多壁碳纳米管表面修饰及其热塑性聚合物基复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管作为一种独特的纳米结构材料,具有出众的物理性能和机械性能,比如极高的塑性模量、优异的导电和导热性能,这使其成为复合材料设计关注的焦点。正因为如此,最近掀起了研究碳纳米管增强聚合物基复合材料的热潮。但是,碳纳米管固有的表面惰性和不溶解性,使它难分散在溶液和聚合物基体中,在某种程度上来说,这阻碍了碳纳米管在聚合物复合材料领域的应用。研究发现,对碳纳米管进行表面化学改性,是使碳纳米管在溶液和聚合物基体中实现较好分散的有效途径。因此,本研究工作首先选择恰当的碳纳米管纯化处理工艺,使碳纳米管表面生成大量的活性基团(如羟基、羧基);再利用这些活性基团与有机小分子(或聚合物单体)反应,在碳纳米管表面接枝有机分子链;然后用接枝改性的碳纳米管,通过溶液混合法或熔融混合法制备成复合材料。探讨了纯化方法和改性过程对碳纳米管性能的影响,并对复合材料的性能进行了研究,发现了一些重要的规律,可以为聚合物-碳纳米管复合材料的研究和生产提供实验指导。
     第一,首次采用氯氧化法提纯多壁碳纳米管(MWCNTs),此方法主要由氯水处理和氨水处理两个步骤组成,它同时具备气相氧化法、液相氧化法和酸处理法三者的优点。因此从应用的角度来看,此方法简单、能够满足工业上大规模纯化碳纳米管的需求。透射电镜(TEM)观察发现:经过氯氧化纯化处理后,原始碳纳米管表面的无定形碳层、纳米碳颗粒和催化剂颗粒被除去,而且封闭的端口被打开。X-ray能量散射光谱分析法研究表明:原始碳纳米管的催化剂元素Ni、Mo和Mg含量分别为2.37、3.58和0.91wt%;而纯化碳纳米管(p-MWCNTs)中未检测到Mg和Mo,Ni的含量也降到了0.15wt%。此外,氯氧化法纯化使p-MWCNTs表面生成了大量羟基、羧基和C-Cl,这大大提高了p-MWCNTs在溶剂(如:水、乙醇、丙酮、氯仿和二甲基甲酰胺)中的分散能力。因此,可以以这些基团为基础,通过化学反应对p-MWCNTs表面进行改性。
     第二,以p-MWCNTs表面的羟基为基础,与4-氯甲基苯乙烯反应,在碳纳米管表面接枝苯乙烯基团。然后使苯乙烯基接枝改性碳纳米管(s-MWCNTs)参与苯乙烯的聚合反应,在其表面接枝聚苯乙烯(PS)分子链,得到PS接枝改性碳纳米管(g-MWCNTs)。研究显示:g-MWCNTs表面的PS层厚度大约5nm,接枝率为20wt%。经过接枝改性后,g-MWCNTs与弱极性溶剂(甲苯、四氢呋喃)的相容性提高。接着通过溶液混合法制备了PS-p-MWCNT、PS-s-MWCNT和PS-g-MWCNT三种复合材料。扫描电镜(SEM)观察发现:由于PS层的包裹,g-MWCNTs与PS基体的相容性大大提高,因此能在基体中比较均匀的分散;随着碳纳米管含量的增加,PS-g-MWCNT复合材料的断裂方式由脆性断裂逐渐转向韧性断裂。机械性能和热性能研究表明:随着碳纳米管含量的增加,PS-p-MWCNT、PS-s-MWCNT和PS-g-MWCNT三种复合材料的冲击强度、拉伸强度和热稳定温度都呈上升趋势;由于具有良好的界面相容性和均匀分散的碳纳米管,在三种复合材料中,PS-g-MWCNT复合材料的机械性能和热性能最优。当碳纳米管含量为1.5wt%时,PS-g-MWCNT复合材料的冲击强度和拉伸强度,较纯PS分别提高了38.8%和33.6%,耐热温度也提高了25℃。
     第三,在p-MWCNTs存在的条件下,微波辐射引发苯乙烯的聚合,得到PS改性的碳纳米管(m-MWCNTs)。研究发现m-MWCNTs外壁的PS包裹层厚度约为3nm,占m-MWCNTs总质量的10%;改性机理为:在微波辐射下,p-MWCNTs表面的基团(-H、-CH2OH、-CH2Cl和-CH3)被活化并参与苯乙烯的聚合反应,从而在碳纳米管表面共价接枝PS层。分散性实验证明微波辐射得到的共价结合PS层能够与MWCNTs牢固粘接,不会被溶剂洗脱;而在其它实验条件相同,改用传统加热方式来改性MWCNTs时,PS只能与MWCNTs非共价结合,并且可以被溶剂洗脱。然后用溶液混合法制备出碳纳米管含量为20 wt%的PS-p-MWCNT色母料和PS-m-MWCNT色母料。接着在挤出机和注塑机(工业生产用)上熔融混合色母料和纯PS,制备出PS-p-MWCNT复合材料和PS-m-MWCNT复合材料。SEM观察发现:在PS-m-MWCNT复合材料中,碳纳米管被两种PS层包裹,一种是改性过程中形成的接枝PS层,另一种是存在于接枝PS层和PS基体之间的PS中间层,其平均厚度为80nm;而在PS-p-MWCNT复合材料中,没有检测到类似的PS中间层。通过TEM的进一步研究证明:在PS-m-MWCNT复合材料中,碳纳米管呈单根分散状态并沿着成型时的熔体注射方向取向;而在PS-p-MWCNT复合材料中,虽然碳纳米管也是单根分散在PS基体中,但是其排列方式是杂乱无章的。由于接枝PS层和PS中间层的存在,使碳纳米管和PS基体的相容性提高、界面粘接强度增加,因此PS-m-MWCNT复合材料的机械性能和热性能都优于PS-p-MWCNT复合材料。例如,当碳纳米管含量为0.32wt%时,PS-m-MWCNT复合材料的冲击强度较纯PS提高了150%,而PS-p-MWCNT复合材料仅提高50%。
     第四,为了证明碳纳米管表面改性技术具有普遍适应性,还研究了聚碳酸酯(PC)-碳纳米管复合材料的制备及其性能。首先通过溶液混合回流法制备了PC色母料,目的是利用马来酸酐(MAH)中双键和酸酐基的反应活性,将PC分子链共价接枝到碳纳米管表面,改善碳纳米管和PC基体的相容性。然后用熔融混合法,在双螺杆挤出机和注塑机上制备了公斤级PC-MWCNT复合材料。SEM研究显示:碳纳米管是以棒状的聚集体形式均匀分散在PC基体中,此聚集体由少数几根碳纳米管组成,其直径大约500nm;而且,棒状聚集体沿着注塑成型时的熔体注射方向取向。在碳纳米管的诱导下,PC分子链在其附近规整排列,从而在PC-MWCNT复合材料内部形成大量微晶区,这使复合材料的热稳定性能大大提高。当碳纳米管含量0.32 wt%时,PC-MWCNT复合材料的冲击强度较纯PC提高了60%,热稳定温度较纯PC提高了30℃。
     总之,以上研究说明:以纯化碳纳米管表面活性基团(羟基、羧基、活泼氢等)为基础进行化学改性,这种工艺是可行的;碳纳米管经过改性后,可以提高其在溶液和聚合物基体中的分散性能,增强碳纳米管-聚合物界面的粘接强度,从而大大提高聚合物-碳纳米管复合材料的综合性能。
Carbon nanotubes (CNTs) are unique nanostructured materials with remarkablephysical and mechanical properties, such as high elastic modulus, as well asremarkable thermal and electrical conductivity, making them a very attractivecandidate in composite material formulations. For this reason a current flurry ofresearch is focused on the manufacturing of nanotube reinforced polymer matrixcomposites. However, dispersion of CNTs in solvents and polymer matrixes is anobstacle for their further applications due to the inert surfaces and the poor solubility.Some researches reported that a well dispersion of CNTs in solvents and polymermatrixes could be achieved through chemical modification of the CNT surfaces.Therefore, a proper purification was firstly carried out to achieve a large number ofactive groups (e.g.–OH and -COOH) on the CNT surfaces in this study. Based onthese active groups, CNT surfaces can be grafted and modified by organic chainsthrough reacting with organic molecules or polymer monomers. By using the modifiedCNTs, polymer-CNT composites were prepared via solution-mixing or melt-mixingapproaches. The effects of purification process and modification techniques on theCNTs were studied, and the properties of the polymer-CNT composites wereexamined and analyzed in this study. Some important rules about the polymer-CNTcomposites were found, which was instructive for the basic research and industrialmanufacture.
