西瓜(Citrulls.lanatus)裂果机理及其分子标记研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西瓜(Citrulls.lanatus)在整个果实发育期都存在裂果现象,导致产量和质量降低,也不利于长距离运输,伤口容易产生病害,生产成本增加,开展西瓜裂果研究亟不可待。目前,关于西瓜裂果的机制研究报道很少,采用什么标准评价西瓜裂果程度,西瓜裂果的遗传机制还不明确,一些优良抗裂西瓜资源未得到很好利用。本研究进行一组试验,旨在从形态学观察、理化机理、遗传机制、分子标记筛选等多方面、多层次探求西瓜裂果机制,提出西瓜抗裂性的评价标准和单株裂果鉴定技术,将传统研究方法和分子技术相结合,探索西瓜裂果相关关键理论和应用问题,为进一步开展西瓜种质改良和抗裂育种奠定基础。主要研究成果如下:
     1研究西瓜果实性状与田间抗裂果性的相关性、西瓜抗裂性评价标准以及西瓜单株裂果鉴定技术体系
     在普通大棚和露地两种栽培条件下鉴定西瓜裂果性,制定西瓜的裂果性状分级标准和抗性评价标准;不同基因型西瓜裂果性差异显著(F保护地=10.7218**, F露地=5.783**,F0.01=1.90,df=13),大棚和露地两种栽培条件下抗裂程度显著相关(r=0.937**,r 0.01=0.6614,df=13)。
     对西瓜的14个农艺性状进行相关与通径分析结果表明裂果率与外果皮绿皮层呈显著相关,可将其作为筛选抗裂品种的重要参考性状。
     以田间裂果率为参照指标,采用相关显著性分析和聚类分析等方法,比较了形态指标鉴定(果皮厚度、外果皮绿皮层厚度)、人工诱导鉴定(耐压法、浸液减压法、切裂应度法)等方法的稳定性、可靠性,结果表明,果实切裂应度法,测定简单方便、受客观环境的影响相对较小,是西瓜单株裂果鉴定较佳方法。
     2水分、钾肥处理对西瓜裂果的影响
     通过采取控制水分和漫灌两个处理,测定裂果和未裂果西瓜果实各部分含水量,结果表明控水处理的西瓜裂果率显著降低;西瓜田间裂果率与裂果果皮含水量极显著负相关(r=-0.975**),与果瓤果皮含水量差异比值显著正相关(r=0.9074*),与裂果果瓤和未裂果果瓤含水量相关性不显著。
     以苏密1号、京欣1号西瓜品种以及筛选的不同裂果差异性的自交系为材料,研究了不同浓度的KCl叶面喷施对西瓜果实裂果性及几种生理保护性酶的影响,结果表明,超氧化物歧化酶(SOD)、过氧化物酶(POD)和丙二醛(MDA)与田间裂果率的简单相关系数分别为-0.52843、-0.46383、0.15047,均未达到显著相关,叶面喷施0.1%、0.2%、0.4%、0.6%KCl,随着浓度的增加,裂果率降低,SOD、POD的含量增加,MDA的量降低。
     3西瓜组合X-10l×L-103果实切裂应度、果皮绿皮层厚度的遗传模型和遗传参数
     应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,对组合L-103×X-101的果实切裂应度、果皮绿皮层厚度进行遗传分析。结果表明:L-103×X-101组合果实切裂应度性状的遗传受2对加-显-上位性主基因+加-显多基因控制;B1、B2、F2群体的主基因遗传率分别为40.34%、25.08%、33.10%,而多基因遗传率遗传率为32.65%、0、50.20%;在组合后代群体中遗传变异平均占表型变异的60.45%,各群体的环境平均变异率达39.55%,环境对西瓜果实裂果性状有较大影响。果皮绿皮层厚度的遗传受2对加性-显性-上位性主基因+加性-显性多基因控制, B1、F2群体的主基因遗传率分别为94.63%、93.88%,而B2群体的主基因遗传率为0,多基因仅在B1中有遗传,且遗传率很低,仅为0.544%,果皮绿皮层厚度受环境变异的影响非常小。在育种实践中,我们可以利用其高遗传效率,进行早期选择。
     4建立西瓜SRAP技术体系,筛选出与西瓜抗裂性状连锁的SRAP标记
     利用正交试验设计,对SRAP-PCR反应体系中的Mg2+浓度、dNTps浓度、引物浓度、Taq酶浓度和模板DNA浓度进行5因素4水平的筛选分析,确定西瓜SRAP-PCR最佳反应体系为:10xPCRbuffer2uL、Mg2+3.0mmol/L, dNTPs 0.2mmol/L,引物0.5umol/L,模板DNA40ng, Taq聚合酶0.5U,总体积为10uL。
     利用优化的SRAP体系和300对SRAP引物在P1、P2、极端抗裂池、极端感裂池的DNA进行扩增筛选引物,引物me8-em1在父本和抗裂池的300bp-400bp之间扩增出稳定、清晰地条带,而母本和感裂池没有条带,可能是与裂果相关的SRAP标记。在163个F2单株中验证,结果显示,在138个抗裂F2单株中126个单株产生了与抗裂亲本相同的带型,25个表现感裂的单株仅有5株产生了与抗裂亲本相同的带型,利用Mapmaker version 3.0计算出该标记与抗裂性状的连锁距离为9.9cM。
The fruits of watermelon are often found cracking duiring the whole Fruit development. Fruit-cracking results in lower yield and quality, easier infection to the deseases and more difficulties for sales. So it is a great significance to study mechanism of fruit-cracking in watermelon. However, fruit-cracking indicators and evaluation criteria have not yet established, and some good crack resistance merterials have not been well used. Therefore, a group of tests, such as morphology, physical and chemical mechanisms, genetic mechanism, and molecular marker and so on, was carried out for understanding watermelon fruit cracking. In this study, we proposed evaluation criteria and reliable identification technology on fruit cracking-risistance. On these bases, we combine traditional methods with molecular technology for in-depth exploration fruit cracking theory and application. It is very important for further breeding on crack-resistant and germplasm improvement in watermelon. The major results are as follows:
     1. The correlation between fruit agronomic traits and fruit-cracking of watermelon, grades and symptoms of fruit-cracking in the field, and an accurate, stable, scientific identification method of fruit cracking were studied.
     Resistance to fruit cracking of different gene-types watermelon was evaluated under opening and protected conditions. Grading standards and evaluation criteria of fruit-cracking in watermelon are drawn up. According to the comprehensive evaluation, the variance of the cracking indices were significant in opening field (F=5.783**, F0.01=1.90, df=13) and protected field (F=10.7218**, F0.01= 1.90, df=13). The correlation coefficients of cracking indices in both conditions were significant (r=0.937**, r0.01=0.6614, df=13).
