderived from bone marrow precursors in experimental choroidal neovascularization.Exp Eye Res.2005;80:369-378.
    82. Povsic TJ, Adams SD, Zavodni KL, Kelly F, Melton LG, Rao SV, Najjar SS,Harrington RA, Peterson ED. Aldehyde dehydrogenase activity allows reliable EPCenumeration in stored peripheral blood samples. J Thromb Thrombolysis.2009;28:259-265.
    83. Sheets KG, Zhou Y, Ertel MK, Knott EJ, Regan CE, Elison JR, Gordon WC,Gjorstrup P, Bazan NG. Neuroprotectin D1attenuates laser-induced choroidalneovascularization in Mouse. Mol Vis.2010;16:320-329.
    84. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC. The chemokine SDF-1is a chemoattractant for human CD34+hematopoietic progenitor cells and providesa new mechanism to explain the mobilization of CD34+progenitors to peripheralblood. J Exp Med.1997;185:111-120.
    85. Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, Shieh JH, Hackett NR,Quitoriano MS, Crystal RG, Rafii S, Moore MAS. Plasma elevation of stromalcell-derived factor-1induces mobilization of mature and immature hematopoieticprogenitor and stem cells. Blood.2001;97:3354-3360.
    86. Moll NM, Ransohoff RM. CXCL12and CXCR4in bone marrow physiology.Expert Rev Hematol.2010;3:315-322.
    87. Christopher MJ, Liu F, Hilton MJ, Long F, Link DC. Suppression of CXCL12production by bone marrow osteoblasts is a common and critical pathway forcytokine-induced mobilization. Blood.2009;114:1331-1339.
    88. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T,Taichman RS, renzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T.G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1andup-regulating CXCR4. Nat Immunol.2002;3:687-694.
    89. Dar A, Kollet O, Lapidot T. Mutual, reciprocal SDF-1/CXCR4interactions betweenhematopoietic and bone marrow stromal cells regulate human stem cell migrationand development in NOD/SCID chimeric mice. Exp Hematol.2006;34:967-975.
    90. Sweeney EA, Lortat-Jacob H, Priestley GV, Nakamoto B, Papayannopoulou T.Sulfated polysaccharides increase plasma levels of SDF-1in monkeys and mice:involvement in mobilization of stem/progenitor cells. Blood.2002;99:44-51.
    91. Nervi B, Link DC, DiPersio JF. Cytokines and hematopoietic stem cell mobilization.J Cell Biochem.2006;99:690-705.
    92. Hübel K, Liles WC, Broxmeyer HE, Rodger E, Wood B, Cooper S, Hangoc G,Macfarland R, Bridger GJ, Henson GW, Calandra G, Dale DC. Leukocytosis andmobilization of CD34+hematopoietic progenitor cells by AMD3100, a CXCR4antagonist. Support Cancer Ther.2004;1:165-172.
    93. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC,Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC, Srour EF.Rapid mobilization of murine and human hematopoietic stem and progenitor cellswith AMD3100, a CXCR4antagonist. J Exp Med.2005;201:1307-1318.
    94. Jujo K, Hamada H, Iwakura A, Thorne T, Sekiguchi H, Clarke T, Ito A, Misener S,Tanaka T, Klyachko E, Kobayashi K, Tongers J, Roncalli J, Tsurumi Y, Hagiwara N,Losordo DW. CXCR4blockade augments bone marrow progenitor cell recruitmentto the neovasculature and reduces mortality after myocardial infarction. Proc NatlAcad Sci U S A.2010;107:11008-11013.
    95. Unoki N, Murakami T, Nishijima K, Ogino K, van Rooijen N, Yoshimura N.SDF-1/CXCR4contributes to the activation of tip cells and microglia in retinalangiogenesis. Invest Ophthalmol Vis Sci.2010;51:3362-3371.
    96. Lee E, Rewolinski D. Evaluation of CXCR4inhibition in the prevention andintervention model of laser-induced choroidal neovascularization. Invest OphthalmolVis Sci.2010;51:3666-3672.