     Firstly, chlorine oxidation, composed of chlorine water treatment and ammoniawater treatment, was used to purify multiwalled carbon nanotubes (MWCNTs). Fromthe point view of practical application, this purification, comprising the merits ofgas-phase oxidation, liquid-phase oxidation and acid treatment, is easily carried outand can satisfy the need of purifying MWCNTs on a large scale in industry.Transmission electron microscope (TEM) observation showed that amorphous carbonon the outer-walls of pristine MWCNTs, carbon nanoparticles, and catalysts of metaloxides were eliminated via purification. Moreover, the closed tips of the pristineMWCNTs were opened. The contents of catalyst elements of Ni, Mo, and Mg in thepristine MWCNTs were 2.35, 3.58, and 0.91 wt%, respectively, which were estimatedby analysis of energy dispersive X-ray spectroscopy. However, there were no Mg andMo elements in the p-MWCNTs, and the Ni content was also dropped to 0.15 wt%. Importantly, the dispersion ability of MWCNTs in polar solvents such as water,ethanol, acetone, chloroform, and dimethylformamide, was greatly improved due to alarge number of carboxyl, hydroxyl groups, and C-Cl bonds, introduced on the CNTsurfaces after purification of chlorine oxidation. Therefore, p-MWCNTs could befurther modified via chemical reactions on the basis of these groups.
     Secondly, on the basis of the hydroxyl, p-MWCNT surfaces were modified withstyryl through reacting with 4-chloromethylstyrene. The modified MWCNTs withsurface styryl (s-MWCNTs) could participate in the polymerization of styrene, whichresulted in the covalent bonding of PS chains on the MWCNTs (g-MWCNTs). It wasfound that the PS layer was approximately 5 nm and 20 wt% of the g-MWCNTs. Aftermodified by PS, the MWCNTs were more compatible with poor polar solvent such astoluene and tetrahydrofuran. PS-p-MWCNT, PS-s-MWCNT, and PS-g-MWCNTcomposites were then prepared by solution-mixing approach. Scanning electronmicroscope (SEM) observation exhibited that because of the coating of PS layer, thecompatibility between the MWCNTs and PS matrix was greatly enhanced, resulting inthe homogeneous dispersion of g-MWCNTs. With the increase of MWCNT content,the fracture mechanism of the PS-g-MWCNT composite was transformed from brittlefracture to elastic one. Studying on the mechanical and thermal properties of thecomposits proved that with the increase of MWCNT content, the impact strength,tensile strength, and temperature of thermal stablility of PS-p-MWCNT,PS-s-MWCNT, and PS-g-MWCNT composites were all enhanced. With a betterinterfacial compatibility and homogeneous MWCNT dispersion, the PS-g-MWCNTcomposite had the better mechanical properties and thermal properties, compared toPS-p-MWCNT and PS-s-MWCNT composites. When the MWCNT content was 1.5wt%, the impact strength and tensile strength of PS-g-MWCNT composite wereincreased to 138.8% and 133.6% of neat PS, respectively. And the temperature ofthermal stability of PS-g-MWCNT composite was enhanced by 25 oC, compared toneat PS.
     Thirdly, p-MWCNTs were modified by PS via the polymerization of styrene undermicrowave irradiation. It was found that the PS layer (called PS coat layer in thefollowing) on the modified MWCNTs (m-MWCNTs) was approximately 3 nm and 10wt% of the m-MWCNTs. The mechanism of the modification was that the groups (e.g.,-H, -CH2OH, -CH2Cl and -CH3) on the p-MWCNTs were actived by microwaveirradiation and participated the polymerization of styrene, which resulted in theconvalent bond between PS and MWCNT surfaces. The PS coat layer, covalently bonding on the MWCNT surfaces, could not be washed off by solvents, proved bydispersion tests. Whereas, in the case of a control experiment conducted throughconventional heating, the PS was noncovalently bonding on MWCNT surfaces andcould be washed off by solvents. Then, the PS-p-MWCNT and PS-m-MWCNTmasterbatches with MWCNT content of 20 wt% were prerared by solution-mixing.And PS-p-MWCNT and PS-m-MWCNT composites were manufactured viamelt-mixing of masterbatches with neat PS on industrial extruder and injectionmoulding machine. In PS-m-MWCNT composite, the MWCNTs were enwrapped bytwo PS layers, which proved by SEM. One was the PS coat layer achieved duringmodification. The other was a PS middle layer lying between the PS coat layer and PSmatrix, whose thickness was approximately 80 nm. On the contrary, there was not PSmiddle layer in PS-p-MWCNT composite. TEM observations of the PS-m-MWCNTcomposite showed that the MWCNTs were individually dispersed in PS matrix andoriented along the injection direction of PS melt during moulding. In PS-p-MWCNTcomposite, the MWCNTs were also individually dispersed, but they were disordered.The mechanical and thermal properties of PS-m-MWCNT composite were better thanthat of PS-p-MWCNT composite, due to the influence of PS coat layer and PS middlelayer, improving the compatibility and interfacial adhersion between MWCNTs andPS matrix. For instance, when the MWCNT content was 0.32 wt%, thePS-m-MWCNT composite had a 250% increase of impact strength as compared toneat PS, but the PS-p-MWCNT composite had only a 150% increase.
     Fourthly, to confirm the fact that modification of MWCNT surfaces is universal forother polymer matrix, the preparation and properties of polycarbonate (PC)-MWCNTcomposite were also studied. In order to covalently modify MWCNT surfaces with PCchains, based on the reaction activity of C=C bonds and anhydride groups in maleicanhydride (MAH), and improve the compatibility between MWCNTs and PC matrix, aPC masterbatch was prepared via solution-mixing and reflux reaction of PC,MWCNTs, and MAH. Using industrial extruder and injection moulding, kilogramscale of PC-MWCNT composites were prepared via melt-mixing. SEM observationdisplayed that the claval aggregations of approximately 500 nm diameter, composedof several MWCNTs, were homogeneously dispersed in matrix and oriented along theinjection direction of PC melt during moulding. Because of the inducing effect ofMWCNTs, PC chains were regularly arrayed near the MWCNT surfaces and a largeamount of microcrystalline domains were formed, improving the thermal stability ofPC-MWCNT composite. Therefore, when the MWCNT content was 0.32 wt%, the impact strength of PC-MWCNT composite were increased to 160% of neat PS, thetemperature of thermal stability was enhanced with 30 oC.
     In conclusion, the above researches prove that it is feasible to chemically modifyMWCNT on the basis of the active groups (e.g., -H, -CH2OH, -CH2Cl and -CH3) onp-MWCNT surfaces. After modification, the dispersion ability of MWCNTs insolvents and polymer matrices can be improved, and interfacial adhersion betweenMWCNTs and polymer matrices can be enhanced, resulting in the improvement ofcomprehensive properties of polymer-MWCNT composites.