     The correlation and path analysis on 14 agronomic traits of watermelon were studied. The thickness of pericarp and green epicarps were significantly related to the rate of fruit cracking and can be taken as a main reference trait for selecting anti-cracking varieties.
     By taking fruit-cracking rate of inbred line in the field as reference, we compare the stability, sensitivity and practicality of different identification methods, such as morphological index (pericarp thickness, green pericarp) and artificially inducing methods (pressure method, extract decompression, cut cracking), by correlation analysis and cluster analysis. The results show that the fruit cut cracking method, which is easy and convenient to determinate and is practicable to reflect the true fruit resistance of watermelon varieties, can be used as the identification method of fruit cracking in watermelon.
     2. The relationship between water, KC1 and rate of fruit cracking in watermelon
     The impact of water on watermelon fruit cracking is discussed. In the condition of the Water-control and water irrigation, we determinate water content of the various parts of cracking fruit and non-crack fruit. The results shows, watermelon fruit cracking rate, in water-controlled treatment, was significantly reduced; The relationship between rate of fruit cracking and water content in the rind of fruit cracking was significantly negatively correlated (r=-0.975), and the ratio of water content of fruit pulp and peel between cracking and non-cracking fruit was significantly correlated (r= 0.9074).
     The relation among KCl, physiological Emezy and fruit cracking resistance of watermelon were studied. The results show, correlation coefficient between superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA) and fruit cracking rate in the field was -0.52843,-0.46383, and 0.15047, which have no significant variance. When we spray KCl on the leaves during the development of watermelon, the cracking rate is decreasing, SOD, POD are increasing and MDA decreasing with the KCl concentration increased.
     3. Genetic Analysis of Fruit cut cracking and Green epicarpin Watermelon
     In this paper, inheritance of fruit cut cracking and green epicarpwere analyzed by applying the joint segregation analysis of a mixed genetic model of major gene plus polygene in six generations(P 1, P2, F1, B1, B2, and F2)derived from two crosses of L-103 (fruit-cracking susceptible)×X-101 (fruit-cracking resistance). The cut fruit cracking was dominated by two major genes with additive-dominance-epistatic effects plus polygenes with additive-dominance effects(E-1 model)in Cross X-101×L-103, The hereditability of major genes(hmg2)was 40.34%、25.08%、33.10% in B1、B2、F2 population, and that of polygenes(hpg2) detected in B1、B2、F2population was 32.65%、0、50.20%. It also indicated that the environmental variance and the genetic variance accounted for 39.55% and 60.45%, on everage, of the phenotypic variance in each population respectively, indicating that the environmental factors have a great effect on fruit cracking resistance. The green epicarpwas dominated by two major genes with additive-dominance-epistatic effects plus polygenes with additive-dominance effects (E-1 model) in the Cross. Hereditability of major genes were 94.63%、93.88% in F2 and Blpopulation, while was zero in B2 population. Hereditability of polygenes only detected in B1 population was 0.544%. It indicated that the green epicarpin is dominated by major genes. In addition, the environmental variance was little in F2 population, so hereditability of major genes can be favorable to an efficient selection in early generation.