    97. Christopherson KW,2nd, Cooper S, Broxmeyer HE. Cell surface peptidaseCD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood.2003;101:4680-4686.
    98. Christopherson KW, II, Hangoc G, Broxmeyer HE. Cell surface peptidaseCD26/Dipeptidylpeptidase IV regulates CXCL12/stromal cell-derivedfactor-1α-mediated chemotaxis of human cord blood CD34+progenitor cells. JImmunol.2002;169:7000-7008.
    99. Crump MP, Gong JH, Loetscher P, Rajarathnam K, Amara A, renzana-Seisdedos F,Virelizier JL, Baggiolini M, Sykes BD, Clark-Lewis I. Solution structure and basisfor functional activity of stromal cell-derived factor-1; dissociation of CXCR4activation from binding and inhibition of HIV-1. EMBO J.1997;16:6996-7007.
    100. Valenzuela-Fernandez A, Planchenault T, Baleux F, Staropoli I, Le-Barillec K,Leduc D, Delaunay T, Lazarini F, Virelizier JL, Chignard M, Pidard D,renzana-Seisdedos F. Leukocyte elastase negatively regulates stromal cell-derivedfactor-1(SDF-1)/CXCR4binding and functions by amino-terminal processing ofSDF-1and CXCR4. J Biol Chem.2002;277:15677-15689.
    101. Wang CH, Cherng WJ, Yang NI, Hsu CM, Yeh CH, Lan YJ, Wang JS, Verma S.Cyclosporine increases ischemia-induced endothelial progenitor cell mobilizationthrough manipulation of the CD26system. Am J Physiol Regul Integr Comp Physiol.2008;294:R811-R818.
    102. Christopherson KW, II, Hangoc G, Mantel CR, Broxmeyer HE. Modulation ofhematopoietic stem cell homing and engraftment by CD26. Science.2004;305:1000-1003.
    103. Campbell TB, Broxmeyer HE. CD26inhibition and hematopoiesis: a novelapproach to enhance transplantation. Front Biosci.2008;13:1795-1805.
    104. Broxmeyer HE, Hangoc GIAO, cooper SCOT, Campbell TIMO, Ito SHIG, MantelCHAR.AMD3100and CD26modulate mobilization, engraftment, and survival ofhematopoietic stem and progenitor cells mediated by the SDF-1/CXCL12-CXCR4axis. Ann N Y Acad Sci.2007;1106:1-19.
    105. Christopherson KW, II, Cooper S, Hangoc G, Broxmeyer HE. CD26is essential fornormal G-CSF-induced progenitor cell mobilization as determined by CD26-/-mice.Exp Hematol.2003;31:1126-1134.
    106. Moravski CJ, Kelly DJ, Cooper ME, Gilbert RE, Bertram JF, Shahinfar S, SkinnerSL, Wilkinson-Berka JL. Retinal neovascularization is prevented by blockade of therenin-angiotensin system. Hypertension.2000;36:1099-1104.
    107. Moravski CJ, Skinner SL, Stubbs AJ, Sarlos S, Kelly DJ, Cooper ME, Gilbert RE,Wilkinson-Berka JL. The renin-angiotensin system influences ocular endothelial cellproliferation in diabetes: transgenic and interventional studies. Am J Pathol.2003;162:151-160.
    108. Ebrahimian TG, Tamarat R, Clergue M, Duriez M, Levy BI, Silvestre JS. Dualeffect of angiotensin-converting enzyme inhibition on angiogenesis in type1diabetic mice. Arterioscler Thromb Vasc Biol.2005;25:65-70.
    109. Nagai N, Oike Y, Izumi-Nagai K, Koto T, Satofuka S, Shinoda H, Noda K, OzawaY, Inoue M, Tsubota K, Ishida S. Suppression of choroidal neovascularization byinhibiting angiotensin-converting enzyme: minimal role of bradykinin. InvestOphthalmol Vis Sci.2007;48:2321-2326.
    110. Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T, Drummond K,Donnelly S, Goodyer P, Gubler MC, Klein R. Renal and retinal effects of enalapriland losartan in type1diabetes. N Engl J Med.2009;361:40-51.