引文
[1] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991,354(6348):56-58
    [2] Ajayan P M, Schadler L S, Giannaris C, et al. Single-walled carbonnanotube-polymer composites:strength and weakness. Advanced Materials, 2000,12(10):750-753
    [3] Odegarda G M, Gatesb T S, Wisea K E, et al. Constitutive modeling ofnanotube-reinforced polymer composites. Composites Science and Technology,2003, 63(11):1671-1687
    [4] Iijima S, Brabec C, Maiti A, et al. Structural flexibility of carbon naotubes.Journal of Chemical Physics, 1996, 104(5):2089-2092
    [5] Lau K T, Shi S Q. Failure mechanisms of carbon nanotube/epoxy compositespretreated in different temperature environments. Carbon, 2002,40(15):2965-2968
    [6] Fukushima T, Kosaka A, Ishimura Y J, et al. Molecular ordering of organicmolten salts triggered by single-walled carbon nanotubes. Science, 2003,300(5628):2072-2074
    [7] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature,1993, 363(6430): 603-605
    [8] Bethune D S, Kiang C H, Devries M S, et al. Cobalt-catalyzed growth of carbonnanotubes with single-atomic-layer walls. Nature, 1993, 363(6430):605-607
    [9] Zhou X, Zhou J, Ou-Yang Z. Strain energy and Young’s modulus of single-wallcarbon nanotubes calculated from electronic energy-band theory. PhysicalReview B, 2000, 62(20):13692-13696
    [10] Bower C, Rosen R, Jin L, et al. Deformation of carbon nanotubes innanotube-polymer composites. Applied Physics Letters, 1999, 74(22):3317-3319
    [11]董树荣,张孝彬,涂江平等.新型纳米材料—纳米碳管.材料科学与工程,1998,16(2):19-22
    [12] Issi J P, Langer L, Heremans J, Olk C H. Electronic properties of carbonnanotubes: experiment results. Carbon, 1995, 33(2):941-948
    [13] Langer L, Bayot V, Grivei E, Issi J P, et al. Quantu transport in a multiwalledcarbon nanotube. Physical Review Letters, 1996, 76(3):479-482
    [14] Berber S,Kyum K,Tomanek D. Unusually high thermal conductivity of carbonnanotubes. Physical Review Letters,2000,84(20):4613-4619
    [15]沈曾民.新型碳材料.北京:化学工业出版社,2003, 200-201
    [16] Liao K, Li S. Interfacial characteristics of a carbon nanotube-polystyrenecomposite system. Applied Physics Letters, 2001, 79(25):4225-4227
    [17] Lu W G, Dong J M, Li Z Y. Optical properties of aligned carbon nanotubesystems studied by the effective-medium approximation method. PhysicalReview B, 2001, 63(3):33401-33404
    [18] Endo M,Takeuchi K,Kobori K,et al. Pyrolytic carbon nanotubes fromvapor-grown carbon fibers. Carbon, 1995, 33(7):873-880
    [19] Guo T,Nikolaev P,Thess A,et al. Catalytic growth of single-walled nanotubesby laser vaporization. Chemical Physics Letters,1995,243(1-2):49-54
    [20] Ya G, Sleypan S, Maksimenko A, Lakhtakia A, et al. Electromagnetic responseof carbon nanotubes and nanotube ropes. Synthetic Metals , 2001,124(1):121-123
    [21] Ren Z F,Huang Z P,Wu J W,et al. Synthesis of large arrays of well-alignedcarbon nanotubes on glass. Science, 1998, 282(6):1105-1107
    [22] Vivien L, Anglaret E, Riehl D, et al. Optical limiting properties of singlewallcarbon nanotubes. Optics Communications, 2000, 174(1-4):271-275
    [23] Dresselhaus M S, Dresselhaus G, Saito R. Physics of carbon nanotubes. Carbon,1995, 33(7):883-891
    [24] Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphemetubules. Applied Physics Letters, 1992, 60(18):2204-2206
    [25] Andreas T, Roland L, Pavel N, et al. Crystalline ropes of metallic carbonnanotubes. Science, 1996, 273(11):483-487
    [26] Journet C, Maser W K, Bernier P, et al. Large-scale production of single-walledcarbon nanotubes by the electric-arc technique. Nature, 1997, 388(11):756-758
    [27] Eugene G G, Thomas W. Mechanism of carbon nanotube formation in the arcdischarge. Physical Review B, 1995, 52(18):2083-2089
    [28] Puretzky A A, Geohegan D B, Fan X, et al. Dynamics of single-wall carbonnanotube synthesis by laser vaporization. Applied Physic A-Mater, 2000,70(13):153-160
    [29] Scott C D, Arepalli S, Nikolaev P. Growth mechanisms for single-wall carbonnanotubes in a laser-ablation process. Applied Physic A-Mater, 2001,72(22):573-580
    [30] Cheng H M, Li F, Su G, et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. AppliedPhysics Letters, 1998, 72(25):3282-3284
    [31] Young S P, Young C C, Keun S K. High yield purification of multiwalled carbonnanotubes by selective oxidation during thermal annealing. Carbon, 2001,39(5):655-661
    [32] Li W Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbonnanotubes. Science, 1996, 274(5293):1701-1703
    [33] Nikolaev P, Bronikowski M J, Bradley R K, et al. Gas-phase catalytic growth ofsingle-walled carbon nanotubes from carbon monoxide. Chemical PhysicsLetters, 1999, 313(2):91-97
    [34] Nerushev S, Dittmar R E, Morjan, et al. Particle size dependence and model foriron-catalyzed growth of carbon nanotubes by thermal chemical vapordeposition. Journal of Applied Physics, 2003, 93(7):4185-4190
    [35] Amelinckx S, Zhang X B, Bernaerts D, et al. A formation mechanism forcatalytically grown helix-shaped graphite nanotubes. Science, 1994,265(5172):635-639
    [36] Hsu W K, Terrones M, Hare J P, et al. Electrolytic formation of carbonnanostructures. Chemical Physics Letters, 1996, 262(8):161-166
    [37] Li Y L, Yu Y D, Liang Y. A novel method for synthesis of carbon nanotubes: lowtemperature solid pyrolysis. Journal of Materials Research, 1997,12(7):1678-1680
    [38] Chen Y, Gerald J F, Chadderton L T. Nanoporous carbon produced by ballmilling. Applied Physics Letters, 1999, 74(19):2782-2874
    [39] Vander W R, Ticich T M, Curtis V E. Diffusion flame synthesis of single-walledcarbon nanotubes. Chemical Physics Letters, 2000, 323(3):217-223
    [40] Krastschmer W, Lamb L D, Fortiropoulos K, et al. Solid C60: a new form ofcarbon. Nature, 1990, 347(6291): 354-358
    [41] Ebbessen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes. Nature,1992, 358(6383):220-222
    [42] Ishigami M, Cumings J, Zettl A, et al. A simple method for the continuousproduction of carbon nanotubes. Chemical Physics Letters, 2000,319(6):457-459
    [43] Rodriguez N M, Kim M S, Baker R T K. Carbon nanofibers: A unique catalystsupport medium. Journal of Physical Chemistry, 1994, 98(2):13108-13111
    [44]朱宏伟,慈立杰,梁吉.浮游催化法半连续制取碳纳米管的研究.新型碳材料, 2000, 15(1):48-51
    [45]刘宝春,唐水花,余作龙等.利用沸腾床反应器制备碳纳米管.催化学报,2001, 22(2):151-153
    [46] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbonnanotubes. Science, 1996, 273(5274):483-487
    [47] Journet C, Master W K. Controlled production of aligned-nanotube bundles.Nature, 1997, 388(6643):52-55
    [48] Liu C, Cong H T, Cheng H M, et al. Semi-continuous synthesis of single-walledcarbon nanotubes by a hydrogen arc discharge method. Carbon, 1999,37(11):1865-1868