     4. The SRAP reaction system of Watermelon and screen of SRAP molecular markers linked with fruit cracking resistance
     In this experiment, the reaction system of watemelon SRAP was optimized, in terms of Mg2+, dNTPs, primers, Taq E and template DNA 5 factors and their 4 levels with the primer Em3-Me3, by an orthogonal design.The watermelon appropriate SRAP-PCR reaction system in a 10μL reaction system was:10xPCRbuffer2uL, Mg2+3.0 mmol/L, dNTPs-0.2mmol/L, primer 0.5umol/L, template DNA40ng, Taq polymerase 0.5U.
     In this paper, bulked segregant analysis was used to screen SRAP molecular markers linked to fruit anti-cracking of watermelon using two P1, P2 and extreme types of DNA pools. By the watermelon appropriate SRAP-PCR reaction system, 1(me8-eml) primer was found with polymorphic bands from 300 pairs of SRAP primer combinations. These were further amplified in 163 F2 single DNA. The results shows 125 single plant DNA have the same maker band as the anti-cracking parent in 138 resistant single plant, Only 5 single plant DNA has the maker in 25 susceptible single plant. This marker was testified with individual DNA of the F2 population and the band could only be amplified in the high cracking resistant plants. Linkage analysis using the software of MAPMAKER/Exp3.0 indicated its genetic distance to the fruit cracking resistance is 9.9cM.
引文
[1]王鸣,侯沛.西瓜的起源、历史、分类及育种成就[J].当代蔬菜,2006,3:18-19
    [2]上村昭二.番茄裂果抵抗性的鉴定法[J].农业及园艺,1972,47(9):1306-1308
    [3]李曙轩,叶自新.番茄的裂果现象及其测定方法[J].中国蔬菜,1981,2:43-46
    [4]任小林.果实裂果研究现状[J]_山两果树,1990,1:22-24
    [5]睦顺照,周学伍、黄治远,等.桃裂果情况初步调查[J].西南园艺,1998,3:27-28
    [6]丁勤,韩明玉,田玉命.油桃裂果规律观察及成因分析[J].两北农业学报,2003,12(4):132-135
    [7]张林静,桂明珠.李的裂果机制及防止措施[J].园艺学报,2006,33(4):699-7044
    [8]_于泽源,霍俊伟.果树裂果研究进展[J].北方园艺,2002,3:28-30
    [9]田玉命,韩明玉.油桃果实细胞组织结构与裂果的关系[J].西北农业学报,2000,9(1):108-111
    [10]Bargel H,Neinhuis C. Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle [J]. J Experimental Botany,2005, 56(413):1049-1060
    [11]叶正文,叶兰香,张学英.“朋娜”等脐橙的裂果规律及赤霉素防裂效果[J].上海农业学报,2002,18(4):52-57
    [12]石志平,王文生.鲜枣裂果及其与解剖结构相关性研究[J].华北农学报,2003,18(2):92-94
    [13]高京草,王长柱,高华.影响枣裂果因子的研究[J].西北林学院学报,1998,13(4):23-27
    [14]高飞飞.红江橙裂果原因的探讨[J].华南农业大学学报,1994,1:34-39
    [15]Gibert C, Lescourret F, Genard M, et al. Modellingthe effectof fruit growth on surface conductance towater vapour diffusion[J].Annals of Botany,2005,95:673-683
    [16]Ohta K, Hosoki T, Matsumoto K, et al. Relationship between fruit cracking and changes of fruit diameter associated with solute flow to fruit in cherry tomatoes [J]. Journal of the Japanese Society for Horticultural Science,1997,65:753-759
    [17]刘仲齐,薛俊,金凤媚,等.番茄裂果与果皮结构的关系及其杂种优势表现[J].华北农学报,2007,22(3):141-147
    [18]蒲盛凯,郭文忠,刘声锋,等.日光温室西瓜裂果原因的探讨[J].宁夏农林科技,2005.5:60-61
    [19]满艳萍,张建农.不同贮运性西瓜果皮显微结构的差异[J].甘肃农业大学学报,2006,41(4):64-67
    [20]李国怀,刘娟.施钾肥对温州蜜柑果实发育、裂果和品质的影响[J].果树科学,1999,16(1):43-46
    [21]邱燕萍,陈洁珍,欧良喜,等.矿质营养变化对荔枝裂果的影响[J].广东农业科学,2001,1: 25-26
    [22]汪志辉,廖明安,孙国超,等.矿质元素对油桃裂果的影响[J].北方园艺,2005,6:41
    [23]刘铁铮,徐继忠,王连荣,等.水果裂果研究进展[J].河北林果研究,2004,19(3):2-7
    [24]李建国.钙与荔枝裂果关系初探[J].华南农业大学学报,1999,20(3):45-49
    [25]关华志.外源盐处理对加工番茄果实硬度以及品质和果皮显微结构的影响[D],西北农林科技大学,2006
    [26]王力荣,左覃元,朱更瑞,等.桃和油桃生产现状与发展建议[J].中国果树,1998,3:48-50
    [27]张林静,桂明珠.李的裂果机制及防止措施[J].园艺学报,2006,33(4):699-7044
    [28]吴智仁,陈金椿,陈文山,等.度尾蜜袖裂果原因及克服措施[J].中国南方果树,1987,2:33
    [29]高飞飞,黎宇才.荔枝化学调控技术的保果、防裂果研究[J].广‘东农业科学,1997,2:20-22.