    111. No l A, Jost M, Lambert V, Lecomte J, Rakic JM. Anti-angiogenic therapy ofexudative age-related macular degeneration: current progress and emerging concepts.Trends Mol Med.2007;13:345-352.
    112. Sreekumar PG, Zhou J, Sohn J, Spee C, Ryan SJ, Maurer BJ, Kannan R, Hinton DR.N-(4-hydroxyphenyl) retinamide augments laser-induced choroidalneovascularization in mice. Invest Ophthalmol Vis Sci.2008;49:1210-1220.
    113. Tammen H, Hess Rd, Rose H, Wienen W, Jost M. Peptidomic analysis of bloodplasma after in vivo treatment with protease inhibitors--A proof of concept study.Peptides.2008;29:2188-2195.
    114. Lévesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular celladhesion molecule-1(CD106) is cleaved by neutrophil proteases in the bone marrowfollowing hematopoietic progenitor cell mobilization by granulocytecolony-stimulating factor. Blood.2001;98:1289-1297.
    115. Pereira DA, Gomes L, El-Cheikh MC, Borojevic R. Dipeptidyl peptidase IV (CD26)activity in the hematopoietic system: differences between the membrane-anchoredand the released enzyme activity. Braz J Med Biol Res.2003;36:567-578.
    116. Smart N, Riley PR. The stem cell movement. Circ Res2008;102:1155-1168.
    117. Lévesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of theCXCR4/CXCL12chemotactic interaction during hematopoietic stem cellmobilization induced by G-CSF or cyclophosphamide. J Clin Invest.2003;111:187-196.
    118. Bahlmann FH, de Groot K, Mueller O, Hertel B, Haller H, Fliser D. Stimulation ofendothelial progenitor cells: a new putative therapeutic effect of angiotensin IIreceptor antagonists. Hypertension.2005;45:526-529.
    119. Chen R, Iwai M, Wu L, Suzuki J, Min LJ, Shiuchi T, Sugaya T, Liu HW, Cui TX,Horiuchi M. Important role of nitric oxide in the effect of angiotensin-convertingenzyme inhibitor imidapril on vascular injury. Hypertension。2003;42:542-547。
    120.(118) Strawn WB, Richmond RS, Ann TE, Gallagher PE, Ferrario CM.Renin-angiotensin system expression in rat bone marrow haematopoietic andstromal cells. Br J Haematol.2004;126:120-126.
    121.(119)Rodgers KE, Xiong S, Steer R, diZerega GS. Effect of angiotensin II onhematopoietic progenitor cell proliferation. Stem Cells.2000;18:287-294.
    122. Prabhash K, Khattry N, Bakshi A, Karandikar R, Joshi A, Kannan S, Sastry PSRK,Parikh P, Kode JA. CD26expression in donor stem cell harvest and its correlationwith engraftment in human haematopoietic stem cell transplantation: potentialpredictor of early engraftment. Ann Oncol.2010;21:582-588.
    123. Wyss BK, Donnelly AFW, Zhou D, Sinn AL, Pollok KE, Goebel WS. Enhancedhoming and engraftment of fresh but not ex vivo cultured murine marrow cells insubmyeloablated hosts following CD26inhibition by Diprotin A. Exp Hematol.2009;37:814-823.
    124. Wulf E, Deboben A, Bautz FA, Faulstich H, Wieland T. Fluorescent phallotoxin, atool for the visualization of cellular actin. Proc Natl Acad Sci U S A.1979;76:4498-4502.
    125. Southwick FS, Dabiri GA, Paschetto M, Zigmond SH. Polymorphonuclear leukocyteadherence induces actin polymerization by a transduction pathway which differsfrom that used by chemoattractants. J Cell Biol.1989;109:1561-1569.
    126. Yoshioka T, Takahashi M, Shiba Y, Suzuki C, Morimoto H, Izawa A, Ise H, IkedaU. Granulocyte colony-stimulating factor (G-CSF) accelerates reendothelializationand reduces neointimal formation after vascular injury in mice. Cardiovasc Res.2006;70:61-69.