    [49] Guo T, Nikolaev P, Rinzler A G, et al. Self-assembly of tubular fullerenes.Journal of Physical Chemistry, 1995, 99(27):10694-10697
    [50] Yudasaka M, Komatsu T, Ichihashi T, et al. Single-wall carbon nanotubeformation by laser ablation using double-targets of carbon and metal. ChemicalPhysics Letters, 1997, 278(3):102-106
    [51] Ajayan P M, Stephan O, Colliex C, et al. Alligned carbon nanotube arraysformed by cutting a polymer resin-nanotube composite. Science, 1994,265(5276):1212-1274
    [52] Heer W A, Bacsa, W S, Chatelain A, et al. Aligned Carbon Nanotubes Films:Production and Optical and Electronic Properties. Science, 1995,268(5212):845-847
    [53] Pan H, Guo Z X. Carbon nanotubols from mechanochemical reaction. NanoLetters, 2003, 3(1):29-32
    [54] Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays ofcarbon nanotubes and their field emission properties. Science, 1999, 283(5401):512-514
    [55] Che G, Lakshmi B B, Martin C R, et al. Chemical vapor deposition basedsynthesis of carbon nanotubes and nanofibers using a template method.Chemistry of Materials, 1998, 10(1):260-267
    [56]居艳,李凤仪,魏任重等.多孔氧化铝模板法制备取向碳纳米管阵列的研究进展.现代化工, 2004, 24(4):272
    [57] Sen R, Govindaraj A, Rao C R, et al. Filled and hollow carbon nanotubesobtained by the decomposition of metal containing free precursor molecules.Chemistry of Materials, 1997, 9(10):2078-2081
    [58] Sen R, Govindaraj A, Rao C R. Carbon nanotubes by themetallocene route.Chemical Physics Letters, 1997, 267(3):276-280
    [59] Andrews R, Jacques D, Rao A M, et al. Continuous p roduction of alignedcarbon nanotubes: a step closer to commercial realization. Chemical PhysicsLetters, 1999, 303 (526):467-474
    [60] Li X S, Cao A Y, Jung Y J, et al, Bottom-Up Growth of Carbon NanotubeMultilayers: Unprecedented Growth. Nano Letters, 2005, 5(10):1997-2000
    [61] Wei B Q, Vajtai R, Jung Y, et al. Organized assembly of carbon nanotubescunning refinements help to customize the architecture of nanotube structures.Nature, 2002, 416 (6880):495-496
    [62] Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of openingand filling carbon nanotubes. Nature, 1994, 372(6502):159-162
    [63] Liu J, RinzlerA G, Dai H J, et al. Fullerene pipes. Science, 1998,280(5367):1253-1256
    [64] Niyogi S, Hamon M A, Hu H, et al. Chemistry of single-walled carbonnanotubes. Accounts of Chemical Research, 2002, 35(12):1105-1113
    [65] Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbonnanotubes. Science, 1998, 282(5386):95-98
    [66] Chen J, Hamon M A, Hu H, et al. Dissolution of single-walled carbon nanotubes.Advanced Materials, 1999, 11(10):834-840
    [67] Chen J, Rao A M, Lyuksyutov S, et al. Dissolution of full-length single-walledcarbon nanotubes. Journal of Physical Chemistry B, 2001, 105(13):2525-2528
    [68] Qin Y J, Liu L Q, Shi J H, et al. Large-scale preparation of solubilized carbonnanotubes. Chemistry of Materials, 2003, 15(17):3256-3260
    [69] Qin Y J, Shi J H, Wu W, et al. Concise route to functionalized carbon nanotubes.Journal of Physical Chemistry B, 2003, 107(47):12899-12901
    [70] Lin Y, Taylor S, Huang W J, et al. Characterization of fractions from repeatedfunctionalization reactions of carbon nanotubes. Journal of Physical ChemistryB, 2003, 107(4):914-919
    [71] Xu M, Huang Q H, Chen Q, et al. Synthesis and characterization ofoctadecylamine grafted multi-walled carbon nanotubes. Chemical PhysicsLetters, 2003, 375(56):598-604
    [72] Huang W J, Fernando S, Allard L F, et al. Solubilization of single-walled carbonnanotubes with diamine-terminated oligomeric poly(ethylene glycol) in differentfunctionalization reactions. Nano Letters, 2003, 3(4):565-568
    [73] Riggs J E, Guo Z, Carroll D L, et al. Strong luminescence of solubilized carbonnanotubes. Journal of the American Chemical Society, 2000, 122(24):5879-5880
    [74] Sun Y P, Huang W J, Lin Y, et al. Soluble dendron-functionalized carbonnanotubes: preparation, characterization, and properties. Chemistry of Materials,2001, 13(9):2864-2869
    [75] Sun Y P, Fu K F, Lin Y, et al. Functionalized carbon nanotubes: Properties andapplications. Accounts of Chemical Research, 2002, 35(12):1096-1104
    [76] Kahn M G C, Banerjee S, Wong S S. Solubilization of oxidized single-walledcarbon nanotubes in organic and aqueous solvents through organicderivatization. Nano Letters, 2002, 2(11):1215-1218
    [77] Pompeo F, Resasco D E. Water solubilization of single-walled carbon nanotubesby functionalization with glucosamine. Nano Letters, 2002, 2(4):369-373
    [78] Yamaguchi, Yamamoto T. Soluble self-doped single-walled carbon nanotube.Materials Letters, 2004, 58(5):598-603
    [79] LinY, Hill D E, Bentley J, et al. Characterization of functionalize callednanotubes at individual nanotube-thin bundle level. Journal of PhysicalChemistry B, 2003, 107(38): 10453-10457
    [80] Zhao B, Hu H, Haddon R C. Synthesis and properties of a water-solublesingle-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) graftcopolymer. Advanced Functional Materials, 2004, 14(1):71-76
    [81] Lin Y, Zhou B, Fernando K A S, et al. Polymeric carbon nanocomposites fromcarbon nanotubes functionalized with matrix polymer. Macromolecules, 2003,36(19):7199-7204
    [82] Qin S H, Qin D Q, Ford W T, et al. Grafting of poly(4-vinylpyridine)tosingle-walled carbon nanotubes and assembly of multilayer films.Macromolecules, 2004, 37(26):3965-3967
    [83] Umek P, Seo J W, Hernadi K, et al. Addition of carbon radicals generated fromorganic peroxides to single wall carbon nanotubes. Chemistry of Materials, 2003,15(25):4751-4755
    [84] Holzinger M, Vostrowsky O, Hirsch A, et al. Sidewall functionalization ofcarbon nanombes. Angewandte Chemie-International Edition, 2001,40(21):4002-4005
    [85] Kong H, Gao C, Yan D Y. Functionalization of multiwalled carbon nanotubes byatom transfer radical polymerization and defunctionalization of the products.Macromolecules, 2004, 37(11):4022-4030
    [86] Kong H, Gao C, Yan D Y. Controlled funetionalization of multiwalled carbonnanotubes by in situ atom transfer radical polymerization. Journal of theAmerican Chemical Society, 2004, 126(2):412-413
    [87] Yao Z, Braidy N, Buton G A, et al. Polymerization from the surface ofsingle-walled carbon nanotubes-preparation and characterization ofnanocomposites. Journal of the American Chemical Society, 20 03, 125(51):16015-16024
    [88] Lu X, Tian F, Xu X, et al. Theoretical exploration of the 1,3-dipolarcycloadditions onto the sidewalls of (n,n) armchair single-wall carbon nanotubes.Journal of the American Chemical Society, 2003, 125(34):10459-10464