    [30]李伟才,谢江辉,陈佳瑛,等.果树裂果机理及防治措施研究进展[J].热带农业科学,2007,27(1):55-60
    [31]陈杰忠,许建楷.柑桔果皮果胶与裂果关系的研究.中国科协第二届青年学术年会.园艺学论文集,北京:北京农业大学出版社,1995,315-319
    [32]李克志,高中山.枣裂果机理的初步研究[J].果树科学,1990,7(4):221-226
    [33]李建国,黄辉白,袁英才.荔枝裂果与果实生长及水分吸收动力学的关系[J].华南农业大学学报,1992,13(4):129-135
    [34]李建国,黄旭明,黄辉白.裂果易发性不同的荔枝品种果皮中细胞壁代谢酶活性的比较[J].植物生理与分子生物学学报,2003,29(2):141-146
    [35]J‘勤,韩明玉,田玉命.油桃裂果与膜脂过氧化的关系[J].西北农业学报,2004,13(4):200-202,206
    [36]于继洲,马丽萍,张秀梅,等.枣树裂果机理研究[J].山西农业科学 2002,30(1):76-79
    [37]马之胜,贾云云,王越辉,等.桃果实裂果与果实性状关系的研究[J].河北农业科学,2007,11(3):27-28,31
    [38]Matas A J, Cobb E D, Paolillo D J, et al. Crack resistance in chery tomato fruit correlates with cuticular memberane thickness [J]. HortScience,2004,9(6):1354-1358
    [39]任成伟,赵有为.番茄果实抗射裂性和耐压性遗传效应[J].园艺学报,1985,12(4):242-248
    [40]Rhodes B, Dane F. Gene list for watermelon [J]. Cucurbit Genetics Cooperative Report,1999, 22:6-74
    [41]oshiharu Hashizume, Ikuhiro Shimamoto, Yoshiaki Harushima, et al. Constructien of a linkage map for watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] using Random amplified polymorphic DNA(RAPD).Euphytica,1995,90:265-273
    [42]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001。
    [43]Liu L, Guo W, Zhu X, Zhang T. Inheritance and fine mapping of fertility-restoration for cytoplasmic male sterility in Gossypiumhirsutum L [J]. Theor Appl Genet,2003,106:461-469-
    [44]王泽立,王鲁昕,戴景瑞,等.运用近等基因系(NIL)、AFLP、RFLP和SCAR标记对玉米S组育性恢复基因(Rf3)的研究[J].遗传学报,2001,28(5):465-470
    [45]Julian M. Lenis, Jason D. Gillman, Jeong Dong Lee, Soybean seed lipoxygenase genes:molecular characterization and development of molecular marker assays [J]. Theoretical and Applied Genetics, 2010,120(6):1139-1149
    [46]Yael Danin-Poleg, Yaakov Tadmor, Galil Tzuri. Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance [J]. Euphytica,2002,125(3):373-384
    [47]Jianshe Wang, Jianchun Yao, Wei Li. Construction of a molecular map for melon (Cucumis melo L.) based on SRAP [J]. Frontiers of Agriculture in China,2008,2:451-455
    [48]Konstantinos Anagnostou, Molly Jahn, Rafael Perl-Treves, et al. Inhe ritance and linkage analysis of resistance to zucchini yellow mosaic virus, watermelon mosaic virus, papaya ringspot virus and powdery mildew in melon [J]. Euphytica,2000,116(3):265-270
    [49]Mukhlesur Rahman, Peter B. E. McVetty. Development of SRAP, SNP and Multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L[J]. Theoretical and Applied Genetics,2007,115,1101-1107
    [50]Csaba Szamosi, Ilknur Solmaz, Nebahat Sari, et al. Morphological characterization of Hungarian and Turkish watermelon(Citrullus lanatus (Thunb.) Matsum. et Nakai) genetic resources[J]. Genetic Resources and Crop Evolution,2009,56(8):1091-1105
    [51]Haejeen Bang, Sunggil Kim, Daniel Leskovar, et al.Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene β-cyclase (LCYB) gene[J]. Molecular Breeding,2007,20(1).63-72