    127. Patschan D, Patschan S, Gobe GG, Chintala S, Goligorsky MS. Uric Acid heraldsischemic tissue injury to mobilize endothelial progenitor cells. J Am Soc Nephrol.2007;18:1516-1524.
    128. Patschan D, Krupincza K, Patschan S, Zhang Z, Hamby C, Goligorsky MS.Dynamics of mobilization and homing of endothelial progenitor cells after acuterenal ischemia: modulation by ischemic preconditioning. Am J Physiol RenalPhysiol.2006;291:F176-F185.
    129. Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, Kim TY, Cho HJ, Kang HJ,Chae IH, Yang HK, Oh BH, Park YB, Kim HS. Synergistic neovascularization bymixed transplantation of early endothelial progenitor cells and late outgrowthendothelial cells: the role of angiogenic cytokines and matrix metalloproteinases.Circulation.2005;112:1618-1627.
    130. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highlyefficacious lymphocyte chemoattractant, stromal cell-derived factor1(SDF-1). JExp Med.1996;184:1101-1109.
    131. Voermans C, Anthony EC, Mul E, van der Schoot E, Hordijk P. SDF-1-inducedactin polymerization and migration in human hematopoietic progenitor cells. ExpHematol.2001;29:1456-1464.
    132. Kim CH, Broxmeyer HE. In Vitro Behavior of hematopoietic progenitor cells underthe influence of chemoattractants: stromal cell-derived factor-1, steel factor, and thebone marrow environment. Blood1998;91:100-110.
    133. Boonacker E, Van Noorden CJ. The multifunctional or moonlighting proteinCD26/DPPIV. Eur J Cell Biol.2003;82:53-73.
    134. Espinosa-Heidmann DG, Suner I, Hernandez EP, Frazier WD, Csaky KG, CousinsSW. Age as an independent risk factor for severity of experimental choroidalneovascularization. Invest Ophthalmol Vis Sci.2002;43:1567-1573.
    135. Tomita M, Yamada H, Adachi Y, Cui Y, Yamada E, Higuchi A, Minamino K,Suzuki Y, Matsumura M, Ikehara S. Choroidal neovascularization is provided bybone marrow cells. Stem Cells.2004;22:21-26.
    136. Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J. Macrophage depletioninhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci.2003;44:3578-3585.
    137. Yamada K, Sakurai E, Itaya M, Yamasaki S, Ogura Y. Inhibition of laser-inducedchoroidal neovascularization by atorvastatin by downregulation of monocytechemotactic protein-1synthesis in mice. Invest Ophthalmol Vis Sci.2007;48:1839-1843.
    138. Edelman JL, Castro MR. Quantitative image analysis of laser-induced choroidalneovascularization in rat. Exp Eye Res.2000;71:523-533.
    139. Behar-Cohen F, BenEzra D, Soubrane G, Jonet L, Jeanny JC. Krypton laserphotocoagulation induces retinal vascular remodeling rather than choroidalneovascularization. Exp Eye Res.2006;83:263-275.
    140. Kaur C, Sivakumar V, Foulds WS. Early response of neurons and glial cells tohypoxia in the retina. Invest Ophthalmol Vis Sci.2006;47:1126-1141.
    141. Sengupta N, Caballero S, Mames RN, Timmers AM, Saban D, Grant MB.Preventing stem cell incorporation into choroidal neovascularization by targetinghoming and attachment factors. Invest Ophthalmol Vis Sci.2005;46:343-348.
    142. Sengupta N, Caballero S, Mames RN, Butler JM, Scott EW, Grant MB. The role ofadult bone marrow-derived stem cells in choroidal neovascularization. InvestOphthalmol Vis Sci.2003;44:4908-4913.
    143. Muther PS, Semkova I, Schmidt K, Abari E, Kuebbeler M, Beyer M, Abken H,Meyer KL, Kociok N, Joussen AM. Conditions of retinal glial and inflammatorycell activation after irradiatiin a GFP-chimeric mouse model. Invest Ophthalmol VisSci.2010;51:4831-4839.