    [89] Qin S H, Qin D Q, Ford W T, et al. Functionalization of single-walled carbonnanotubes with Polystyrene via grafting to and grafting from methods.Macromolecules, 2004, 37(3):752-757
    [90] Sun Y, Wilson S R, Schuster D. High dissolution and strong light emission ofcarbon nanotubes in aromatic amine solvents. Journal of the American ChemicalSociety, 2001, 123(22):5348-5349
    [91] Curran S A, Ajayan P M, Blau W J, et al. A composite frompoly(m-phenylenevinyleneco-2,5-dioctoxy-p-phenylenevinylene) and carbonnanotubes: A novel material for molecular optoelectronics. Advanced Materials,1998, 10(14):1091-1093
    [92] Coleman J N, Dalton A B, Curran S, et al. Phase separation of carbon nanotubesand turbostratic graphite using a functional organic polymer. AdvancedMaterials, 2000, 12(3):213-216
    [93] Huang J E, Li X H, Xu J C, et al. Well-dispersed single-walled carbonnanotube/polyaniline composite films. Carbon, 2003, 41(14):2731-2736
    [94] Star A, Liu Y, Grant K, et al. Noncovalent Side-wall functionalization ofsingle-walled carbon nanotubes. Macromolecules, 2003, 36(3):553-560
    [95] Bandow S, Rao A M, Williams K A, et al. Purification of single-wall carbonnanotubes by microfiltration. Journal of Physical Chemistry B, 1997,101(44):8839-8842
    [96] Islam M F, Rojas E, Bergey D M, et al. High weight fraction surfactantsolubilization of single-wall carbon nanotubes in water. Nano Letters, 2003,3(2):269-273
    [97] Chen R J, Zban Y G, Wang D W, et al. Noncovalent sidewall functionalization ofsingle-walled carbon nanotubes for protein immobilization. Journal of theAmerican Chemical Society, 2001, 123(16):3838-3839
    [98] O'Connell M J, Boul P, Ericson L M, et al. Reversible water-solubilization ofsingle-walled Carbon nanotubes by polymer wrapping. Chemical Physics Letters,2001, 342(34):265-271
    [99] Wang J, Musameh M, Lin Y H. Solubilization of carbon nanotubes by Nafiontoward the preparation of amperometric biosensors. Journal of the AmericanChemical Society, 2003, 125(9):2408-2409
    [100]Hassanien A, Gao M, Tokumoto M, et al. Scanning tunneling microscopy ofaligned coaxial nanowires of polyaniline passivated carbon nanotubes. ChemicalPhysics Letters, 2001, (342):479-484
    [101]Jia Z J, Wang Z Y, Xu C L, et al. Study on poly(methyl methacrylate)/carbonnanotube composites. Materials Science and Engineering A, 1999,271(2):395-400
    [102]Sandler J, Shaffer M P, Prasse T, et al. Development of a dispersion process forcarbon nanotubes in an epoxy matrix and the resulting electrical properties.Polymer, 1999, 40(21):5967-5971
    [103]Petra P, Bhattacharyya A R, Janke A. Melt mixing of polycarbonate withmultiwalled carbon nanotubes: microscopic studies on the state of dispersion.European Polymer Journal, 2004, 40(1):137-148
    [104]Andrews R, Jacques D, Rao A M, et al. Nanotube composite carbon fibers.Applied Physics Letters, 1999, 75(9):1329-1331
    [105]Ago H, Petritsch K, Shaffer M P, et al. Composites of carbon nanotubes andconjugated polymers for photovoltaic devices. Advanced Materials, 1999,11(15):1281-1285
    [106]Coleman J N, Curren S, Dalton A B, et al. Percolation-dominated conductivity ina conjugated-polymer-carbon-nanotube composite. Physical Review B, 1998,58(12):7492-7495
    [107]Musa I, Baxendale M, Amaratunga L, et al. Properties of regioregular poly(3-octylthiophene)/multiwall carbon nanotube composites. Synthetic Metals,1999, 102(3):1250-1252
    [108]Harry J B, Francisco P, Edgar A O, et al. SWNT-flled thermoplastic andelastomeric composites prepared by miniemulsion polymerization. Nano Letters,2002, 2(8):802-805
    [109]Zhu J, Kim J D, Peng H Q, et al. Improving the dispersion and integration ofsingle-walled carbon nanotubes in epoxy composites through functionalization.Nano Letters, 2003, 3(8):1107-1113
    [110]Jacob C K, Robert L S. Polypropylene fibers reinforced with carbon nanotubes.Journal of Applied Polymer Science, 2002, 86(8):2079-2084
    [111]Martin C A, Sandler J W, Windle A H, et al. Electric field-induced alignedmulti-wall carbon nanotube networks in epoxy composites. Polymer, 2005,46(3):877-886
    [112]Colbert P T,Zhang J,Mcclure S M,et al. Growth and sintering of fullerencenanotubes. Science, 1994, 266(5188):1218-1233
    [113]陈晓红.热解法制备气相生长碳纤维和纳米碳管的研究[北京化工大学博士学位论文].北京:北京化工大学, 1998, 12-13
    [114]Valetini L, Biagiotti J, Kenny J M, et al. Effects of single-walled carbon naotubeon the crystallization behavior of polypropylene. Journal of Applied PolymerScience, 2003, 87(4):708-713
    [115]Kaushal R, Nachiket R R, Kim D Y, et al. Enzyme-polymer-single walled carbonnanotube composites as biocatalytic films. Nano Letters, 2003, 3(6):829-832
    [116]Gong X, Liu J, Baskaran S, et al. Surfactant-assisted processing of carbonnanotube/polymer composites. Chemistry of Materials, 2000, 12(4):1049-1052
    [117]Arif A M, Nicholas A K, Maurizio P, et al. Molecular design of strongsingle-wall carbon nanotube/polyelectrolyte multilayer composites. Naturematerials, 2002, 1(3):190-194
    [118]Qian D, Dickey E C, Andrews R, et al. Load transfer and deformationmechanisms in carbon nanotube-polystyrene composites. Applied PhysicsLetters, 2000, 76(20):2868-2870
    [119]Jin L, Bower C, Zhou O. Alignment of carbon nanotubes in a polymer matrix bymechanical stretching. Applied Physics Letters, 1998, 73(9):1197-1199
    [120]Shaffer M S P, Windle A H. Fabrication and characterization of carbonnanotube/poly(vinylalcohol) composites. Advanced Materials, 1999,11(11):937-941
    [121]Safadi B, Andrews R, Grulke E A. Multiwalled carbon nanotube polymercomposites: synthesis and characterization of thin films. Journal of AppliedPolymer Science, 2002, 84(14):2660-2669
    [122]Velasco-Santos C, Martinez-Hernandez A L, Fisher F, et al.Dynamical-mechanical and thermal analysis of carbonnanotube-methyl-ethylmethacrylate nanocomposites. Journal Physics D-AppliedPhysics, 2003, 36(12):1423-1428
    [123]Dufresne A, Paillet M, Putaux J L, etal. Processing and characterization ofcarbon nanotube/poly(sty-rene-co-butylacrylate) nanocomposites. Journal ofMaterials Science, 2002, 37(18):3915-3923
    [124]Probst O, Moore E M, Resasco D E,et al. Nucleation of polyvinylalcoholcrystallization by single-walled carbon nanotubes. Polymer, 2004,45(13):4437-4443
    [125]Dalmas F, Chazeau L, Gauthier C, etal. Multiwalled carbonnanotube/polymernano-composites: processing and properties. Journal ofPolymer Science Part B-Polymer Physics, 2005, 43(10):1186-1197