    [52]Amnon Levi, Claude E. Thomas, Anthony P. Keinath, et al. Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions [J]. Genetic Resources and Crop Evolution, 2001,48(6):559-566
    [53]Li G, Quiros C F.Sequence-related amplified polymorphism (SRAP), A new marker system based on a simple PCR reaction:its application to mapping and gene tagging inBrassica. Theor Appl Genet,2001,103:455-461
    [54]Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers [J]. GenetiResources and Crop Evolution,2003,50(3):227-238
    [55]Li G, Gao M, Yang B, et al. Gene for gene alignment between the Brassica and Arobidopsis genomes by direct transcriptome mapping [J]. Theor Appl Genet,2003,107:168-180
    [56]Ferriol M, Pico B, Nuez F.Genetic diversity of a germplasm collection of Cucurbita pepousing SRAP and AFLP markers[J]. Theor Appl Genet,2003,107:271-282
    [57]王刚,潘俊松,李效尊,等.黄瓜SRAP遗传连锁图的构建及侧枝基因定位[J].中国科学C辑(生命科学),2004,34(6):510-516
    [58]邓思立,潘俊松,何欢乐,等.黄瓜M基因连锁的SRAP分子标记[J].上海交通大学学报(农业科学版),2006,24(3):240-244
    [59]雷剑,柳俊.一个与马铃薯青枯病抗性连锁的SRAP标记筛选[J].中国马铃薯,2006,20(3):150-153
    [60]Toshiharu, Hashizume. Construction of a linkage map for watermelon [Citrullus(Tbunb)Matsum&Nankai] use RAPD. Euphytiea,1996,90:265-273
    [61]范敏,许勇,张海英,等.西瓜果实性状QTL定位及其遗传效应分析[J].遗传学报,2000,27(10):902-910
    [62]易克,徐向利,卢向阳,等.利用SSR和ISSR标记技术构建西瓜分子遗传图谱[J].湖南农业大学学报(自然科学版),2003,29(4)333-337
    [63]易克,许勇,卢向阳,等.西瓜重组白交系群体的AFLP分子图谱构建[J].园艺学报,2004,31(1):53-58
    [64]皱明学.西瓜EST-SSA标记的开发及遗传图谱的构件与整合[D].首都师范大学,2007
    [65]Siddiqui S, Bangerth F. Studies on cell wall mediated changes during storage of calcium infiltration apples [J]. Acta Horticulture,1993,326:105-110
    [1]石志平,王文生.鲜枣裂果及其与解剖结构相关性研究[J].华北农学报,2003,18(2):92-94
    [2]高京草,王长柱,高华.影响枣裂果因子的研究[J].两北林学院学报.1998,13(4):23-27
    [3]高飞飞.红江橙裂果原因的探讨[J].华南农业大学学报,1994,(1):34-39
    [4]BARGEL H, NEINHUIS C. Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle [J]. J Experimental Botany, 2005,56(413):1049-1060
    [5]GIBERT C, LESCOURRET F, GENARD M, et al. Modellingthe effectof fruit growth on surface conductance towater vapour diffusion[J]. Annals of Botany,2005,95:673-683
    [6]OHTA K, HOSOKI T, MATSUMOTO K, et al. Relationship between fruit cracking and changes of fruit diameter associated with solute flow to fruit in cherry tomatoes[J].Journal of the Japanese Society for Horticultural Science,1997,65:753-759
    [7]刘仲齐,薛俊,金凤媚,等.番茄裂果与果皮结构的关系及其杂种优势表现[J].华北农学报,2007,22(3):141-147
    [8]蒲盛凯,郭文忠,刘声锋,等.日光温室西瓜裂果原因的探讨[J].宁夏农林科技,2005,5:60,61
    [9]满艳萍,张建农.不同贮运性西瓜果皮显微结构的差异[J].甘肃农业大学学报.2006,41(4):64-67
    [10]李国怀,刘娟.施钾肥对温州蜜柑果实发育、裂果和品质的影响[J].果树科学,16(1):43-46,1999
    [11]邱燕萍,陈洁珍,欧良喜,等.矿质营养变化对荔枝裂果的影响[J].广东农业科学,2001(1):25-26
    [12]汪志辉,廖明安,孙国超,等,矿质元素对油桃裂果的影响[J].北方园艺2005,6: 41
    [13]刘铁铮,徐继忠,王连荣,等.水果裂果研究进展[J].河北林果研究,2004,19(3)2-7