    [126]Watts P C P, Hsu W K. Behaviours of embedded carbon nanotubes during filmcracking. Nanotechnology, 2003, (5):L7-L10
    [127]Coleman J N, Cadek M, Blake R, etal. High performance nanotube-reinforcedplastics: understanding the mechanism of strength increase. AdvancedFunctional Materials, 2004, 14(8):791-798
    [128]Cadek M, Coleman J N, Ryan K P, etal. Reinforcement of polymer swith carbonnanotubes: the role of nanotube surface area. Nano Letters, 2004, 4(2):353-356
    [129]Cadek M, Coleman J N, Barron V, et al. Morphological and mechanicalproperties of carbon-nanotube-reinforced semicrystalline and amorphouspolymer composites. Applied Physics Letters, 2002, 81(27):5123-5125
    [130]Andrews R, Jacques D, Minot M, et al. Fabrication of carbon multiwallnanotube/polymer composites by shear mixing. Macromolecular Materials andEngineering, 2002, 287(6):395-403
    [131]Breuer O, Sundararaj U. Big returns from small fibers: a review ofpolymer/carbonnanotube composites. Polym Compos, 2004, 25(6):630-645
    [132]P?tschke P, Bhattacharyya A R, Janke A, et al.Melt mixing ofpolycarbonate/multi-wall carbon nanotube composites. Composite Interfaces,2003, 10(4-5):389-340
    [133]Jin Z, Pramoda K, Xu G, et al. Dynamic mechanical behavior of melt-processedmulti-walled carbon nanotube/poly(methylmethacrylate) composites. ChemicalPhysics Letters, 2001, 337(1-3):43-47
    [134]Andrews R, Jacques D, Qian D L, et al.Multiwall carbon nanotubes: synthesisand application. Accounts of Chemical Research, 2002, 35(12):1008-1017
    [135]Manchado M A L, Valentini L, Biagiotti J, et al. Thermal and mechanicalproperties of single-walled carbon nanotubes-polypro-pylene compositesprepared by melt processing. Carbon, 2005, 43(7):1499-1505
    [136]Liu T X, Phang I Y, Shen L, et al. Morphology and mechanical properties ofmultiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules,2004, 37(19):7214-7222
    [137]DeZhang W, Shen L, Phang I Y, et al. Carbon nanotubes reinforced nylon-6composite prepared by simple melt-compounding. Macromolecules, 2004,37(2):256-259
    [138]Gorga R E, Cohen R E. Toughness enhancements in poly(methylmethacrylate)by addition of oriented multiwall carbon nanotubes. Journal of Polymer SciencePart B-Polymer Physics, 2004, 42(14):2690-2702
    [139]Meincke O, Kaempfer D, Weickmann H, et al. Mechanical properties andelectrical conductivity of carbon-nanotube filled polyamide-6 and its blendswith acrylonitrile/butadiene/styrene. Polymer, 2004, 45(3):739-748
    [140]Tang W, Santare M H, Advani S G. Melt processing and mechanical propertycharacterization of multi-walled carbonnanotube/high density polyethylene(MWNT/HDPE) composite films. Carbon, 2003, 41(14):2779-2785
    [141]Thostenson E T, Chou T -W. Aligned multi-walled carbon nanotube reinforcedcomposites: processing and mechanical characterization. Journal of PhysicsD-Applied Physics, 2002, (16):L77-80
    [142]Cooper C A, Ravich D, Lips D, et al. Distribution and alignment of carbonnanotubes and nanofibrils in a polymer matrix. Composites Science andTechnology, 2002, 62(7-8):1105-1112
    [143]Haggenmueller R, Gommans H H, Rinzler A G, et al. Aligned single-wall carbonnanotubes in composites by melt processing methods. Chemical Physics Letters,2000, 330(3-4):219-225
    [144]Moore E M, Ortiz D L, Marla V T, et al. Enhancing the strength ofpolypropylene fibers with carbon nanotubes. Journal of Applied PolymerScience, 2004, 93(6):2926-2933
    [145]Li Q Q, Zaiser M, Koutsos V. Carbon nanotube/epoxy resin composites using ablock copolymer as a dispersing agent. Physica Status Solidi A-AppliedResearch , 2004, 201(13):R89-91
    [146]Lau K-t, Lu M, Chun-ki Lam, et al. Thermal and mechanical properties ofsingle-walled carbon nanotube bundle-reinforced epoxy nanocomposites: therole of solvent for nanotube dispersion. Composites Science and Technology,2005, 65(5):719-725
    [147]Xu X, Thwe M M, Shearwood C, et al. Mechanical properties and interfacialcharacteristics of carbon-nanotube-reinforced epoxy thin films. Applied PhysicsLetters, 2002, 81(15):2833-2835
    [148]Ogasawara T, Ishida Y, Ishikawa T, et al. Characterization of multi-walledcarbon nanotube/phenylethynyl terminated polyimide composites. CompositesPart A-Applied Science and Manufacturing, 2004, 35(1):67-74
    [149]Jia Z, Wang Z, Xu C, etal.Study on poly(methylmethacrylate)/carbon nanotubecomposites. Materials Science and Engineering A, 1999, 271(1-2):395-340
    [150]Velasco-Santos C, Martinez-Hernandez A L, Fisher F T R, et al. Improvement ofthermal and mechanical properties of carbon nanotube composites throughchemical functionalization. Chemistry of Materials, 2003, 15(23):4470-4475
    [151]Putz K W, Mitchell C A, Krishnamoorti R, et al. Elastic modulus ofsingle-walled carbon nanotube/poly(methylmethacry-late) nanocomposites.Journal of Polymer Science Part B-Polymer Physics, 2004, 42(12):2286-2293
    [152]Zhao C, Hu G, Justice R, et al. Synthesis and characterization of multi-walledcarbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer,2005, 46(14):5125-5132
    [153]Gao J, Itkis M E, Yu A, et al. Continuous spinning of a single-walled carbonnanotube-nylo composite fiber. Journal of the American Chemical Society, 2005,127(11):3847-3854
    [154]Zhu J, Peng H, Rodriguez-Macias F, etal. Reinforcing epoxy polymercomposites through covalent integration of functionalized nanotubes. AdvancedFunctional Materials, 2004, 14(7):643-648
    [155]Stevens J L, Huang A Y, Peng H, et al. Side wall amino-functionalization ofsingle-walled carbon nanotubes through fluorination and subsequent reactionswith terminal diamines. Nano Letters, 2003, 3(3):3312-3316
    [156]Montoro L A, Luengo C A, Rosolen J M, et al. Study of oxygen influence in theproduction of single-wall carbon nanotubes obtained by arc method using Ni andY catalyst. Diamond and Related Materials , 2003, 12(3-7):846-850
    [157]Duesberg G S, Muster J, Byrne H J, et al. Towards processing of carbonnanotube for technical applications. Applied Physic A-Mater, 1999,69(3):269-274
    [158]Holzinger M, Hirsch A, Bernier P, et al. A new purification method forsingle-wall carbon nanotubes (SWNTs). Applied Physic A-Mater, 2000,70(5):599-602
    [159]Ebbesen T, Ajayan A, Hiura H, et al. Purification of nanotubes. Nature, 1994,367(6460):519
    [160]Hiura H, Ebessen T, Tanigaki T. Opening and purification of carbon nanotubesin high yields. Advanced Materials, 1995, 7(3):275-276
    [161]Zimmerman J L, Bradley R K, Huffman C B, et al. Gas-phase purification ofsingle-wall carbon nanotubes. Chemistry of Materials, 2000, 12(5):1361-1366
    [162]孙晓刚,曾效舒.空气氧化法提纯碳纳米管的研究.新型碳材料,2004,19(1):65-68