    [14]李建国.钙与荔枝裂果关系初探[J].华南农业大学学报.1999,20(3):45-49
    [15]关华志.外源盐处理对加工番茄果实硬度以及品质和果皮显微结构的影响[D],西北农林科技大学,2006
    [16]王力荣,左覃元.桃和油桃生产现状与发展建议[J].中国果树,1998,3: 48-50
    [17]张林静,桂明珠.李的裂果机制及防止措施[J].园艺学报,2006,33(4):699-704
    [18]王长柱,高京草,高华.枣主栽品种的抗裂性鉴定[J].西北农业学报,1998,7(2):78-81
    [19]李丹,万怡震,樊秀芳.西安临潼石榴品种资源抗裂果性田间鉴定[J].西北农业学报,2008, 17(2):229-233
    [20]GEORGIEV S, MILENKOV M. Cracking of cherry fruits, its causes and control [J]. Blgarski Plodove Zelenchutsi-i-Konservi,1973, (3):26-28
    [21]任成伟,赵有为.番茄果实抗射裂性和耐压性遗传效应研究[J].园艺学报,1985,12(4):242-248
    [1]李曙轩,叶自新.番茄的裂果现象及其测定方法[J].中国蔬菜,1981,2:43-46
    [2]Ohta K, Hosoki T, Matsumoto K, et al. Relationship between fruit cracking and changes of fruit diameter associated with solute flow to fruit in cherry tomatoes [J]. Journal of the Japanese Society for Horticultural Science,1997,65:753-759
    [3]吴国胜,曹婉虹,干永健,等.细胞膜热稳定性及保护酶和大白菜耐热性的关系[J].园艺学报,1995,4,353-358
    [4]何晓明,林毓娥,陈清华,等.高温对黄瓜幼苗生长及有关生理指标的影响[A].中国园艺学会第四届青年学术讨论会论文集[C],2000.
    [5]田仁鹏,康俊根,耿丽华,等.甘蓝枯萎病抗性鉴定方法研究[J].中国农学通报,2009,25(04):39-42
    [6]邹燕,程智慧,程晓兰.大蒜紫斑病抗性鉴定方法的研究[J].园艺学报,2009,36(5):763-770
    [7]崔美燕,高树仁,付艳,等.玉米苗期耐碱性鉴定方法研究[J].黑龙江八—农垦大学学报,2008,20(5):12-16
    [8]王俊娟,叶武威,赵云雷,等.棉花芽期抗冷性鉴定方法及抗冷性机理的研究[J].棉花学报,2008,20(6):477-479
    [9]M. Figen Donmez, Huseyin Karlidag, Ahmet Esitken.Identification of resistance to bacterial canker (Pseudomonas syringae pv. syringae) disease on apricot genotypes grown in Turkey. Eur J Plant Pathol,2010,126:241-247
    [10]ZHANG ZW, CHEN LZ, ZHENGYQ, et a.l Pilot study of drought resistance for maize at budding stage[J]. Agricultural Science&Technology,2008,9(4):4-7
    [11]SPRINGERTL, MCGRAW PL, AIKENGE. Variation of condensed tannins in round head lespedeza germplasm [J]. Crop Science,2002,42(6):2157-2160
    [12]Shannon M. Oltmans and Richard G. Novy.Identification of Potato (Solanum tuberosum L.)Haploid x Wild Species Hybrids with the Capacity to Cold-Chip.Amer J of Potato Res,2002, 79:263-268
    [13]ZHAO ZHAO Yuan, WU Yang-chun, ZHANG Jian. Development of Molecular Marker Breeding Technique, Agricultural Science&Technology[J],2010,11(1):92-95
    [14]郑晓鹰,王永建,宋顺华,等.大白菜耐热性分子标记的研究[J].中国农业科学,2002,35(3):309-313
    [15]Liang-Dong Guo. Molecular Diversity and Identification of Endophytic Fungi, Molecular Identification of Fungi[J].2010,3:277-296
    [16]Hu J, et al. Identification of broccoli and cauliflower cultivars with RAPD marks [J]. Plant Cell Reports,1991,10:505-511
    [17]Lin J, et al. Identification ofmolecularmakers in soybean comparing RFLP, RAPD and AFLP DNA mapping techniques [J]. Plant Molecular Biology Reporter,1996,14(2):156-169
    [1]李绍稳,朱立武,宣洋,等.红色籽用西瓜果实与种子经济性状相关与回归分析[J].安徽农业大学学报,2002,29(1):64-67。
    [2]张兴平,王鸣.西瓜种质资源及育种研究1.西瓜性状的亲子相关、表型相关及通径分析[J].两北农业大学学报,1987,15(1)82-87。
    [3]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:北京:科学出版社,2002.
    [4]官玲亮,吴卫,郑有良,等.油用型红花主要农艺性状与单株籽粒产量间的相关及通径分析[J]_西南农业学报,2007,20(3):486491
    [5]杨玉霞,吴卫,郑有良,等.红花主要农艺性状与单株籽粒产量的相关和通径分析[J].种子,2005,24(11):18-24
    [6]张淮,孙君艳.通径分析新探索[J].河北农业科学,2008,12(4):1-3
    [1]刘铁铮,徐继忠,王连荣.水果裂果研究进展[J].河北农业科学.2004,3:2-7
    [2]Amnon Lichter Orit Dvir, Elazar Fallik, et al. Cracking of cherry tomatoes in solution[J].Postharvest Biology and Technology,2002,26:305-312
    [3]苏祎.对烘干法水分分析原理的研究[J].中国计量,2009,12:66-67
    [4]韩建刚,常福华.巧防西瓜后期裂果[J].北方园艺,2006,2:115-118
    [5]贾健,尹善发,李德泽,等.甜瓜幼瓜和成熟瓜为什么会裂瓜[J].北方园艺,2003,2:42-43
    [6]邓大成.西瓜果实发育不良的成因及解决办法[J].北京农业,1998,5:12-13
    [1]丁勤,韩明玉,田玉命.油桃裂果与膜脂过氧化的关系[J].西北农业学报,2004,13(4):200-202,206
    [2]邱燕萍,陈洁珍,欧良喜,等.矿质营养变化对荔枝裂果的影响[J].广东农业科学,2001(1):25-26
    [3]Opara L U, Tadesse T. Fruit growth and mineral element accumulation in Pacific RoseTM apple in relation to orchard management factors and calyx-end splitting [J]. Journal of American Pomological Society,2000,54:153-159
    [4]Heath R L, Packer L. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichio metry of fatty acid peroxidation [J].Arch Biochem Biophy,1968,125:189-198
    [5]Giannoplitis C N, Ries S K. Superoxide dismutases I. Occurrence in higher plants [J]. Plant Physiol,1977,59:309-314
    [6]张志良.植物生理学实验指导[M].北京:高等教育出版社,1990.
    [7]宫长荣,汪耀富.淹水胁迫对烤烟生理生化特性的影响[J].中国农业科学1995,28:126-130
    [8]Asada K, Takahashi M.Production and scavenging of active oxygen in photosynthesis Elsevier Science Publishers [J]. Amsterdam,1987,5:227-287
    [9]于泽源,霍俊伟。果实裂果研究进展[J].北方园艺,2000(3):28-30
    [1]章元明,盖钧镒.数量性状分离分析中分布参数估计的IECM算法[J].作物学报,2000,26(6):699-706
    [2]盖钧镒,章元明,_王健康.植物数量性状遗传体系[M].北京:科学出版社,2003:169-219
    [3]章元明,盖钧镒.利用P1、F1、P2、F2和F2:3家系五世代联合分离分析的拓展[J].生物数学学报,2002,17(3)363-368
    [4]江海坤,严从生,王明霞,等.两瓜黑皮性状主基因+多基因遗传分析[J],轩艺学报,2009,24:163
    [5]Inoue M.Gao Z S, Cai H W. QTL analysis of lodging resistance and related traits in Italian ryegrass (Lolium multiflorum L.)[J].Theor Appl Genet,2004,109:1576-1585
    [6]Zhu J, Lynch J P. The Contribution of Lateral Rooting to Phosphorus Acquisition Efficiency in Maize (Zea mays L) Seedlings [J], Funct Plant Biol,2004,31:949-958
    [1]马育华.植物育种的数量遗传学基础[M].南京:江苏科学技术出版社,1982,382-383
    [2]李国申,毛桂荣,安永新等.两瓜黄皮性状遗传规律研究[J].河南农业科学,1994,12:24-25
    [3]陈远良,刘新宇,李树贤.黄瓜黄绿色叶片颜色遗传规律研究[J].北方园艺,2000,5:3-4
    [4]谢大森,彭庆务,何晓明等.节瓜产量性状的遗传研究[J].广两农业生物科学,2001,20(4):246-249
    [5]李秀秀,吕敬刚,薛毅柳,等.甜瓜果形遗传的初步研究[J].华北农学报,2002,17(3):80-83
    [6]李建友,樊治成,刘艳梅等._西葫芦果实性状的遗传分析[J].园艺学报,2005,32(1):118-120
    [7]陈学军,陈劲枫,方荣,等.辣椒始花节位遗传研究[J].园艺学报,2006,33(1):152-154
    [8]卓祖闯,万恩梅,张鲁刚,等.大白菜抽薹性状的主基因+多基因遗传分析[J].西北植物学报,2009,29(5):867-873
    [9]田露申,牛应泽,余青青,等.甘蓝型油菜白花性状的主基因+多基因遗传分析[J].中国农业科学2009,42(11):3987-3995
    [10]章元明,盖钧镒.数量性状分离分析中分布参数估计的IECM算法[J].作物学报,2000,26(6):699-706
    [1]Li G, Quiros C F. Sequence-related amplified polymorphism(SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J].Theor Appl Genet,2001,103:455-461
    [2]Liu L, Guo W, Zhu X, et al.Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L[J].Theor Appl Genet,2003,106:461-469