    [163]Monthioux M, Smith B W, Claye A, et al. Sensitivity of single-wall carbonnanotubes to chemical processing: an electron microscopy investigation. Carbon,2001, 39(8):1251-1272
    [164]Chiang I W, Brinson B E, Smalley R E, et al. Purification and characterizationof single-wall carbon nanotubes. Journal of Physical Chemistry B, 2001,105(6):1157-1161
    [165]Hu H, Zhao B, Itkis M E, et al. Nitric acid purification of single-walled carbonnanotubes. Journal of Physical Chemistry B, 2003, 107(50):13838-13842
    [166]刘洋,崔山山,薛晓蕾等.多壁碳纳米管的纯化研究.化学研究与应用,2001,13(6):649-652
    [167]Dujardin E, Ebbesen T W, Krishnan A, et al. Purification of Single-ShellNanotubes. Advanced Materials, 1998, 10(8):611-613
    [168]Hou P X, Bai S, Yang Q H, et al. Multi-step purification of carbon nanotubes.Carbon, 2002, 40()1:81-85
    [169]Chen C M, Chen M, Leu F C, et al. Purification of multi-walled carbonnanotubes by microwave digestion method. Diamond and Related Materials ,2004, 13(4-8):1182-1186
    [170]Chen C M, Chen M, Peng Y W, et al. Microwave digestion and acidic treatmentprocedures for the purification of multi-walled carbon. Diamond and RelatedMaterials , 2005, 14(3-7):798-803
    [171]Ko F H, Lee C Y, Ko C J, et al. Purification of multi-walled carbon nanotubesthrough microwave heating of nitric acid in a closed vessel. Carbon, 2005,43(4):727-733
    [172]Ko C J, Lee C Y, Ko F H, et al. Highly efficient microwave-assisted purificationof multiwalled carbon nanotubes. Microelectron Engineering, 2004,73-74(1):570-577
    [173]Wang Y, Gao L, Sun J, et al. An integrated route for purification, cutting anddispersion of single-walled carbon nanotubes. Chemical Physics Letters, 2006,432(1-3):205-208
    [174]Jeong T, Kim W Y, Hahn Y B. A new purification method of single-wall carbonnanotubes using H2S and O2 mixture gas. Chemical Physics Letters, 2001,344(1-2):18-22
    [175]Fan Y Y, Kaufmann A, Mukasyan A, et al. Single and Multi-Wall Carbonnanotubes by Floating Catalyst Method: Synthesis, Purification andHydrogen-uptake Measurements. Carbon, 2006, 44(11):2160-2170
    [176]李权龙,袁东星,林庆梅.多壁碳纳米管纯化.化学学报, 2003,61(6):931-936
    [177]Hirsch A. Functionalization of single-walled carbon nanotubes. AngewandteChemie-International Edition, 2002, 41(11):1853-1859
    [178]Liu Y Q, Yao Z L, Adronov A. Functionalization of single-walled carbonnanotubes with well-defined polymers by radical coupling. Macromolecules,2005, 38(4):1172-1179
    [179]Xu Y Y, Gao C, Kong H, et al. Growing multihydroxyl hyperbranched polymerson the surfaces of carbon nanotubes by in situ ring-opening polymerization.Macromolecules, 2004, 37(24):8846-8853
    [180]Star A, Stoddart J F. Dispersion and solubilization of single-walled carbonnanotubes with a hyperbranched polymer. Macromolecules, 2002,35(19):7516-7520
    [181]Qin S H, Qin D Q, Ford W T, et al. Polymer brushes on single-walled carbonnanotubes by atom transfer radical polymerization of n-butylmethacrylate.Journal of the American Chemical Society, 2004, 126(1):170-176
    [182]Kang Y, Taton T A. Micelle-encapsulated carbon nanotubes: A general route tonanotube composites. Journal of the American Chemical Society, 2003,125(19):5650-5651
    [183]Star A, Steuerman D W, Heath JR, et al. Starched Carbon Nanotubes.Angewandte Chemie-International Edition, 2002, 41(14):2508-2512
    [184]Zeng H, Gao C, WangY, et al. In situ polymerization approach to multiwalledcarbon nanotubes-reinforced nylon 1010 composites: mechanical properties andcrystallization. Polymer, 2006, 47(1):113-122
    [185]Brown J M, Anderson D P, Justice R S, et al. Hierarchical morphology of carbonsingle-walled nanotubes during sonication in an aliphatic diamine. Polymer,2005, 46(24):10854-10865
    [186]Ham H T, Choi Y S, Jeong N, et al. Singlewall carbon nanotubes covered withpolypyrrole nanoparticles by the miniemulsion polymerization. Polymer, 2005,46(17):6308-6315
    [187]Hu G, Zhao C, Zhang S, et al. Low percolation thresholds of electricalconductivity and rheologty in poly(ethylene terephthalate) through the networksof multi-walled carbon nanotubes. Polymer, 2006, 47(1):480-488
    [188]Gomez FJ, Chen RJ, Wang D, et al. Ring opening metathesis polymerization onnon-covalently functionalized single-walled carbon nanotubes. ChemicalCommunications, 2003, (2):190-191
    [189]Barraza H J, Pompeo F, O?Rear EA, et al. Nanotube-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization. Nano Letters,2002, 2(8):797-802
    [190]Raravikar N R, Schadler L S, Vijayaraghavan A, et al. Carbon nanotube/polymercomposite films. Chemistry of Materials, 2005, 17(5): 974–983
    [191]Kawase R, Tanaka Y. Sprayed composite coating of high performancethermoplastics. Ohio: ASM international Materials Park, 2001: 337
    [192]Chang T E, Kisliuk A, Rhodes S M, et al. Conductivity and mechanicalproperties of well-dispersed single-wall carbon nanotube-polystyrene composite.Polymer, 2006, 47(22):7740-7746
    [193]Park C, Ounaies Z, Watson K A, et al. Dispersion of single wall carbonnanotubes by in situ polymerization under sonication. Chemical Physics Letters,2002, 364(3-4):303-308
    [194]P?tschke P, Bhattacharyya A R, Janke A. Carbon nanotube-filled polycarbonatecomposites produced by melt mixing and their use in blends with polyethylene.Carbon, 2004, 42(5-6):965-969
    [195]Biercuk M J, Llaguno M C, Radosavljevic M, et al. Carbon nanotube compositesfor thermal management. Applied Physics Letters, 2002, 80(15):2767-2769
    [196]McNally T, P?tschke P, Halley P, et al. Polyethylene multiwalled carbonnanotube composites. Polymer, 2005, 46(19):8222-8232
    [197]Kanagaraj S, Varanda F R, Zhil’tsova T V, et al. Mechanical properties of highdensity polyethylene-carbon nanotube composites. Composites Science andTechnology, 2007, 67(15-17):3071-3077
    [198]Grossiord N, Miltner H E, Loos J, et al. On the crucial role of wetting in thepreparation of conductive polystyrene-carbon nanotube composites. Chemistryof Materials, 2007, 19(15):3787-3792
    [199]Pegel S, P?tschke P, Petzold G, et al. Dispersion, agglomeration, and networkfor mation of multiwalled carbon nanotubes in polycarbonate melts. Polymer,2008, 49(8):974-984
    [200]P?tschke P, Fornes T D, Paul D R. Rheological behavior of multiwalled carbonnanotube-polycarbonate composites. Polymer, 2002, 43(11):3247-3255
    [201]Lozano K, Barrera E V. Nanofiber-reinforced thermoplastic composites (I):Thermoanalytical and mechanical analyses. Journal of Applied Polymer Science,2001, 79(1):125-133