    [3]Riaz A, Potter D, Stephen M.Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers [J].JAmer Soc Hort Sci,2004,129:204-211
    [4]Li G, GaoM, Yang B, et al.Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping[J].Theor Appl enet,2003,107:168-180
    [5]Ferriol M, PicoB, Nuez F.Genetic diversity of a germplasm collection of cucurbita pepo using SRAP and AFLP markers [J].Theor Appl Genet,2003,107:271-282
    [6]张书芬,傅廷栋,李媛媛,等SRAP标记分析甘蓝型油菜多态性[J].华北农学报,2006,21(1):50-54
    [7]李晓慧,王从彦,徐小利,等.两瓜SRAP-PCR反应程序的建立与体系的优化[J].华北农学报,2008,23(3):38-41
    [8]李严.西瓜杂交种纯度快速鉴定方法的研究[D].山东农业大学,2005
    [9]王振国,张海英,于广建,等.黄瓜SRAP反应体系的正交设计优化[J].华北农学报.2007,22(4):112-115
    [10]李媛,姚雪琴,谢祝捷,等.正交设计优化花菜类SRAP分子标记体系的研究[J].上海农业学报,2010,26(1):42-45
    [11]陈万胜,王元英,罗成刚,等.利用正交设计优化烟草SRAP反应体系[J].分子植物育种,2008,6(1):177-182
    [12]_王明霞,严从生,江海坤,等.安徽乌塌菜SRAP反应体系的建立与优化[J].园艺学报2009,36(增刊):1961.
    [13]杨云水,李续娥,吴明宇,等.正交实验法在PCR反应条件优化中的应用[J].生物数学学报,2005,20(2):202-206
    [14]张彦萍,刘海河.西瓜RAPD-PCR体系的正交优化研究[J].河北农业大学学报,2005,28(4):51-53
    [15]谈探,金则新,李钧敏.青钱柳ISSR-PCR反应体系的优化[J].安徽农业科学,2006,32(24):6450-6451
    [1]Wechter W.P., Whitehead M.P., Thomas C.E., and Dean R.A.,1995, Identification of a randomly amplified polymorphic DNA marker linked to the Fom-2 fusarium wilt resistance gene inmuskmelon MR-1[J].Phytopathology,85(12):1245-1249
    [2]Zheng X.Y., Wolff D.W., Baudracco-Arnas S., et al. Development and utility of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms(RFLPs)linked to the Fom-2 fusarium wilt resistancegene in melon(Cucumis melo L.)[J].Theor.Appl.Genet.,1999,99:453-463
    [3]Brotman Y., Kovalski I., Dogimont C., et al. Molecular markers linked to papaya ring spot virus resistance and Fusarium race2 resistance in melon [J].Theor.Appl.Genet.,2005,110 (2):337-345(3-4):453-463
    [4]马少芹,许勇,张海英,等.两瓜抗小两葫芦黄花叶病毒基因的连锁分子标记研究[J].植物病理学报,2006,36(1):68-73)
    [5]Michelmore RW. Identification of marker linked to disease-resistance gene by bulked segregant analysis:A rapid method detect markers in specific genomic regions by using segregating populations[J].Proc NatlAcad Sci USA,1991,88:9828-9832
    [6]LanderE S, Green P, Abrahamson J. MAPMAKER:an interactive computer for constructing primary geneticsmapsofexperimentaland natural populations. Genomics,1987,1:174-182
    [7]Che KP, Wang B, Xu Y.Genetic diversity analysis and variety identification of watermelon Using AFLP markers[J].Hortseienee,2002,45:345-351
    [8]Chu Z.H., Fu B.Y., Yang H., et al. Targeting Xa13, a recessive gene for bacterial blight resistance in rice[J].Theor.Appl.Genet.,2005,112(3):455-461
    [9]S. Kaur, N. O. I. Cogan, G. Ye, et al. Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars[J]. Theor Appl Genet,2009,120:71-83
    [10]Yongli Qiao, Song-Ⅰ Lee, Rihua Piao, et al. Fine Mapping and Candidate Gene Analysis of the Floury Endosperm Gene, FLO(a), in Rice [J].Mol. Cells,2010,29,167-174
    [11]范敏,许勇,张海英,等.西瓜果实性状QTL定位及其遗传效应分析[J].遗传学报,2000,27(10):902-910