    [202]Lozano K, Bonilla-Rios J, Barrera E V. A study on nanofiber-reinforcedthermoplastic composites (II): investigation of the mixing rheology andconduction properties. Journal of Applied Polymer Science 2001,80(8):1162-1172
    [203]Zou Y B, Feng Y C, Wang L, et al. Processing and properties of MWNT-HDPEcomposites. Carbon, 2004, 42(2):271-277
    [204]Chen L, Pang X J, Yu Z L. Study on polycarbonate-multi-walled carbonnanotubes composite produced by melt processing. Materials Science andEngineering A, 2007, 457(1-2):287-291
    [205]Villmow T, P?tschke P, Pegel S, et al. Influence of twin-screw extrusionconditions on the dispersion of multi-walled carbon nanotubes in a poly(lacticacid) matrix. Polymer, 2008, 49(15):3500-3509
    [206]Kuan C -F, Kuan H-C, Ma C -C M, et al. The preparation of carbonnanotube-linear low density polyethylene composites by a water-crosslinkingreaction. Materials Letters, 2007, 61(13):2744-2748
    [207]Vaisman L, Marom G, Wagner H D. Dispersions of surface-modified carbonnanotubes in water-soluble and water-insoluble polymers. Advanced FunctionalMaterials, 2006, 16(3):357-363
    [208]Sahoo N G, Jung Y C, Yoo H J, et al. Effect of functionalized carbon nanotubeson molecular interaction and properties of polyurethane composites.Macromolecular Chemistry and Physics , 2006, 207(19):1773-1780
    [209] Niyogi S, Hu H, Hamon M A, et al. Chromatographic purification of solublesingle walled carbon nanotubes (s-SWNTs). Journal of the American ChemicalSociety, 2001, 123(4):733-734
    [210]Huang W, Lin Y, Taylor S, et al. Sonication-assisted functionalization andsolubilization of carbon nanotubes. Nano Letters, 2002, 2(3):231-234
    [211]Blond D, Barron V, Ruether M, et al. Enhancement of modulus, strength, andtoughness in poly(methylmethacrylate)-based composites by the incorporationof poly(methyl methacrylate)-functionalized nanotubes. Advanced FunctionalMaterials, 2006, 16(12):1608-1614
    [212]Li H, Cheng F, Duft A M, et al. Functionalization of single-walled carbonnanotubes with well-defined polystyrene by“click”coupling. Journal of theAmerican Chemical Society, 2005, 127(41):14518-14524
    [213]Yang B X, Pramoda K P, Xu G Q, et al. Mechanical reinforcement ofpolyethylene using polyethylene-grafted multiwalled carbon nanotubes.Advanced Functional Materials, 2007, 17(13):2062-2069
    [214]Gedye R, Smith F, Westaway K, et al. The use of microwave ovens for rapidorganic synthesis. Tetrahedron Letters, 1986, 27(3):279-282
    [215]Caddick S. Microwave assisted organic reactions. Tetrahedron, 1995,51(38):10403-10432
    [216]Bensebaa F, Zavaliche F, L′Ecuyer P, et al. Microwave synthesis and characterization of Co-ferrite nanoparticles. Journal of Colloid and InterfaceScience, 2004, 277(1):104-110
    [217]Zhang W, Chen C H, Lu Y, et al. A highly efficient microwave-assisted Suzukicoupling reaction of aryl perfluorooctylsulfonates with boronic acids. OrganicLetters, 2004, 6(9):1473-1476
    [218]Wang Y, Iqbal Z, Mitra S. Rapidly fucntionalized, water-dispersed carbonnanotubes at high concentration. Journal of the American Chemical Society,2006, 128(1):95-99
    [219]Wang Y, Iqbal Z, Mitra S. Microwave-induced rapid chemical functionalizationof single-walled carbon nanotubes. Carbon, 2005, 43(5):1015-1020
    [220]Li J, Grennberg H. Microwave-assisted covalent sidewall functionalization ofmultiwalled carbon nanotubes. Chemistry-A European Journal , 2006,12(14):3869-3875
    [221]Liu J, Zubiri M R, Vigolo B, et al. Efficient microwave-assisted radicalfunctionalization of single-wall carbon nanotubes. Carbon, 2007, 45(4):885-891
    [222]Mendez U O, Kharissova O V, Rodriguez M. Synthesis and morphology ofnanostructurea via microwave heating. Annual Review of Materials Science,2003, 5(1):398-402
    [223]Imholt T J, Dyke C A, Hasslacher B, et al. Nanotubes in microwave fields: lightemission, intense heat, out-gassing and reconstruction. Chemistry of Materials,2003, 15:3969-3970
    [224]Cipriano B H, Kota A K, Gershon A L, et al. Conductivity enhancement ofcarbon nanotube and nanofiber-based polymer nanocomposites by meltannealing. Polymer, 2008, 49(22):4846-4851
    [225]Fornes T D, Baur J W, Sabba Y, et al. Morphology and properties of melt-spunpolycarbonate fibers containing single- and multi-walled carbon nanotubes.Polymer, 2006, 47(5):1704-1714
    [226]陈利,瞿美臻,王贵欣.溶液共混法制备碳纳米管/双酚A型聚碳酸酯复合物的研究.功能材料, 2005, 36(1):139-141
    [227]Pan Z W, Xie S S, Chang B H, et a1. Very long carbon nanotubes. Nature, 1998,394(6694):631-632
    [228]Eitan A,Fisher F T,Andrews R,et a1. Reinforcement mechanisms inMWNT-filled polycarbonate. Composites Science and Technology, 2006,66(9):1162-1173
    [229]Chen L, Pang X J, Qu M Z, et a1. Fabrication and characterization ofpolycarbonate/carbon nanotubes composites. Composites Part A-Appliedscience and Manufacturing, 2006, 37(9):1485-1489
    [230]祝芳南,曾效舒,周勇.聚碳酸酯/多壁碳纳米管复合材料的制备和研究.塑料工业, 2008, 36(8):17-19,29
    [231]P?tschke P, Fornes T D, Paul D R. Rheological behavior of multiwalled carbonnanotube/polycarbonatec omposites. Polymer, 2002, 43(11):3247-3253
    [232]P?tschke P, Dudkin S M, Alig I. Dielectric spectroscopy on melt processedpolycarbonate-multiwalled carbon nanotube composites. Polymer, 2002,44(17):5023-5030
    [233]Sennett M, Welsh E, Wright J B, et al. Dispersion and alignment of carbonnanotubes in polycarbonate. Applied Physic A-Mater, 2003, 76(1):111-113
    [234]Ferguson D W, Bryant E W S, Fowler H C. ESD thermoplastic product offersadvantages for demanding electronic applications[A]. In: Society of PlasticsEngineers, Brookfield, Proceedings of the 1998 56th Annual TechnicalConference-ANTEC [C]. MA: Hyperion Catalysis Int, Inc, 1998. 1219-1222
    [235]Yan D G, Yang G S. A novel approach of in situ grafting polyamide 6 to thesurface of multi-walled carbon nanotubes. Materials Letters, 2009,63(2):298-300
    [236]Yang B X, Shi J H, Pramoda K P, et al. Enhancement of the mechanicalproperties of polypropylene using polypropylene-grafted multiwalled carbonnanotubes. Composites Science and Technology, 2008, 68(12):2490-2497
    [237]Tsagaropoulos G, Eisenberg A. Dynamic Mechanical Study of the FactorsAffecting the Two Glass Transition Behavior of Filled Polymers. Similaritiesand Differences with Random Ionomers. Macromolecules, 1995,28(18):6067-6077
    [238]Sung Y T, Kum C K, Lee H S, et al. Dynamic mechanical and morphologicalproperties of polycarbonate/multi-walled carbon nanotube composites. Polymer,2005, 46(15):5656-5661
    [239]Hornbostela B, P?tschke P, Kotza J, et al. Mechanical properties of triplecomposites of polycarbonate, single-walled carbon nanotubes and carbon fibres.Physica E, 2008, 40(7):2434-2439